
I033 Parallel Programming L P S ECTS
62 2 0

Course objectives. Students will be introduced to the latest ideas of parallel programming. Parallel
computer models and parallel programming paradigms are presented. The use of technology for
developing parallel algorithms in various computing environments is described. Particular
attention is given to the possibility of developing modular parallel programs for more complex
parallel system.

Prerequisites Undergraduate study programme in mathematics or computer science.

Course content.
1. Parallel computer models. Parallel programming paradigms. Properties of parallel

programs. Sequential to parallel program conversion.
2. MPI - Message Passing Interface standard
3. Synchronous shared memory parallel computer model (PRAM).
4. Sum of prefixes algorithm.
5. Asynchronous parallel computer (APRAM). Model and program complexity.
6. Designing parallel algorithms. Design phases.
7. Algorithm partitioning. Communication structure definition.
8. Task agglomeration. Task to processor mapping.
9. Quantitative analysis of parallel algorithms. Algorithm performance definitions.
10. Parallel algorithm scalability analysis.
11. Development of modular parallel programs. Modular development support in MPI.
12. Parallel computation on graphical chip. Data parallelism.
13. CUDA program structure, kernel functions and threads, synchronization and scalability.

LEARNING OUTCOMES

No. LEARNING OUTCOMES

1. Describe parallel computation and parallel programming models.
2. Describe PRAM computer model.
3. Apply PRAM programming model in parallel programming.
4. Apply MPI technology in parallel program development.
5. Recognize phases of parallel algorithm design.
6. Combine parallel algorithm development elements.
7. Evaluate efficiency and scalability of parallel algorithms.

RELATING THE LEARNING OUTCOMES, ORGANIZATION OF THE EDUCATIONAL PROCESS AND
ASSESSMENT OF THE LEARNING OUTCOMES

TEACHING
ACTIVITY ECTS

LEARNING
OUTCOME

**

STUDENT
ACTIVITY*

EVALUATION
METHOD

POINTS

min max

Attending lectures
and exercises 1 1-7

Lecture attendance,
discussion, teamwork

and independent
work on given tasks

Attendance lists,
tracking activities 0 4

Homework
Assignments 1 1-7 Solving programming

tasks independently Evaluating solutions 0 4

Written exam
(Mid-terms) 2 1-7 Preparing for written

exam Evaluation 25 46

Final exam 2 1-7 Revision Oral exam 25 46

TOTAL 6 50 100

Teaching methods and student assessment. Lectures and exercises are obligatory. The exam
consists of a written and an oral part. Upon completion of the course, students can take the exam.
Successful midterm exam scores replace the written exam. Exercises are performed laboratory
using computers. Students can influence their final grade by doing homework assignments in
which they will apply the knowledge acquire in lectures and exercises.

Can the course be taught in English: Yes

Basic literature:
1. A. Grama, A. Gupta, G. Karypis, V. Kumar, Introduction to parallel computing, Addison – Wesley, 2002.
2. D. B. Kirk, W. W. Hwu, Programming Massively Parallel Processors - A Hands-on Approach, Morgan

Kaufmann, 2013.
3. Materials from lectures and exercises.

Recommended literature:
1. B. Parhami, Introduction to Parallel Processing, Algorithms and Architectures, Kluwer academic publishers,

2002.
2. I. Foster, Designing and Building Parallel Programs, Addison – Wesley, 1995.
3. J. Sanders, E. Kandrot, CUDA by Example - An Introduction to General-Purpose GPU Programming,

Addison-Wesley, 2011.

