
MI008 Semantics of programming languages L P S ECTS
62 2 0

Course objectives. Introduce students with the mathematical analysis of programming
languages. Students will study programming language concepts using the framework of typed
lambda calculus. The main goal is to present programming language concepts and features
beyond the surface syntax and to understand the meaning of program phrases (expressions,
commands, declarations, etc.). All concepts will be related to functional programming paradigm
and Haskell programming language.

 Prerequisites. Undergraduate university study programme of mathematics and/or computer
science.

Course content.
1. Introduction. Lambda notation. Axiomatic, operational, denotational semantics.
2. The language PCF (Programming Computable Functions). Syntax. Booleans and

natural numbers. Pairing and Functions. Declarations and syntactic sugar. Recursions
and Fixed-point operator. PCF Programs and their semantics. PCF reduction and
symbolic interpreters. PCF Programming examples, expressive power and limitations.
Variations and extension of PCF.

3. Universal algebra and algebraic data types. Algebras, signatures and terms. Equations,
soundness and completeness. Homomorphism and initiality. Algebraic data types.
Rewrite systems.

4. Simply-typed lambda calculus. Types. Terms. Proof systems. Henkin modles,
soundness and completeness.

5. Imperative programs. While programs. Operational semantics. Denotational semantics.
Before-after assertions about While programs. Semantics of additional program
constructs.

LEARNING OUTCOMES

No. LEARNING OUTCOMES

1. Understand lambda calculus.
2. Understand syntax and semantics of typed lambda calculus.
3. Understand difference between axiomatic, operational and denotational semantics.
4. Demonstrate standard programming paradigms in the context of functional programming language.

5. Understand the two different models in the context of typed lambda calculus; partially ordered structure,
recursive function theory.

RELATING THE LEARNING OUTCOMES, ORGANIZATION OF THE EDUCATIONAL PROCESS
AND ASSESSMENT OF THE LEARNING OUTCOMES

TEACHING
ACTIVITY ECTS

LEARNING
OUTCOME

**

STUDENT
ACTIVITY*

EVALUATION
METHOD

POINTS

min max

Attending lectures
and exercises 1 1-5

Lecture attendance,
discussion, teams
work, independent

work on given tasks
and short written

exams

Attendance lists,
tracking activities,

closed form
exercises

0 4

Homework
assignments 1 1-5 Independent work on

given problems Evaluation 0 4

Written exam
(Mid-terms) 2 1-5 Preparing for written

exam Evaluation 25 46

Final exam 2 1-5 Revision Oral or written exam 25 46

TOTAL 6 50 100

Teaching methods and student assessment. Lectures and exercises are obligatory. The exam
consists of a written and an oral part. Upon completion of the course, students can take the
exam. Successful midterm exam scores replace the written exam. Exercises are both auditory
and laboratory. Laboratory exercises include the usage of computers. Students can improve
their grades by writing homework assignments and seminars.

Can the course be taught in English: Yes

Basic literature:
1. J.C. Mitchell, Foundations for Programming Languages, MIT Press, 1996.

Recommended literature:
1. J.R. Hindley, J.P. Seldin, Lambda-Calculus and Combinators, an Introduction, Cambridge University

Press 2008.
2. F. Baader, T. Nipkow, Term Rewriting and All That, Cambridge University Press 1998.
3. M. R. A. Huth, M.D. Ryan, Logic in Computer Science, Modelling and Reasoning about Systems,

Cambridge University Press, 2000.

