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Stochastic model for dopamine cycle

Dopamine

• neurotransmitter is a chemical messengers in the brain that help transmit
signals between neurons

• dopamine is a crucial neurotransmitter that plays a central role in various
aspects of brain functions, including reward processing, motivation, learning,
and movement control

• its intricate involvement in these biological processes has made it a subject of
extensive research across multiple disciplines, ranging from neuroscience and
psychology to computational modeling

• for example, non-linear ODE model describing synthesis, storage, release,
uptake and metabolism of dopamine in dopaminergic nerve terminal of the rat
striatum is introduced in

J. B. Justice Jr., L. C. Nicolaysen, A. C. Michael
Modeling the dopaminergic nerve terminal

Journal of Neuroseience Methods, 22 (1988) 239–252
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Stochastic model for dopamine cycle

Non-linear stochastic model for dopamine cycle

• nine-dimensional non-linear diffusion process satisfying SDE
system

dx(t) = µ(x(t))dt + σ(x(t))dw(t),

x(t) = [x1(t), x2(t), . . . , x9(t)]T , t ∈ [0, T ],

with initial conditions{
xi(0) = x0

i , x0
i > 0, i ∈ {1, 2, . . . , 9}

E(x0
i )2 < ∞, i ∈ {1, 2, . . . , 9}

• wi and wj , i, j = 1, . . . , 9, i ̸= j, are one-dimensional pairwise
independent standard Brownian motions on the probability
space (Ω, F , P )

• σi ≥ 0, i = 1, . . . , 9 and all model parameters are positive
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Stochastic model for dopamine cycle

Stochastic model for dopamine cycle

dx1(t) =
[

VmT H x3(t)

x3(t) + KmT Y R
T Y R

(
1 + KmCOF

COF

)(
x3(t) + kifDA

) − kDC x1(t)
]

dt + σ1x1(t)dw1(t) (1)

dx2(t) =
[

kDC x1(t) +
Vmfbx3(t)

x3(t) + Kmfb

−
Vmbf x2(t)

x2(t) + Kmbf

− (kbi + kbr)x2(t) + kibx6(t)
]

dt + σ2x2(t)dw2(t)

(2)

dx3(t) =
[

Vmrf x4(t)

x4(t) + Kmrf

−
Vmfrx3(t)

x3(t) + Kmfr

+
Vmbf x2(t)

x2(t) + Kmbf

−
Vmfbx3(t)

x3(t) + Kmfb

−kmaof x3(t)
]

dt+σ3x3(t)dw3(t)

(3)

dx4(t) =
[

kbrx2(t)+
Vmfrx3(t)

x3(t) + Kmfr

−
Vmrf x4(t)

x4(t) + Kmrf

−
Vmrgx4(t)

x4(t) + Kmrg
−

Vmrmx4(t)
x4(t) + Kmrm

]
dt+σ4x4(t)dw4(t)

(4)

dx5(t) =
[

Vmrgx4(t)
x4(t) + Kmrg

− kmaogx5(t)
]

dt + σ5x5(t)dw5(t) (5)

dx6(t) =
[

kbix2(t) − kibx6(t)
]

dt + σ6x6(t)dw6(t) (6)

dx7(t) =
[

Vmrmx4(t)
x4(t) + Kmrm

− kmaomx7(t)
]

dt + σ7x7(t)dw7(t) (7)

dx8(t) =
[

kmaof x3(t) + kmaogx5(t) −
(

kcomtd + kcld

)
x8(t)

]
dt + σ8x8(t)dw8(t) (8)

dx9(t) =
[

kcomtdx8(t) + kmaomx7(t) − kclhx9(t)
]

dt + σ9x9(t)dw9(t) (9)
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Stochastic model for dopamine cycle

Stochastic model for dopamine cycle

• explanation of the model:

• x1(t) - amount of 3, 4-dihyroxyphenylalanine at time t, [DOPA]
• x2(t) - amount of releasable bound dopamine, [bDA]
• x3(t) - amount of free cytosolic dopamine, [fDA]
• x4(t) - amount of extracellular dopamine, [rDA]
• x5(t) - amount of glial dopamine, [gDA]
• x6(t) - amount of inactive bound dopamine, [iDA]
• x7(t) - amount of 3-methoxytyramine, [3–MT]
• x8(t) - amount of 3, 4-dihydroxyphenylacetic acid, [DOPAC]
• x9(t) - amount of homovanillic acid, [HVA]

• more details, as well as interpretation of parameters of the model,
could be found in Justice et al. (1988)
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Stochastic model for dopamine cycle

Stochastic model for dopamine cycle

Theorem
There exists a unique positive global solution of the system (1)–(9).

• proof can be found in recent paper

J. Ðorđević, M. Milošević, N. Šuvak
Non-linear stochastic model for dopamine cycle, 2023

(Manuscript submitted for publication)
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Lower and upper bounds for specific moments of coordinate processes

Lower and upper bounds for specific moments of
coordinate processes

assumptions

• expected value of solution {x(t), 0 ≤ t ≤ T},

x(t) = [x1(t), x2(t), . . . , x9(t)]τ ,

of system (1)-(9) has referent lower and upper bounds, i.e.
there exist some 0 < ai < bi such that

ai ≤ E[xi(t)] ≤ bi, i ∈ {1, . . . , 9},

• E[xi(0)] can be from or outside the referent interval [ai, bi]
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Lower and upper bounds for specific moments of coordinate processes

Problem formulation

(1) determination of bounds for the noise parameter σ2
i ensuring

that ai ≤ E[xi(t)] ≤ bi up to specific time t ∈ ⟨0, T ]

• if ai ≤ E[xi(0)] ≤ bi, we determine the bounds for the noise
parameter σ2

i for which E[xi(t)] remains in the referent interval
[ai, bi] up to specific time t ∈ ⟨0, T ]

Applied Statistics 2023 Non-linear stochastic model for dopamine cycle 8/30



Lower and upper bounds for specific moments of coordinate processes

Problems observed

(2) determination of minimal length of the time-interval in
which E[xi(t)] stays in the same interval as E[xi(0)], without
controlling the noise parameter σ2

i

• by assuming that E[xi(0)] is either in or outside the referent
interval [ai, bi], we determine the minimal length of the
time-interval in which the expected value E[xi(t)] of the process
spends in the same interval as E[xi(0)]
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Lower and upper bounds for specific moments of coordinate processes

Technique for deriving moment bounds

• to derive these results, first we obtain component-wise upper
bounds of some moments of process {x(t), 0 ≤ t ≤ T} for which
we do not claim the optimality in any sense:

E[1/xi(t)], E[xi(t)], E[x2
i (t)], i ∈ {1, . . . , 9}

• regarding classical techniques used, beside classical Itô’s formula
and a simple inequality

xy ≤ x2

2 + y2

2 , ∀x, y ∈ R,

other technical results used for calculation of bounds for moments
E[1/xi(t)], E[xi(t)] and E[x2

i (t)] are given in following theorems

Applied Statistics 2023 Non-linear stochastic model for dopamine cycle 10/30



Lower and upper bounds for specific moments of coordinate processes

Technique for deriving moment bounds

Theorem (Gronwall-Bellman’s inequality)
Let u and f be continuous and non-negative functions defined on
I = [a, b] and let n be a continuous, positive and non-decreasing
function defined on I satisfying the integral inequality

u(t) ≤ n(t) +
t∫

a

f(s)u(s) ds, t ∈ I.

Then

u(t) ≤ n(t) exp

 t∫
a

f(s) ds

, t ∈ I. (10)

Applied Statistics 2023 Non-linear stochastic model for dopamine cycle 11/30



Lower and upper bounds for specific moments of coordinate processes

Technique for deriving moment bounds

Theorem (Pachpatte’s inequality)
Let u, f and g be non-negative continuous functions on R+ = [0, ∞⟩
and n(t) be a positive and non-decreasing continuous function defined
on R+ for which the inequality

u(t) ≤ n(t) +
t∫

0

f(s)

u(s) +
s∫

0

g(z)u(z) dz

 ds, t ∈ R+

holds for t ∈ R+. Then

u(t) ≤ n(t)

1 +
t∫

0

f(s) exp

 s∫
0

(f(z) + g(z)) dz

 ds

 , t ∈ R+.

(11)
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Lower and upper bounds for specific moments of coordinate processes

Bounds for moments of x1(t)

• from equation (1), by applying Itô’s formula and taking the
expectation, we obtain the upper bounds for E[1/x1(t)],
E[x1(t)] and E[x2

1(t)] that are further simplified by using
Gronwall-Bellman’s inequality (Theorem 2, expression (10))

• the upper bound for E[1/x1(t)]:

E[1/x1(t)] ≤ E[1/x1(0)]e(σ2
1+kDC)t (12)
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Lower and upper bounds for specific moments of coordinate processes

Bounds for moments of x1(t)

• the upper bound for E[x1(t)]:

E[x1(t)] ≤ E[x1(0)] +
t∫

0

Kx1 ds = E[x1(0)] + Kx1t := Ux1(t),

(13)
where

Kx1 = VmT H · TY R · COF

TY R · COF + KmT Y R (COF + KmCOF ) (14)

• lower bound for E[x1(t)] (Jensen’s inequality + (12)):

E[x1(t)] ≥
(
E[1/x1(0)]e(σ2

1+kDC)t
)−1

:= Lx1(t) (15)
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Lower and upper bounds for specific moments of coordinate processes

Bounds for noise parameter σ2
1

• in order to obtain lower and upper bounds for intensity σ2
1 of

the Brownian motion w1, for which the expected value of the
process x1 remains in the referent interval [a1, b1], we assume that
a1 ≤ E[x1(0)] ≤ b1 and that there exists some tb1 ∈ ⟨0, T ] such
that

a1 ≤ 1

E
[

1
x1(0)

]
e(σ2

1+kDC)t
≤ E[x1(t)] ≤ E[x1(0)] + Kx1 t ≤ b1, (16)

for all t ∈ ⟨0, tb1 ], and where the lower and the upper bounds for
E[x1(t)] are given by (15) and (13)
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Lower and upper bounds for specific moments of coordinate processes

Bounds for noise parameter σ2
1

• from (16) it follows that E[x1(t)] remains in the referent
interval [a1, b1] at least up to the time

tb1 = b1 − E[x1(0)]
Kx1

,

for σ2
1 satisfying the following condition:

0 ≤ σ2
1 ≤ ln (a1E[1/x1(0)])−1/tb1 − kDC

• non-negativity of σ1 is ensured by assumption

a1 ≤ E[x1(0)] ≤ b1
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Lower and upper bounds for specific moments of coordinate processes

Upper bounds for time for which E[x1(t)] remains
in the same interval as E[x1(0)]

• according to assumption on value of E[x1(0)] regarding the
referent bounds a1 and b1 we obtain the lower bound for the
time that the expected value E[x1(t)] spends in the same interval
as the expected starting value of the process x1

• if a1 ≤ E[x1(0)] ≤ b1, from the first and the last inequality in (16)
it follows that E[x1(t)] stays in the referent interval [a1, b1] at least
up to the time tb1

a1
given by

tb1
a1

= min
{

b1 − E[x1(0)]
Kx1

,
1

σ2
1 + kDC

ln
(

1
a1E [1/x1(0)]

)}
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Lower and upper bounds for specific moments of coordinate processes

Upper bounds for time for which E[x1(t)] remains
in the same interval as E[x1(0)]

• if E[x1(0)] < a1, we determine the lower bound ta1 such that
E[x1(t)] ≤ a1 at least up to time ta1

• it can be obtained by imposing the following assumption to the
upper bound (13) of E[x1(t)]:

E[x1(0)] + Kx1t ≤ a1

• it follows that E[x1(t)] ≤ a1 at least up to the time

ta1 = a1 − E[x1(0)]
Kx1
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Lower and upper bounds for specific moments of coordinate processes

Upper bounds for time for which E[x1(t)] remains
in the same interval as E[x1(0)]

• if E[x1(0)] > b1, we determine the lower bound tb1 such that
E[x1(t)] ≥ b1 at least up to time tb1

• it can be obtained by imposing the following assumption to the
lower bound (15) of E[x1(t)]:

b1 ≤
(
E[1/x1(0)]e(σ2

1+kDC)t
)−1

• it follows that E[x1(t)] ≥ b1 at least up to the time

tb1 = 1
σ2

1 + kDC
ln

( 1
b1E[1/x1(0)]

)
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Simulations

Simulation technique

• we introduce the approximate solution corresponding to the
solution of the system (1)–(9)

• approximate solution is based on standard Euler-Maruyama
approximation scheme and Balanced Implicit Method (BIM)
for d-dimensional SDEs of the form

dXt = a(t, Xt)dt +
m∑

j=1
bj(t, Xt)dW j

t , t ≥ 0

• here E(X0)2 < ∞, where a, b1, . . . , bm are d-dimensional Lipschitz
continuous vector-valued function fulfilling linear growth condition
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Simulations

Simulation technique

• BIM method is of the following form

Yn+1 = Yn + a(τn, Yn)∆ +
m∑

j=1
bj(τn, Yn)W j

n + Cn(Yn − Yn+1),

where

Cn = c0(τn, Yn)∆ +
m∑

j=1
cj(τn, Yn)|∆W j

n|,

and ∆W j
n = W j

τn+1 − W j
τn

, ∆ = τn+1 − τn, n = 0, 1, . . . , N − 1,
and c0, c1, . . . , cm represent d × d-matrix-valued functions
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Simulations

Simulation technique

• let ∆ ∈ (0, 1) be the step-size and let

k∆, k ∈ {0, 1, . . . , N},

be the equidistant partition of the time interval [0, T ], where
N =

⌊
T
∆

⌋
, while ⌊·⌋ is the integer part function

• for k = 0, 1, . . . N − 1 we define the discrete-time approximate
solution of the system (1)–(9) in accordance with BIM as
follows:
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Simulations

Simulation technique
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Simulations

Simulation results

• initial conditions and parameter values for model (1)–(9) are
chosen as in the paper Justice et al. (1988)

• initial conditions x1(0) = 0.25 x2(0) = 11.57 x3(0) = 2.5
x4(0) = 0.0017 x5(0) = 3 x6(0) = 64.8
x7(0) = 0.063 x8(0) = 5.9 x9(0) = 3.3

• parameters values

VmT H = 40 KmT Y R = 55.3 T Y R = 150 kifDA = 110
kDC = 1.38 Vmfb = 0.439 Kmfb = 0.459 kib = 0.295
kbi = 1.65 kbr = 0.012 Vmfr = 7.807 Kmfr = 25.04
kmaof = 0.0598 Vmrf = 12.51 Kmrf = 0.032 Vmrg = 31.9
Kmrg = 0.315 Vmrm = 0.15 Kmrm = 0.012 kmaog = 0.0598
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Simulations

Simulation results

• to illustrate theoretical findings regarding the behavior of the
first moment of the solution we consider coordinate processes
{xi(t), 0 ≤ t ≤ T}, i ∈ {1, . . . 9}

• we focus here on coordinate process (x1(t), 0 ≤ t ≤ T ); other
coordinate processes can be treated analogously

• simulation steps for (x1(t), 0 ≤ t ≤ T ):

(1) simulation of deterministic model

• solution of deterministic model, corresponding to the approximate
solution for σi = 0, i ∈ {1, 2, . . . , 9}, is simulated

• for every coordinate process of deterministic model minimal and
maximal values of simulated trajectories are taken as initial values
for referent boundaries adet

i and bdet
i
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Simulations

Simulation results

(2) determination of the referent interval for the first moment of
(x1(t), 0 ≤ t ≤ T )

• for simulation of stochastic model for x1 new initial value x1(0) is
chosen from U(adet

1 , bdet
1 ), with fixed initial values for i = 2, . . . , 9

• 100 values for σ1 are chosen from uniform distribution on
interval (16), with σi = 0.05, i = 2, . . . , 9, replacing a1 from that
relation by adet

1

• for each σ1, i.e. for each stochastic model for x1, the minimal
value of simulated trajectory is taken and a1 is set to be the
minimum of that sequence

• analogously, for each σ1 the maximal value of simulated
trajectory is taken and b1 is set to be the maximum of that
sequence
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Simulations

Simulation results

(3) simulation of stochastic model for (x1(t), 0 ≤ t ≤ T )

• x1 starts from U(a1, b1) and other coordinate processes start from
the initial values of the deterministic model

• value of σ1 is arbitrarily chosen from the interval determined by
the relation (16), while σi = 0.05, i = 2, . . . , 9

• E[x1(t)] is approximated by sample average of 100 trajectories
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Simulations

Simulation results - (x1(t), 0 ≤ t ≤ T )

t b1 = 0.264702
t

0.227515

1.35267

1.21383

a1

E[x1(t)] - lower boundary

E[x1(t)]

E[x1(t)] - upper boundary

b1

t a1 = 0.350437

t

0.103683

0.227515

t b1= 0.233409

1.35267

5.73571

Figure 1: Cases when (a) E[x1(0)] ∈ [a1, b1], (b) E[x1(0)] < a1 and (c)
E[x1(0)] > b1, respectively
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Simulations

Simulation results - (x2(t), 0 ≤ t ≤ T )

t
b2=0.0000126

t
11.5015

11.5231

11.5261

a2

E[x2(t)]-lower boundary

E[x2(t)]

E[x2(t)]-upper boundary

t
a2=0.0339849

t

11.5015

tb2=0.00367272
t

11.6143

11.5261

Figure 2: Cases when (a) E[x2(0)] ∈ [a2, b2], (b) E[x2(0)] < a2 and (c)
E[x2(0)] > b2, respectively
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