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Stochastic SEIPHAR model

The population is divided into seven mutually exclusive
compartments

• S - susceptible individuals

• E - individuals exposed to the virus SARS-CoV-2

• I - symptomatic infectious individuals

• P - infectious superspreaders

• H - hospitalized infected individuals

• A - asymptomatic infected individuals

• R - recovered individuals

The total population size at time t ≥ 0:

N(t) = S(t) + E(t) + I(t) + P (t) + A(t) +H(t) +R(t)

System of SDEs

dS(t) =
(

Λ−
(

β
N(t) (I(t) + lH(t)) + β′

N(t)P (t) + µ
)

S(t)
)

dt

− σ1
N(t) (I(t) + lH(t))S(t)dB1(t)−

σ2
N(t)P (t)S(t)dB2(t)

dE(t) =
(

β
N(t) (I(t) + lH(t))S(t) + β′

N(t)P (t)S(t)− (κ + µ)E(t)
)

dt

+ σ1
N(t) (I(t) + lH(t))S(t)dB1(t) +

σ2
N(t)P (t)S(t) dB2(t)

dI(t) = (κρ1E(t)− (γa + k1γi + δi)I(t)) dt
dP (t) = (κρ2E(t)− (γa + k2γi + δp)P (t)) dt
dH(t) = (γa(I(t) + P (t))− (γr + δh)H(t)) dt
dA(t) = (κ(1− ρ1 − ρ2)E(t)− (γi + µ)A(t)) dt
dR(t) = (γi(A(t) + k1I(t) + k2P (t)) + γrH(t)− µR(t)) dt

Noise is introduced via independent standard Brownian motions

B1 = {B1(t), t ≥ 0} and B2 = {B2(t), t ≥ 0}

with intensities σ1 > 0 and σ2 > 0 in the transmission coefficients β and β′ of the
corresponding deterministic ODE model:

β dt → β dt + σ1dB1(t)

β′ dt → β′ dt + σ2dB2(t)

Parameters of the model
Symbol Description Value
Λ Estimated daily number of newborns in Wuhan in 2019 310 [7]
β Transmission coefficient due to infected individuals 2.55 [5]
l Relative transmissibility from hospitalized individuals 1.56 [5]
β′ Transmission coefficient due to superspreaders 7.65 [5]
κ Rate at which exposed individuals become infectious 0.25 [5]
ρ1 Proportion of transitions from exposed do symptomatic infected class 0.58 [5]
ρ2 Proportion of transitions from exposed to superspreaders 0.001 [5]
γa Hospitalization rate 0.94 [5]
γr Recovery rate for hospitalized patients 0.5 [5]
γi Recovery rate for non-hospitalized patients 0.27 [5]
δi Disease induced death rate for infected class 1/23 [5]
δp Disease induced death rate for superspreaders 1/23 [5]
δh Disease induced death rate for hospitalized class 1/23 [5]
µ Natural death rate 0.00714 [7]
k1 Weight for recovery rate due to infected class 0.85 [a]
k2 Weight for recovery rate due to superspreaders 0.95 [a]
σ1 Intensity of Brownian motion B1 due to infected class 0.0005 [a]
σ2 Intensity of Brownian motion B2 due to superspreaders 0.001 [a]

Parameters values are based either on the epidemics in Wuhan
(January 4 - March 9, 2020) or rationally assumed (k1, k2, σ1, σ2)

SEIPHAR system od SDEs, basic reproduction number, extinction and persistence of the virus

Existence and uniqueness of solution of the SEIPHAR SDEs
system

Theorem 1 For any initial value (S(0), E(0), I(0), P (0), H(0), A(0), R(0)) ∈ R
7
+

there exists a unique solution

{(S(t), E(t), I(t), P (t), H(t), A(t), R(t)) , t ≥ 0}

of the SEIPHAR system of SDEs, which almost surely remains positive for all
t > 0. Moreover, since N(t) = S(t) + E(t) + I(t) + P (t) + A(t) +H(t) + R(t)
we have that

Λ

δ
= lim inf

t→∞
N(t) ≤ lim sup

t→∞
N(t) =

Λ

µ
,

where δ = max {δi, δp, δh}.

Positively invariant set for the SEIPHAR system:

Γ⋆ = {(S(t), E(t), I(t), P (t), H(t), A(t), R(t)) : S(t) > 0, E(t) > 0,

I(t) > 0, P (t) > 0, H(t) > 0, A(t) > 0, R(t) > 0, N(t) ≤ Λ/µ}

If the system starts from Γ⋆, it never leaves Γ⋆

Basic reproduction number RD
0 related to deterministic SEIPHAR

model
• the basic reproduction number RD

0 is the expected number of secondary
infections generated by one infected individual in a fully susceptible population

• RD
0 for deterministic SEIPHAR model:

RD
0 =

κ

κ + µ

ωh(βρ1ωp + β′ρ2ωi) + lβγa(ρ1ωp + ρ2ωi)

ωhωiωp

ωi = γa + k1γi + δi, ωp = γa + k2γi + δp, ωh = γr + δh

• RD
0 is an epidemiologically significant threshold - it determines the potential

of an infectious disease to spread in a population

• if RD
0 < 1 the disease-free equilibrium of deterministic (ODE) SEIPHAR

system is locally asymptotically stable and if RD
0 > 1 the system has locally

asymptotically stable endemic equilibrium with all positive components

• it is well known that extinction of the epidemics appears if RD
0 < 1, while

persistence occurs when RD
0 > 1

Extinction

The virus is extinct in the population if

E(t) + I(t) + P (t) +H(t) + A(t) → 0 P− a.s. as t → ∞.

Theorem 2 If σ1 and σ2 satisfy

1

2 (κ + µ)

(

β2

σ2
1

+
(β′)2

σ2
2

)

< 1,

than for any initial value (S(0), E(0), I(0), P (0), H(0), A(0), R(0)) ∈ R
7
+ such

that the solution of the SEIPHAR system od SDEs is in Γ⋆

E(t) + I(t) + P (t) +H(t) + A(t) → 0 P− a.s. as t → ∞,

while
lim sup
t→∞

S(t) =
Λ

µ
P− a.s.

Threshold RS
0 , often called "the stochastic basic reproduction number",

related to stochastic SEIPHAR system:

RS
0 =

(β + β′) Λ
µ

κ + µ + 1
2
(σ2

1 + σ2
2)

Λ2

µ2

Alternative conditions for extinction based on RS
0 :

If σ2
1 ≤ β

4µ

Λ
max {1, l}, σ2

2 ≤ β′4µ

Λ
and RS

0 < 1, than the virus is P -a.s. extinct
in the population

Persistence in mean

The virus remains persistent in population if there is at least one individual in
one of the I, P,H,A classes

The solution of SEIPHAR system is persistent in mean if

lim inf
t→∞

[I(s) + P (s) +H(s) + A(s)] > 0 P− a.s.

[I(s) + P (s) +H(s) + A(s)] =
1

t

t
∫

0

(I(s) + P (s) +H(s) + A(s)) ds

Theorem 3 Let initial value (S(0), E(0), I(0), P (0), H(0), A(0), R(0)) ∈ R
7
+,

such that the solution of the SEIPHAR system of SDEs is in Γ⋆, where µ, β, β′

and l satisfy the relation

Λ >

(

β

N(t)
(I(t) + lH(t)) +

β′

N(t)
P (t) + µ

)

S(t), ∀t ≥ 0

and where c > 0 is a constant such that inft≥0E(t)/N(t) ≥ c. If σ1 and σ2 satisfy
the condition

σ2
1 + σ2

2 <

cκ

(

ρ1
γr + γa + δp

(γa + k1γi + δi)(γr + δp)
+ ρ2

γr + γa + δp
(γa + k2γi + δp)(γr + δp)

+
1− ρ1 − ρ2

γi + µ

)

,

then
lim inf
t→∞

[I(t) + P (t) + A(t) +H(t)] ≥

c

(

κρ1
γr + γa + δp

(γa + k1γi + δi)(γr + δp)
+ κρ2

γr + γa + δp
(γa + k2γi + δp)(γr + δp)

+

+
κ(1− ρ1 − ρ2)

γi + µ
−

(

σ2
1 + σ2

2

)

c

)

> 0.

Alternative condition for persistence in mean based on RS
0 :

If RS
0 > 1, the solution {(S(t), E(t), I(t), P (t), A(t), H(t), R(t)) , t ≥ 0} of

SEIPHAR system is persistent in mean

Sensitivity analysis of RD
0 and RS

0

Thresholds RD
0 and RS

0 are analyzed regarding the values of the normalized forward sensitivity indices (NFSI) ΥRi
0

θ , i ∈ {D,S} (parameter values are given in the table above).

NFSI is the ratio of the relative change in the basic reproduction number Ri
0 as a function of the parameter θ to the relative change in the parameter θ, assuming that Ri

0 is differentiable with respect to parameter: ΥRi
0

θ =
dRi

0

dθ

θ

Ri
0

NFSI is used to discover parameters that have a high impact on Ri
0 and should be targeted by specific epidemiological intervention strategies.

Sensitivity analysis of RD
0

• RD
0 is most sensitive to change in values of parameters β, ρ1, l, γi and γr

• change of RD
0 = 4.5206 under the 10% increase in value of parameters β, ρ1, l, γi and γr is given in the following table:

Parameter Value of RD
0 Relative change in RD

0 (%)
β 4.9720 +9.98
ρ1 4.9715 +9.97
l 4.8501 +7.29
γi 4.4366 −1.86
γr 4.2429 −6.14

Sensitivity analysis of RS
0

• RS
0 is most sensitive to change in values of parameters β, β′, σ1 and σ2

• change of RS
0 = 1.0298 under the 10% increase in value of parameters β′, β, σ1 and σ2 is given in the following table:

Parameter Value of RS
0 Relative change in RS

0 (%)
β′ 1.1071 +7.51
β 1.0556 +2.51
σ1 0.9883 −4.03
σ2 0.8817 −14.38

Simulation results

Extinction and persistence in mean, for reasonable set of parameter values for which the unique global positive solution of the SEIPHAR system of SDEs exists, are verified in the simulation study. Parameter values for simulation are adjusted from the
table above, in order to satisfy the theoretical assumptions of extinction and persistence theorems. Simulations confirm that the trajectories of the stochastic model either oscillate around (on the short time-scale) or are close to (on the long time-scale) the
trajectories of the deterministic model
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