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Data-driven motivation

SARS-CoV-2 - daily number of infections
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regularly updated data can be found on https: // ourworldindata. org/ covid-cases
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Introduction to epidemic modeling

Compartmental epidemiological models

• models for spread of the epidemic in population divided into several disjoint
compartments or classes (e.g. susceptible S, infected I, recovered R and
vaccinated V individuals)

• population size - either constant N or time-varying (N(t), t ≥ 0)

• deterministic case - e.g. systems of difference equations; systems of ODEs

• stochastic case - e.g. multidimensional Markov chains in discrete or
continuous time; systems of SDEs governed by Brownian motion or some
other Lévy process

• models depend of several parameters - the most important is the contact
rate, governing the dynamics of transition from susceptible to infected classes
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Introduction to epidemic modeling

SARS-CoV-2 - key terms in epidemic dynamics

• contact rate (β)
the expected number of adequate contacts of infectious individual per day; an
adequate contact between susceptible and infected individual is one that is
sufficient for the transmission of infection

• basic reproduction number (R0)
the expected number of secondary infections produced by a single infected
individual in a disease-free population; R0 = f(β) for a specific function f

• effective reproduction number (Re)
the expected number of secondary infections produced by a single infected
individual in a population made up of both susceptible and non-susceptible
hosts; Re(t) = R0 · S(t)

N(t) = f(β) · S(t)
N(t)
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Introduction to epidemic modeling

SARS-CoV-2 - effective reproduction number
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(Arroyo-Marioli et al., 2021)
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Deterministic SIRV model

SIRV model - compartments
the human population is divided into four mutually exclusive compartments:

• S - susceptible individuals
• I - infected individuals
• R - recovered individuals
• V - vaccinated individuals
• the total population size at time t ≥ 0 is N(t) = S(t) + I(t) + R(t) + V (t)

Figure 1: Scheme of SIRV model with temporary immunity
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Deterministic SIRV model

SIRV model - system of ODEs and interpretation of
parameters

dS(t) =
((

λ − κ − ρ − β
N(t) I(t)

)
S(t) + αV (t) + γR(t)

)
dt

dI(t) =
(

β
N(t) I(t) (S(t) + δV (t)) − (κ1 + θ)I(t)

)
dt

dR(t) = (θI(t) − (κ + γ)R(t)) dt

dV (t) =
(

ρS(t) − (κ + α + δβ
N(t) I(t))V (t)

)
dt

Parameter Description Units
λ birth rate per day
β contact rate per day
ρ vaccination rate within class S per day
δ effectiveness of vaccination [0, 1]
γ rate of immunity loss in class R per day
α rate of immunity loss in class V per day
θ recovery rate per day
κ natural death rate per day
κ1 disease-induced death rate per day
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Deterministic SIRV model

SIRV model - natural assumptions

• number of organisms which can survive regarding to the resources available in
the ecosystem is limited - carrying capacity of the ecosystem (K)

• from the perspective of modeling, for spread of the epidemic it is reasonable to
consider positive and bounded process, i.e. for every t ≥ 0:

• (S(t), I(t), R(t), V (t)) ∈ R4
+

• processes S(t), I(t), R(t), V (t) have a lower and an upper bound
0 < S < S(t) < S < K
0 < I < I(t) < I < K
0 < R < R(t) < R < K
0 < V < V (t) < V < K
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Stochastic SIRV model

Motivation for modeling contact rate β

• stochasticity in epidemic models usually comes from the modeling of the
contact rate β

• usual approaches for modeling β:
• β −→ β(t), where β(t) is some appropriately chosen time-dependent

(e.g. a piecewise constant) function, e.g. (Pardoux, 2021)

• β dt −→ β + dBt, where (Bt, t ≥ 0) is standard Brownian motion, e.g.
(Ðorđević et al., 2021a, 2021b)

• β dt −→ β(t), where (β(t), t ≥ 0) follows the Ornstein-Uhlenbeck
process

dβ(t) = −θ(β(t) − b) dt + σ dBt,

θ, b, σ > 0, e.g. (Allen, 2017)
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Stochastic SIRV model

Model for contact rate in SIRV model
• based on the time-changed Lévy noise introduced in

Di Nunno, G., & Sjursen, S. (2014). BSDEs driven by time-changed Lévy
noises and optimal control. Stochastic Processes and their Applications,

124(4), 1679-1709.

• chosen model for contact rate is time-dependent function with added noise
driven by the random measure µ:

β dt 7→ β(t)dt +
∫
R

σt(z)µ(dt, dz),

where µ is the mixture of a conditional Brownian measure B on [0, T ] × {0}
and a centered doubly stochastic Poisson measure H̃ on [0, T ] × R0,
R0 := R \ {0}, and therefore

β dt 7→ β(t)dt + σt(0)dBt +
∫
R0

σt(z)H̃(dt, dz)
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Stochastic SIRV model

Driving random measure

• (Ω, F ,P) - a complete probability space

• X = [0, T ] × R = ([0, T ] × {0}) ∪ ([0, T ] × R0), T > 0

• BX - Borel σ-algebra on X

• ∆ ⊂ X - an element ∆ in BX

• λ :=
(
λB , λH

)
- a two dimensional stochastic process such that each

component λl, l = B, H satisfies
(i) λl

t ≥ 0 P-a.s. for all t ∈ [0, T ]
(ii) limh→0 P

(∣∣λl
t+h − λl

t

∣∣ ≥ ε
)

= 0 for all ε > 0 and almost all t ∈ [0, T ]

(iii) E
[∫ T

0 λl
t dt

]
< ∞

L - space of all processes λ :=
(
λB , λH

)
satisfying (i)-(iii)
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Stochastic SIRV model

Driving random measure

• random measure Λ on X:

Λ(∆) :=
∫ T

0
1{(t,0)∈∆}(t)λB

t dt +
∫ T

0

∫
R0

1∆(t, z)ν(dz)λH
t dt,

where ν is a deterministic, σ-finite measure on the Borel sets of R0 satisfying∫
R0

z2ν(dz) < ∞

• ΛB(∆) - restriction of Λ to [0, T ] × {0}
ΛH(∆) - restriction of Λ to [0, T ] × R0

Λ(∆) = ΛB(∆ ∩ [0, T ] × {0}) + ΛH(∆ ∩ [0, T ] × R0)

• FΛ - σ-algebra generated by values of Λ
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Stochastic SIRV model

Driving random measure

Definition (Di Nunno & Sjursen, 2014)
B is a signed random measure on Borel sets of [0, T ] × {0} satisfying:

(i) P
(
B(∆) ≤ x | FΛ)

= P
(
B(∆) ≤ x | ΛB(∆)

)
= Φ

(
x√

ΛB(∆)

)
, x ∈ R, ∆ ⊆

[0, T ] × {0}
(ii) B (∆1) and B (∆2) are conditionally independent given FΛ whenever ∆1 and

∆2 are disjoint
H is a signed random measure on Borel sets of [0, T ] × R0 satisfying:

(iii) P
(
H(∆) = k | FΛ)

= P
(
H(∆) = k | ΛH(∆)

)
= ΛH (∆)k

k! e−ΛH (∆), k ∈
N, ∆ ⊆ [0, T ] × R0

(iv) H (∆1) and H (∆2) are conditionally independent given FΛ whenever ∆1 and
∆2 are disjoint

(v) B and H are conditionally independent given FΛ.

• (i) - conditional on Λ, B is a Gaussian random measure
• (iii)- conditional on Λ, H is a Poisson random measure
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Stochastic SIRV model

Driving random measure

Definition (Di Nunno & Sjursen, 2014)
The random measure µ on the Borel subsets of X is defined by

µ(∆) := B(∆ ∩ [0, T ] × {0}) + H̃ (∆ ∩ [0, T ] × R0) , ∆ ⊆ X

where H̃ := H − ΛH is a measure given by

H̃(∆) := H(∆) − ΛH(∆), ∆ ⊂ [0, T ] × R0.
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Stochastic SIRV model

Driving random measure

• properties of µ:
• E

[
B(∆) | FΛ]

= 0 & E
[
H(∆) | FΛ]

= ΛH(∆) =⇒
E

[
µ(∆) | FΛ]

= 0
• E

[
B(∆)2 | FΛ]

= ΛB(∆) & E
[
H̃(∆)2 | FΛ

]
= ΛH(∆) =⇒

E
[
µ(∆)2 | FΛ]

= Λ(∆)
• conditionally on FΛ , for disjoint ∆1 and ∆2 µ(∆1) and µ(∆2) are

orthogonal

• µ is a martingale with respect to the following filtrations:
• Fµ = {Fµ

t , t ∈ [0, T ]} is the filtration generated by µ(∆),
∆ ⊆ [0, t] × R

• G = {Gt, t ∈ [0, T ]}, Gt = Fµ
t ∨ FΛ
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Stochastic SIRV model

Driving random measure
• random measures B and H are related to a specific form of time-change for

Brownian motion and pure jump Lévy process:

Bt := B([0, t] × {0}), ΛB
t :=

∫ t

0
λB

s ds, t ∈ [0, T ]

ηt :=
∫ t

0

∫
R0

zH̃(ds, dz), Λ̂H
t :=

∫ t

0
λH

s ds, t ∈ [0, T ]

Theorem (Serfozo, 1972)
Let W = (Wt, t ∈ [0, T ]) be a Brownian motion and N = (Nt, t ∈ [0, T ]) be a
centered pure jump Lévy process with Lévy measure ν. Assume that both W and N
are independent of Λ. Then B satisfies (i) and (ii) if and only if, for any t ≥ 0

Bt
d= WΛB

t
,

and η satisfies (iii) and (iv) if and only if for any t ≥ 0

ηt
d= NΛ̂H

t
.
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Stochastic SIRV model

Building stochastic SIRV model

• contact rate model:

β dt 7→ β(t)dt + σt(0)dBt +
∫
R0

σt(z)H̃(dt, dz)

β dt 7→ β(t)dt +
∫ ∫

R
σt(z)µ(dt, dz),

• SIRV system of ODEs:

dS(t) =
((

λ − κ − ρ − β
N(t) I(t)

)
S(t) + αV (t) + γR(t)

)
dt

dI(t) =
(

β
N(t) I(t) (S(t) + δV (t)) − (κ1 + θ)I(t)

)
dt

dR(t) = (θI(t) − (κ + γ)R(t)) dt

dV (t) =
(

ρS(t) − (κ + α + δβ
N(t) I(t))V (t)

)
dt
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Stochastic SIRV model

SIRV model driven by random measure µ

dS(t) =
(

(λ − ρ − κ)S(t) − β(t)
N(t)S(t)I(t) + αV (t) + γR(t)

)
dt

−
∫
R

σt(z) S(t)
N(t)I(t) µ(dt, dz)

dI(t) =
(

β(t)
N(t) (S(t) + δV (t)) − (κ1 + θ)

)
I(t) dt

+
∫
R

σt(z)[S(t) + δV (t)] I(t)
N(t) µ(dt, dz) (1)

dR(t) = (θI(t) − (κ + γ)R(t)) dt

dV (t) =
(

ρS(t) − (κ + α)V (t) − δ
β(t)
N(t)V (t)I(t)

)
dt

−
∫
R

σt(z)δ V (t)
N(t)I(t) µ(dt, dz)
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Stochastic SIRV model

SIRV model - analysis of the solution

Theorem
The following statements hold:

1 Since the capacity of the population is bounded by a positive constant K, it
follows that

lim sup
t→∞

N(t) = K1 =

{
K, λ > κ
N(0), λ = κ
0, λ < κ.

2 For any initial value (S(0), I(0), R(0), V (0)) ∈ ⟨0, K]4 there exist a unique
global solution ((S(t), I(t), R(t), V (t)) , t ≥ 0) of the SDE system (1) that
almost surely remains in ⟨0, K]4.
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Stochastic SIRV model

SIRV model - outline of the proof (1)
• by solving the differential equation for N(t) and by applying the L’Hospital

rule, for λ > κ it follows:

N(t) ≤ e−κt

N(0) +
t∫

0

λS(s)eκsds


↓

lim sup
t→∞

N(t) ≤ lim sup
t→∞

λS(t)eκt

κeκt
≤ λ

κ
lim sup

t→∞
S(t) ≤ K

• furthermore, by summing all four equations from system (1), under natural
assumption κ1 ≥ κ, it follows:

dN(t) = (λS(t) − κN(t) − (κ1 − κ)I(t)) dt

↓ (κ1 ≥ κ)
dN(t) ≤ (λS(t) − κN(t)) dt ≤ (λ − κ)N(t)dt

↓
N(t) ≤ N(0)et(λ−κ)
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Stochastic SIRV model

SIRV model - outline of the proof (2)

• the existence and uniqueness of solution of system (1) for any initial value
(S(0), I(0), R(0), V (0)) ∈ R4

+ on [0, τ0], where τ0 is the explosion time,
follows from (Jacod, 1971)

• in order to prove that the solution of system (1) is global, it needs to be
proven that τ0 = ∞ P-a.s.

• for each k > k0 define the stopping time

τk = inf
{

t ∈ [0, τ0⟩ : min {S(t), I(t), R(t), V (t)} ≤ 1
k

or

max {S(t), I(t), R(t), V (t)} ≥ k} ,

where k0 > 0 is a constant large enough such that S(0), I(0), R(0), V (0)
belong to the interval [1/k0, k0] and inf ∅ = ∞
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Stochastic SIRV model

SIRV model - outline of the proof (2)

• note that τk increases as k → ∞ and denote lim
k→∞

τk = τ∞

• if τ∞ = ∞ P-a.s., then τ0 = ∞ P-a.s., which means that
(S(t), I(t), R(t), V (t)) P-a.s. remains in [0, K]4 for all t > 0

• the proof that τ∞ = ∞ P-a.s. follows by assuming that there exist a pair of
constants T ≥ 0 and ε ∈ (0, 1) such that P(τ∞ ≤ T ) ≥ ε, which leads to
contradiction

• technical details of the proof after assumption P(τ∞ ≤ T ) ≥ ε:
• define a twice continuously differentiable function

Y (S, I, R, V ) = (S − 1 − log (S)) + (I − 1 − log (I))+

(R − 1 − log (R)) + (V − 1 − log (V )),

where the dependence of S, I, R and V on t is omitted
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Stochastic SIRV model

SIRV model - outline of the proof (2)

• by applying the multidimensional Itô’s formula for semimartingales (Protter,
2005) to Y , it follows that for every t ≥ 0

dY (S, I, R, V ) ≤
∑

X=S,I,R,V

((
1 − 1

X(t)

)
dX(t) + 1

2X2(t) (dX(t))2
)

+C[µ, µ]t

where the quadratic variation of µ comes from the "jump part" of the
application of Itô’s formula:∑
0≤s≤t

(
X(s) − X(s−) − (log X(s) − log X(s−)) −

(
1 − 1

X(s−)

)
∆Xs

)
≤

≤ C̃i[X, X]t ≤ Ci[µ, µ]t < ∞,

and where
C = C1 + C2 + C3 + C4
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Stochastic SIRV model

SIRV model - outline of the proof (2)
• under some technical assumptions

S(t) + I(t) + R(t) + V (t) = N(t) ≤ K1
1

N(t) ≤ max
{

1
S(t) , 1

I(t)
1

R(t) , 1
V (t)

}
≤ K̃1

E
[∫ T

0 σ2
t (0)λB

s ds +
∫ T

0

∫
R0

σ2
t (z)ν(dz)λH

s ds
]

≤ K2,

(2)

due to positivity of (S, I, R, V ) process and non-negativity of its
parameters, it follows that

E [Y (S(τk ∧ T ), I(τk ∧ T ), R(τk ∧ T ), Y (τk ∧ T ))] ≤

E [Y (S(0), I(0), R(0), V (0))] + Ñ(T ),
where Ñ(T ) is finite quantity depending on T and

E [Y (S(0), I(0), R(0), V (0))]+Ñ(T ) ≥ ε min
{

k − 1 − log (k), 1
k

− 1 + log (k)
}

• by letting k → ∞ it follows that

E [Y (S(0), I(0), R(0), V (0))] + Ñ(T ) ≥ ∞,

which gives a contradiction, i.e. τ∞ = ∞ P-a.s.
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Stochastic SIRV model

SIRV model - outline of the proof (2)

• the set

Γ⋆ = {(S(t), I(t), R(t), V (t)) : S(t), I(t), R(t), V (t) > 0 & N(t) ≤ K}

is a positively invariant set of the system (1) for every t > 0, i.e. if the
system starts from Γ⋆, almost surely it never leaves Γ⋆

■
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Long-term behavior of epidemic

SIRV model - extinction

Theorem
If

lim sup
t→∞

1
t

t∫
0

((
λB

s σs(0)
)2

)−1
ds <

2(κ1 + θ)
K2 P − a.s.,

and
lim sup

t→∞

Λt

t
< ∞ P − a.s.,

than for any initial value (S(0), I(0), R(0), V (0)) ∈ Γ⋆ it follows that

I(t) → 0 P − a.s. as t → ∞,

R(t) → 0 P − a.s. as t → ∞,

while
lim sup

t→∞
(S(t) + V (t)) = K1 P − a.s.
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Long-term behavior of epidemic

Extinction - outline of the proof

• according to the boundedness of the process for contact rate and the
boundaries (2), by applying the Itô’s formula for semimartingales to the
function ln (I(t)) and dividing everything by t, it follows:

ln(I(t))
t

≤ ln(I(0))
t

+
∫ t

0

(
K2

2σ2
s(0)(λB

s )2 − (κ1 + θ)
)

ds + k
M1(t)

t
,

where k is a generic constant and

M1(t) :=
∫ t

0

∫
R

σs(z)µ(ds, dz), ⟨M1, M1⟩t = Λt

is a martingale vanishing at 0

• as lim sup
t→∞

⟨M1, M1⟩t

t
< ∞ P-a.s., according to SLLN from (Mao, 2007) it

follows that
lim

t→∞

M1(t)
t

= 0 P − a.s.
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Long-term behavior of epidemic

Extinction - outline of the proof
• then it follows that

lim sup
t→∞

ln(I(t))
t

≤ lim sup
t→∞

1
t

∫ t

0

1
(σs(0)λB

s )2 ds − 2(κ1 + θ)
K2 < 0 P − a.s.

and therefore, due to positivity of I(t),

lim
t→∞

I(t) = 0 P − a.s.

• by solving the ODE for recovered class explicitly, we obtain that

R(t) = e−(κ+γ)t

(
R(0) +

∫ t

0
θI(s)e(κ+γ)s ds

)
and by applying the L’Hospital rule it follows that

lim
t→∞

R(t) = 0 P − a.s.

• at last, it follows that

lim sup
t→∞

(S(t) + V (t)) = K1 P − a.s.

■
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Long-term behavior of epidemic

Persistence in mean - definition

• the virus remains persistent in population if there is at least one infected
individual communicating with susceptible subpopulation

• mathematical concept of persistence - persistence in mean

• the system (1) is said to be persistent in mean if

lim inf
t→∞

[I(t)] = lim inf
t→∞

1
t

∫ t

0
I(s) ds > 0, P − a.s.

STORM Workshop, Oslo, 5-8/9/2022 Time-changed SIRV model for epidemic of SARS-CoV-2 virus 29/45



Long-term behavior of epidemic

SIRV model - persistence in mean

Theorem
If

lim inf
t→∞

1
t

∫ t

0
σ2

s(0)(λB
s )2ds ≤ β̃

λ + ρ(δ − 1)
κ

2K2
1 S

S − δV
,

β̃ ≤ lim inf
t→∞

β(t)
N(t) , S ≤ S(t), V ≤ V (t), ∀t ≥ 0,

and
lim sup

t→∞

Λt

t
< ∞ P − a.s.,

than for any initial value (S(0), I(0), R(0), V (0)) ∈ Γ⋆ it follows that

lim inf
t→∞

[I(t)] > 0 P − a.s.
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Long-term behavior of epidemic

Persistence in mean - outline of the proof

• by applying Itô formula to ln (I(t)) ant dividing the result by t it follows that

lim inf
t→∞

ln I(t)
t

≥ β̃

κ
lim inf

t→∞

(
(λ + ρ(δ − 1))S − F (t) −

(
θγ

κ + γ
− κ1

)
[I(t)]

+1
t

t∫
0

∫
R

σs(z) V (s)
N(s)δ(1 − δ)I(s)µ(ds, dz)


− S − δV

2K2
1

lim inf
t→∞

1
t

∫ t

0
σ2

s(0)(λB
s )2ds

where

F (t) := S(t) − S(0)
t

+ I(t) − I(0)
t

+ δ
V (t) − V (0)

t
+ γ

κ + γ

R(t) − R(0)
t

and [I(t)] comes from the definition of F (t) after substituting the integral
forms for S(t), I(t), V (t) and R(t):
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Long-term behavior of epidemic

Persistence in mean - outline of the proof

[S(t) + δV (t)] ≥ 1
κ

(
(λ + ρ(δ − 1))S − K(t) −

(
θγ

κ + γ
− κ1

)
[I(t)]

+1
t

t∫
0

∫
R

σs(z) V (s)
N(s)δ(1 − δ)I(s)µ(ds, dz)


• from some natural properties of model parameters it follows that

lim inf
t→∞

[I(t)] ≥ (κ + γ)(λ + ρ(δ − 1))
θγ − κ1(κ + γ) S−

κ(κ + γ)
β̃(θγ − κ1(κ + γ))

S − δV

2K2
1

lim inf
t→∞

1
t

∫ t

0
σ2

s(0)(λB
s )2 ds

which is positive if

lim inf
t→∞

1
t

∫ t

0
σ2

s(0)(λB
s )2ds ≤ β̃

λ + ρ(δ − 1)
κ

2K2
1 S

S − δV
P − a.s.

■
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Long-term behavior of epidemic

Extinction and persistence - remarks

• the condition
lim sup

t→∞

Λt

t
< ∞ P − a.s.

can be interpreted as the "long term" comparability of the time-change
process and the real time

• it can be replaced by a stronger assumption of ergodicity of the integrands in
the absolutely continuous time-change processes ΛB and Λ̂H (Serfozo, 1972)

• this condition is always fulfilled when the time-change process is slowing down
the real time, i.e. when Λ(t) ≤ t for all t ≥ 0
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Simulations

Simulation study - contact rate model

• natural assumptions for contact rate model
• non-negativity
• mean-reverting property
• presence of jumps and clustering

• an example of model for contact rate - time-changed CIR jump diffusion

• SDE for the CIR jump diffusion (without time-change):

db(t) = −θ (b(t) − β) dt + σ
√

b(t) dBt + kZt

where (Zt, t ≥ 0) is the compound Poisson process, k is the intensity of the
jumps, σ is the volatility coefficient, β is the long-term level of the process and
θ is the speed of reversion to β
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Simulations

Simulation study - time-change model

• choice of the absolutely-continuous time-change processes in Brownian and
CPP part of the CIR jump diffusion - integrated process (λt, t ≥ 0):

1 integrated periodic function
λt = a sin (kt)

2 integrated compound Poisson process (CPP) with drift

λt = dt +
Nt∑

k=0

Xk

3 integrated inverse-Gaussian subordinator with Lévy measure
π(dx) = δ√

2πx3 e−α2/2 dx, x, α, δ > 0
4 integrated Ornstein-Uhlenbeck process

dλt = −θ(λt − µ) + σdBt

• algorithm for building the time-changed process from simulated time-change
process and simulated base process is given in (Magdziarz et al., 2007)
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Simulations

Contact rate - CIR jump diffusion time-changed by
integrated periodic function

• λB
t = λH

t = a sin (kt), a = 1.5, k = 4
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Simulations

Contact rate - CIR jump diffusion time-changed by
integrated CPP with drift

• λB
t = λH

t = dt +
Nt∑

k=0

Xk CPP with drift, where d = 0.05, Xt ∼ U(−1, 0.6),

(Nt, t ≥ 0) Poisson process with intensity λ = 2
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Simulations

Contact rate - CIR jump diffusion time-changed by
integrated IG subordinator and CPP with drift

• λB
t IG(α, δ) subordinator, α = 1, δ = 5

• λH
t = dt +

Nt∑
k=0

Xk CPP with drift, d = 0.05, Xt ∼ U(−1, 0.6), (Nt, t ≥ 0)

Poisson process with intensity λ = 2

0.0 0.5 1.0 1.5 2.0

0
1

2
3

4
5

6
7

Time−changed CIR jump diffusion

time

tim
e−

ch
an

ge
d 

pr
oc

es
s 

va
lu

e jump CIR
time−changed jump CIR

STORM Workshop, Oslo, 5-8/9/2022 Time-changed SIRV model for epidemic of SARS-CoV-2 virus 38/45



Simulations

Contact rate - CIR jump diffusion time-changed by
integrated IG subordinator and OU process

• λB
t IG(α, δ) subordinator, α = 1, δ = 5

• dλH
t = −θ(λH

t − µ) + σdBt Ornstein-Uhlenbeck process, θ = 5, µ = 0,
σ = 3
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Simulations

Contact rate - CIR jump diffusion time-changed by
integrated OU process

• λB
t = λH

t

• dλH
t = −θ(λH

t − µ) + σdBt Ornstein-Uhlenbeck process, θ = 5, µ = 0,
σ = 3
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Simulations

Contact rate
time-changed CIR diffusion without jumps

0.0 0.5 1.0 1.5 2.0

0
1

2
3

Time−changed CIR diffusion (sin)

time

tim
e−

ch
an

ge
d 

pr
oc

es
s 

va
lu

e CIR
time−changed CIR

0.0 0.5 1.0 1.5 2.0

0
1

2
3

Time−changed CIR diffusion (CPP)

time

tim
e−

ch
an

ge
d 

pr
oc

es
s 

va
lu

e CIR
time−changed CIR

0.0 0.5 1.0 1.5 2.0

0
1

2
3

Time−changed CIR diffusion (IGsub)

time

tim
e−

ch
an

ge
d 

pr
oc

es
s 

va
lu

e CIR
time−changed CIR

0.0 0.5 1.0 1.5 2.0

0
1

2
3

Time−changed CIR diffusion (OU)

time

tim
e−

ch
an

ge
d 

pr
oc

es
s 

va
lu

e CIR
time−changed CIR

STORM Workshop, Oslo, 5-8/9/2022 Time-changed SIRV model for epidemic of SARS-CoV-2 virus 41/45



Simulations

Contact rate - remarks and questions

• if 0 is the absorbing barrier of the process describing the dynamics of contact
rate, the extinction appears after the first hitting time to 0

• if 0 is reflecting barrier and the process is mean-reverting, then the epidemic
model is always in the persistence regime?

• what about extinction?

• recovering
• contact rate process?

• time-change process?
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Recovery problems

Recovering contact rate
• contact rate is not directly observable, it is "hidden" within the observable

epidemiological data (number of susceptible, infected, vaccinated and
recovered individuals)

• model-based recovery - depends on the model and its parameters (Mummert,
2012), (Pollicot et al., 2012)

• the simplest model for β(t), according to (Pollicot et al., 2012) is

β(t) = I(t + 1)
I(t)S(t)

• in (Pollicot et al., 2012) the recovery algorithm for β(t) in SIR model with
permanent immunity is based on the inverse problem for the SIR system

• for SIRV model with non-permanent immunity the inverse problem yields the
implicit result for β(t) - numerical procedures?
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Recovery problems

Recovering the time-change process

• if the day-by-day values of the contact rate are recoverd and the model
without time-change is proposed, what would be the right choice of the
time-change processes?

• (Winkel, 2001)
for a given Lévy process (Y (t), t ≥ 0) and an independent time-change
process (τ(t), t ≥ 0), the case when both processes are completely
determined by time-changed process (X(τ(t)), t ≥ 0) are identified
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