Time-changed SIRV model for epidemic of SARS-CoV-2 virus

Nenad Šuvak

J.J. Strossmayer University of Osijek Department of Mathematics nsuvak@mathos.hr

Joint work with Giulia Di Ninno and Jasmina Đorđević Department of Mathematics, University of Oslo, Norway

September 5, 2022

- 2 Introduction to epidemic modeling
- Deterministic SIRV model

Stochastic SIRV model

Stochastic modeling of contact rate - time-changed Lévy driven model Stochastic SIRV model

- 5 Long-term behavior of epidemic Extinction
 - Persistence in mean

6 Simulations

Choice of the model for contact rate Choice of the model for time-change Examples

Recovery problems

Model related estimation of contact rate Recovering the time-change process

SARS-CoV-2 - daily number of infections

regularly updated data can be found on https://ourworldindata.org/covid-cases

STORM Workshop, Oslo, 5-8/9/2022 Time-changed SIRV model for epidemic of SARS-CoV-2 virus

Introduction to epidemic modeling

Compartmental epidemiological models

- models for spread of the epidemic in population divided into several disjoint compartments or classes (e.g. susceptible S, infected I, recovered R and vaccinated V individuals)
- **population size** either constant N or time-varying $(N(t), t \ge 0)$
- deterministic case e.g. systems of difference equations; systems of ODEs
- stochastic case e.g. multidimensional Markov chains in discrete or continuous time; systems of SDEs governed by Brownian motion or some other Lévy process
- models depend of several parameters the most important is the contact rate, governing the dynamics of transition from susceptible to infected classes

SARS-CoV-2 - key terms in epidemic dynamics

contact rate (β)

the expected number of adequate contacts of infectious individual per day; an adequate contact between susceptible and infected individual is one that is sufficient for the transmission of infection

• basic reproduction number (R₀)

the expected number of secondary infections produced by a single infected individual in a disease-free population; $R_0 = f(\beta)$ for a specific function f

• effective reproduction number (R_e)

the expected number of secondary infections produced by a single infected individual in a population made up of both susceptible and non-susceptible hosts; $R_e(t) = R_0 \cdot \frac{S(t)}{N(t)} = f(\beta) \cdot \frac{S(t)}{N(t)}$

SARS-CoV-2 - effective reproduction number

(Arroyo-Marioli et al., 2021)

STORM Workshop, Oslo, 5-8/9/2022

Time-changed SIRV model for epidemic of SARS-CoV-2 virus

SIRV model - compartments

the human population is divided into four mutually exclusive compartments:

- S susceptible individuals
- I infected individuals
- R recovered individuals
- V vaccinated individuals
- the total population size at time $t \ge 0$ is N(t) = S(t) + I(t) + R(t) + V(t)

Figure 1: Scheme of SIRV model with temporary immunity

SIRV model - system of ODEs and interpretation of parameters

$$dS(t) = \left(\left(\lambda - \kappa - \rho - \frac{\beta}{N(t)} I(t) \right) S(t) + \alpha V(t) + \gamma R(t) \right) dt$$

$$dI(t) = \left(\frac{\beta}{N(t)} I(t) \left(S(t) + \delta V(t) \right) - (\kappa_1 + \theta) I(t) \right) dt$$

$$dR(t) = \left(\theta I(t) - (\kappa + \gamma) R(t) \right) dt$$

$$dV(t) = \left(\rho S(t) - (\kappa + \alpha + \frac{\delta\beta}{N(t)} I(t)) V(t) \right) dt$$

Parameter	Description	Units
λ	birth rate	per day
β	contact rate	per day
ho	vaccination rate within class S	per day
δ	effectiveness of vaccination	[0,1]
γ	rate of immunity loss in class R	per day
α	rate of immunity loss in class V	per day
θ	recovery rate	per day
κ	natural death rate	per day
κ_1	disease-induced death rate	per day

SIRV model - natural assumptions

- number of organisms which can survive regarding to the resources available in the ecosystem is limited carrying capacity of the ecosystem (K)
- from the perspective of modeling, for spread of the epidemic it is reasonable to consider **positive** and **bounded** process, i.e. for every t ≥ 0:
 - $(S(t), I(t), R(t), V(t)) \in \mathbb{R}^4_+$
 - processes S(t), I(t), R(t), V(t) have a lower and an upper bound

 $\begin{array}{l} 0 < \underline{S} < S(t) < \overline{S} < K \\ 0 < \underline{I} < I(t) < \overline{I} < K \\ 0 < \underline{R} < R(t) < \overline{R} < K \\ 0 < \underline{V} < V(t) < \overline{V} < K \end{array}$

- stochasticity in epidemic models usually comes from the modeling of the contact rate β
- usual approaches for modeling β :
 - β → β(t), where β(t) is some appropriately chosen time-dependent (e.g. a piecewise constant) function, e.g. (Pardoux, 2021)
 - $\beta dt \longrightarrow \beta + dB_t$, where $(B_t, t \ge 0)$ is standard Brownian motion, e.g. (Dorđević et al., 2021a, 2021b)
 - $\beta dt \longrightarrow \beta(t)$, where $(\beta(t), t \ge 0)$ follows the Ornstein-Uhlenbeck process

$$d\beta(t) = -\theta(\beta(t) - b) dt + \sigma dB_t,$$

 $\theta, b, \sigma > 0$, e.g. (Allen, 2017)

Model for contact rate in SIRV model

• based on the time-changed Lévy noise introduced in

Di Nunno, G., & Sjursen, S. (2014). BSDEs driven by time-changed Lévy noises and optimal control. *Stochastic Processes and their Applications*, 124(4), 1679-1709.

• chosen model for contact rate is time-dependent function with added noise driven by the random measure μ :

$$\beta dt \mapsto \beta(t) dt + \int_{\mathbb{R}} \sigma_t(z) \mu(dt, dz),$$

where μ is the mixture of a conditional Brownian measure B on $[0,T] \times \{0\}$ and a centered doubly stochastic Poisson measure \widetilde{H} on $[0,T] \times \mathbb{R}_0$, $\mathbb{R}_0 := \mathbb{R} \setminus \{0\}$, and therefore

$$\beta \, dt \mapsto \beta(t) dt + \sigma_t(0) dB_t + \int_{\mathbb{R}_0} \sigma_t(z) \widetilde{H}(dt, dz)$$

- $(\Omega, \mathcal{F}, \mathbb{P})$ a complete probability space
- $X = [0,T] \times \mathbb{R} = ([0,T] \times \{0\}) \cup ([0,T] \times \mathbb{R}_0), T > 0$
- \mathcal{B}_X Borel σ -algebra on X
- $\Delta \subset X$ an element Δ in \mathcal{B}_X
- $\lambda := (\lambda^B, \lambda^H)$ a two dimensional stochastic process such that each component λ^l , l = B, H satisfies

(i)
$$\lambda_t^l \ge 0 \mathbb{P}$$
-a.s. for all $t \in [0, T]$
(ii) $\lim_{h \to 0} \mathbb{P}\left(\left|\lambda_{t+h}^l - \lambda_t^l\right| \ge \varepsilon\right) = 0$ for all $\varepsilon > 0$ and almost all $t \in [0, T]$
(iii) $\mathbb{E}\left[\int_0^T \lambda_t^l dt\right] < \infty$

 $\mathcal L$ - space of all processes $\lambda:=\left(\lambda^B,\lambda^H
ight)$ satisfying (i)-(iii)

• random measure Λ on X:

$$\Lambda(\Delta) := \int_0^T \mathbf{1}_{\{(t,0)\in\Delta\}}(t)\lambda_t^B\,dt + \int_0^T \int_{\mathbb{R}_0} \mathbf{1}_{\Delta}(t,z)\nu(dz)\lambda_t^H\,dt,$$

where u is a deterministic, σ -finite measure on the Borel sets of \mathbb{R}_0 satisfying

$$\int_{\mathbb{R}_0} z^2 \nu(dz) < \infty$$

• $\Lambda^B(\Delta)$ - restriction of Λ to $[0,T] \times \{0\}$ $\Lambda^H(\Delta)$ - restriction of Λ to $[0,T] \times \mathbb{R}_0$

$$\Lambda(\Delta) = \Lambda^B(\Delta \cap [0, T] \times \{0\}) + \Lambda^H(\Delta \cap [0, T] \times \mathbb{R}_0)$$

• \mathcal{F}^{Λ} - σ -algebra generated by values of Λ

Definition (Di Nunno & Sjursen, 2014)

B is a signed random measure on Borel sets of $[0,T]\times\{0\}$ satisfying:

(i)
$$\mathbb{P}\left(B(\Delta) \leq x \mid \mathcal{F}^{\Lambda}\right) = \mathbb{P}\left(B(\Delta) \leq x \mid \Lambda^{B}(\Delta)\right) = \Phi\left(\frac{x}{\sqrt{\Lambda^{B}(\Delta)}}\right), x \in \mathbb{R}, \Delta \subseteq [0, T] \times \{0\}$$

- (ii) $B(\Delta_1)$ and $B(\Delta_2)$ are conditionally independent given \mathcal{F}^{Λ} whenever Δ_1 and Δ_2 are disjoint
- *H* is a signed random measure on Borel sets of $[0,T] \times \mathbb{R}_0$ satisfying:
- (iii) $\mathbb{P}\left(H(\Delta) = k \mid \mathcal{F}^{\Lambda}\right) = \mathbb{P}\left(H(\Delta) = k \mid \Lambda^{H}(\Delta)\right) = \frac{\Lambda^{H}(\Delta)^{k}}{k!} e^{-\Lambda^{H}(\Delta)}, k \in \mathbb{N}, \Delta \subseteq [0,T] \times \mathbb{R}_{0}$
- (iv) $H(\Delta_1)$ and $H(\Delta_2)$ are conditionally independent given \mathcal{F}^{Λ} whenever Δ_1 and Δ_2 are disjoint
- (v) B and H are conditionally independent given \mathcal{F}^{Λ} .
 - (i) conditional on $\Lambda,\,B$ is a Gaussian random measure
 - (iii)- conditional on Λ , H is a **Poisson random measure**

Definition (Di Nunno & Sjursen, 2014)

The random measure μ on the Borel subsets of X is defined by

$$\mu(\Delta) := B(\Delta \cap [0,T] \times \{0\}) + \widetilde{H} \left(\Delta \cap [0,T] \times \mathbb{R}_0\right), \quad \Delta \subseteq X$$

where $\widetilde{H}:=H-\Lambda^{H}$ is a measure given by

$$\widetilde{H}(\Delta) := H(\Delta) - \Lambda^H(\Delta), \quad \Delta \subset [0, T] \times \mathbb{R}_0.$$

15/45

properties of µ:

- $\mathbb{E}\left[B(\Delta) \mid \mathcal{F}^{\Lambda}\right] = 0 \& \mathbb{E}\left[H(\Delta) \mid \mathcal{F}^{\Lambda}\right] = \Lambda^{H}(\Delta) \implies$ $\mathbb{E}\left[\mu(\Delta) \mid \mathcal{F}^{\Lambda}\right] = 0$ • $\mathbb{E}\left[B(\Delta)^{2} \mid \mathcal{F}^{\Lambda}\right] = \Lambda^{B}(\Delta) \& \mathbb{E}\left[\widetilde{H}(\Delta)^{2} \mid \mathcal{F}^{\Lambda}\right] = \Lambda^{H}(\Delta) \implies$ $\mathbb{E}\left[\mu(\Delta)^{2} \mid \mathcal{F}^{\Lambda}\right] = \Lambda(\Delta)$
- conditionally on \mathcal{F}^Λ , for disjoint Δ_1 and $\Delta_2~\mu(\Delta_1)$ and $\mu(\Delta_2)$ are orthogonal
- μ is a martingale with respect to the following filtrations:

•
$$\mathbb{F}^{\mu} = \{\mathcal{F}^{\mu}_{t}, t \in [0, T]\}$$
 is the filtration generated by $\mu(\Delta)$,
 $\Delta \subseteq [0, t] \times \mathbb{R}$
• $\mathbb{G} = \{\mathcal{G}_{t}, t \in [0, T]\}, \mathcal{G}_{t} = \mathcal{F}^{\mu}_{t} \vee \mathcal{F}^{\Lambda}$

• random measures B and H are related to a specific form of **time-change** for Brownian motion and pure jump Lévy process:

$$B_t := B([0,t] \times \{0\}), \quad \Lambda_t^B := \int_0^t \lambda_s^B \, ds, \quad t \in [0,T]$$
$$\eta_t := \int_0^t \int_{\mathbb{R}_0} z \tilde{H}(ds, dz), \quad \widehat{\Lambda}_t^H := \int_0^t \lambda_s^H \, ds, \quad t \in [0,T]$$

Theorem (Serfozo, 1972)

Let $W = (W_t, t \in [0,T])$ be a Brownian motion and $N = (N_t, t \in [0,T])$ be a centered pure jump Lévy process with Lévy measure ν . Assume that both W and N are independent of Λ . Then B satisfies (i) and (ii) if and only if, for any $t \ge 0$

$$B_t \stackrel{d}{=} W_{\Lambda^B_t},$$

and η satisfies (iii) and (iv) if and only if for any $t\geq 0$

$$\eta_t \stackrel{d}{=} N_{\hat{\Lambda}_t^H}.$$

16/45

Building stochastic SIRV model

17/45

• contact rate model:

$$\beta dt \quad \mapsto \quad \beta(t)dt + \sigma_t(0)dB_t + \int_{\mathbb{R}_0} \sigma_t(z)\widetilde{H}(dt, dz)$$

$$\beta dt \quad \mapsto \quad \beta(t)dt + \int \int_{\mathbb{R}} \sigma_t(z)\mu(dt, dz),$$

• SIRV system of ODEs:

$$\begin{split} dS(t) &= \left(\left(\lambda - \kappa - \rho - \frac{\beta}{N(t)} I(t) \right) S(t) + \alpha V(t) + \gamma R(t) \right) \, dt \\ dI(t) &= \left(\frac{\beta}{N(t)} I(t) \left(S(t) + \delta V(t) \right) - \left(\kappa_1 + \theta \right) I(t) \right) \, dt \\ dR(t) &= \left(\theta I(t) - \left(\kappa + \gamma \right) R(t) \right) \, dt \\ dV(t) &= \left(\rho S(t) - \left(\kappa + \alpha + \frac{\delta \beta}{N(t)} I(t) \right) V(t) \right) \, dt \end{split}$$

SIRV model driven by random measure μ

$$dS(t) = \left((\lambda - \rho - \kappa)S(t) - \frac{\beta(t)}{N(t)}S(t)I(t) + \alpha V(t) + \gamma R(t) \right) dt$$
$$-\int_{\mathbb{R}} \sigma_t(z) \frac{S(t)}{N(t)}I(t) \,\mu(dt, dz)$$
$$dI(t) = \left(\frac{\beta(t)}{N(t)} \left(S(t) + \delta V(t) \right) - \left(\kappa_1 + \theta \right) \right) I(t) \, dt$$
$$+\int_{\mathbb{R}} \sigma_t(z) \left[S(t) + \delta V(t) \right] \frac{I(t)}{N(t)} \,\mu(dt, dz)$$
(1)

 $dR(t) = (\theta I(t) - (\kappa + \gamma)R(t)) \ dt$

$$\begin{split} dV(t) &= \left(\rho S(t) - (\kappa + \alpha)V(t) - \delta \frac{\beta(t)}{N(t)}V(t)I(t)\right) \, dt \\ &- \int_{\mathbb{R}} \sigma_t(z) \delta \frac{V(t)}{N(t)}I(t) \, \mu(dt, dz) \end{split}$$

STORM Workshop, Oslo, 5-8/9/2022 Time-changed SIRV model for epidemic of SARS-CoV-2 virus

SIRV model - analysis of the solution

Theorem

The following statements hold:

1 Since the **capacity of the population** is bounded by a positive constant *K*, it follows that

$$\limsup_{t \to \infty} N(t) = K_1 = \begin{cases} K, & \lambda > \kappa \\ N(0), & \lambda = \kappa \\ 0, & \lambda < \kappa. \end{cases}$$

2 For any initial value (S(0), I(0), R(0), V(0)) ∈ (0, K]⁴ there exist a unique global solution ((S(t), I(t), R(t), V(t)), t ≥ 0) of the SDE system (1) that almost surely remains in (0, K]⁴.

Stochastic SIRV model

SIRV model - outline of the proof (1)

• by solving the differential equation for N(t) and by applying the L'Hospital rule, for $\lambda > \kappa$ it follows:

• furthermore, by summing all four equations from system (1), under natural assumption $\kappa_1 \ge \kappa$, it follows:

$$dN(t) = (\lambda S(t) - \kappa N(t) - (\kappa_1 - \kappa)I(t)) dt$$
$$\downarrow (\kappa_1 \ge \kappa)$$
$$dN(t) \le (\lambda S(t) - \kappa N(t)) dt \le (\lambda - \kappa)N(t) dt$$
$$\downarrow$$
$$N(t) \le N(0)e^{t(\lambda - \kappa)}$$

STORM Workshop, Oslo, 5-8/9/2022 Time-changed SIRV model for epidemic of SARS-CoV-2 virus

SIRV model - outline of the proof (2)

Stochastic SIRV model

- the existence and uniqueness of solution of system (1) for any initial value $(S(0), I(0), R(0), V(0)) \in \mathbb{R}^4_+$ on $[0, \tau_0]$, where τ_0 is the explosion time, follows from (Jacod, 1971)
- in order to prove that the solution of system (1) is global, it needs to be proven that $\tau_0 = \infty \mathbb{P}$ -a.s.
- for each $k > k_0$ define the stopping time

$$\tau_k = \inf \left\{ t \in [0, \tau_0) : \min \left\{ S(t), I(t), R(t), V(t) \right\} \le \frac{1}{k} \text{ or} \\ \max \left\{ S(t), I(t), R(t), V(t) \right\} \ge k \right\},\$$

where $k_0 > 0$ is a constant large enough such that S(0), I(0), R(0), V(0)belong to the interval $[1/k_0, k_0]$ and $\inf \emptyset = \infty$

SIRV model - outline of the proof (2)

- note that au_k increases as $k o \infty$ and denote $\lim_{k o \infty} au_k = au_\infty$
- if $\tau_{\infty} = \infty \mathbb{P}$ -a.s., then $\tau_0 = \infty \mathbb{P}$ -a.s., which means that $(S(t), I(t), R(t), V(t)) \mathbb{P}$ -a.s. remains in $[0, K]^4$ for all t > 0
- the proof that $\tau_{\infty} = \infty \mathbb{P}$ -a.s. follows by assuming that there exist a pair of constants $T \geq 0$ and $\varepsilon \in (0, 1)$ such that $\mathbb{P}(\tau_{\infty} \leq T) \geq \varepsilon$, which leads to contradiction
- technical details of the proof after assumption $\mathbb{P}(\tau_{\infty} \leq T) \geq \varepsilon$:
 - define a twice continuously differentiable function

$$Y(S, I, R, V) = (S - 1 - \log(S)) + (I - 1 - \log(I)) + (I -$$

$$(R - 1 - \log(R)) + (V - 1 - \log(V)),$$

where the dependence of $S,\,I,\,R$ and V on t is omitted

Stochastic SIRV model

SIRV model - outline of the proof (2)

• by applying the multidimensional Itô's formula for semimartingales (Protter, 2005) to Y, it follows that for every $t\geq 0$

$$dY(S, I, R, V) \le \sum_{X=S, I, R, V} \left(\left(1 - \frac{1}{X(t)} \right) dX(t) + \frac{1}{2X^2(t)} \left(dX(t) \right)^2 \right) + C[\mu, \mu]_t$$

where the quadratic variation of μ comes from the "jump part" of the application of Itô's formula:

$$\sum_{0 \le s \le t} \left(X(s) - X(s-) - \left(\log X(s) - \log X(s-) \right) - \left(1 - \frac{1}{X(s-)} \right) \Delta X_s \right) \le C_{0, 1}$$

$$\leq \widetilde{C}_i[X,X]_t \leq C_i[\mu,\mu]_t < \infty,$$

and where

$$C = C_1 + C_2 + C_3 + C_4$$

Stochastic SIRV model

SIRV model - outline of the proof (2)

under some technical assumptions

$$\begin{cases} S(t) + I(t) + R(t) + V(t) = N(t) \le K_1 \\ \frac{1}{N(t)} \le \max\left\{\frac{1}{S(t)}, \frac{1}{I(t)} \frac{1}{R(t)}, \frac{1}{V(t)}\right\} \le \widetilde{K}_1 \\ E\left[\int_0^T \sigma_t^2(0) \lambda_s^B ds + \int_0^T \int_{\mathbb{R}_0} \sigma_t^2(z) \nu(dz) \lambda_s^H ds\right] \le K_2, \end{cases}$$

$$(2)$$

due to positivity of (S,I,R,V) process and non-negativity of its parameters, it follows that

$$\mathbb{E}\left[Y\left(S(\tau_k \wedge T), I(\tau_k \wedge T), R(\tau_k \wedge T), Y(\tau_k \wedge T)\right)\right] \le \\\mathbb{E}\left[Y\left(S(0), I(0), R(0), V(0)\right)\right] + \widetilde{N}(T),$$

where $\widetilde{N}(T)$ is finite quantity depending on T and

 $\mathbb{E}\left[Y\left(S(0), I(0), R(0), V(0)\right)\right] + \widetilde{N}(T) \geq \varepsilon \min\left\{k - 1 - \log\left(k\right), \frac{1}{k} - 1 + \log\left(k\right)\right\}$

• by letting $k \to \infty$ it follows that

$$\mathbb{E}\left[Y\left(S(0), I(0), R(0), V(0)\right)\right] + \widetilde{N}(T) \ge \infty,$$

which gives a contradiction, i.e. $\tau_{\infty} = \infty$ \mathbb{P} -a.s.

the set

$$\Gamma^{\star} = \{(S(t), I(t), R(t), V(t)) : S(t), I(t), R(t), V(t) > 0 \ \& \ N(t) \le K\}$$

is a **positively invariant set** of the system (1) for every t > 0, i.e. if the system starts from Γ^* , almost surely it never leaves Γ^*

SIRV model - extinction

Theorem

lf

$$\limsup_{t \to \infty} \frac{1}{t} \int_{0}^{t} \left(\left(\lambda_s^B \sigma_s(0) \right)^2 \right)^{-1} ds < \frac{2(\kappa_1 + \theta)}{K^2} \quad \mathbb{P} - a.s.,$$

and

$$\limsup_{t \to \infty} \frac{\Lambda_t}{t} < \infty \quad \mathbb{P}-a.s.,$$

than for any initial value $(S(0), I(0), R(0), V(0)) \in \Gamma^*$ it follows that

$$\begin{split} I(t) &\to 0 \quad \mathbb{P}-a.s. \ as \ t \to \infty, \\ R(t) &\to 0 \quad \mathbb{P}-a.s. \ as \ t \to \infty, \end{split}$$

while

$$\limsup_{t \to \infty} (S(t) + V(t)) = K_1 \quad \mathbb{P} - a.s.$$

Extinction - outline of the proof

27/45

• according to the boundedness of the process for contact rate and the boundaries (2), by applying the Itô's formula for semimartingales to the function $\ln (I(t))$ and dividing everything by t, it follows:

$$\frac{\ln(I(t))}{t} \le \frac{\ln(I(0))}{t} + \int_0^t \left(\frac{K^2}{2\sigma_s^2(0)(\lambda_s^B)^2} - (\kappa_1 + \theta)\right) \, ds + k \frac{M_1(t)}{t},$$

where \boldsymbol{k} is a generic constant and

$$M_1(t) := \int_0^t \int_{\mathbb{R}} \sigma_s(z) \mu(ds, dz), \quad \langle M_1, M_1 \rangle_t = \Lambda_t$$

is a martingale vanishing at $\boldsymbol{0}$

• as $\limsup_{t\to\infty} \frac{\langle M_1, M_1 \rangle_t}{t} < \infty \mathbb{P}\text{-a.s., according to SLLN from (Mao, 2007) it follows that}$

$$\lim_{t \to \infty} \frac{M_1(t)}{t} = 0 \quad \mathbb{P} - a.s.$$

Extinction - outline of the proof

then it follows that

$$\limsup_{t \to \infty} \frac{\ln(I(t))}{t} \le \limsup_{t \to \infty} \frac{1}{t} \int_0^t \frac{1}{(\sigma_s(0)\lambda_s^B)^2} ds - \frac{2(\kappa_1 + \theta)}{K^2} < 0 \quad \mathbb{P} - a.s.$$

and therefore, due to positivity of I(t),

$$\lim_{t \to \infty} I(t) = 0 \quad \mathbb{P} - a.s.$$

by solving the ODE for recovered class explicitly, we obtain that

$$R(t) = e^{-(\kappa+\gamma)t} \left(R(0) + \int_0^t \theta I(s) e^{(\kappa+\gamma)s} \, ds \right)$$

and by applying the L'Hospital rule it follows that

$$\lim_{t \to \infty} R(t) = 0 \quad \mathbb{P} - \text{a.s.}$$

at last, it follows that

$$\limsup_{t \to \infty} (S(t) + V(t)) = K_1 \quad \mathbb{P} - \text{a.s.}$$

Persistence in mean - definition

29/45

- the virus **remains persistent** in population if there is at least one infected individual communicating with susceptible subpopulation
- mathematical concept of persistence persistence in mean
- the system (1) is said to be persistent in mean if

$$\liminf_{t\to\infty} [I(t)] = \liminf_{t\to\infty} \frac{1}{t} \int_0^t I(s) \, ds > 0, \quad \mathbb{P}-\text{a.s.}$$

SIRV model - persistence in mean

Theorem

$$\begin{split} & \liminf_{t\to\infty} \frac{1}{t} \int_0^t \sigma_s^2(0) (\lambda_s^B)^2 ds \leq \widetilde{\beta} \, \frac{\lambda + \rho(\delta - 1)}{\kappa} \, \frac{2K_1^2 \underline{S}}{\underline{S} - \delta \underline{V}}, \\ & \widetilde{\beta} \leq \liminf_{t\to\infty} \frac{\beta(t)}{N(t)}, \quad \underline{S} \leq S(t), \quad \underline{V} \leq V(t), \quad \forall t \geq 0, \end{split}$$

and

lf

$$\limsup_{t \to \infty} \frac{\Lambda_t}{t} < \infty \quad \mathbb{P}-a.s.,$$

than for any initial value $(S(0),I(0),R(0),V(0))\in\Gamma^{\star}$ it follows that

$$\liminf_{t \to \infty} [I(t)] > 0 \quad \mathbb{P}-a.s.$$

Persistence in mean - outline of the proof

31/45

• by applying Itô formula to $\ln{(I(t))}$ ant dividing the result by t it follows that

$$\begin{split} \liminf_{t \to \infty} \frac{\ln I(t)}{t} \geq \frac{\widetilde{\beta}}{\kappa} \liminf_{t \to \infty} \left((\lambda + \rho(\delta - 1))\underline{S} - F(t) - \left(\frac{\theta\gamma}{\kappa + \gamma} - \kappa_1\right) [I(t)] \\ + \frac{1}{t} \int_{0}^{t} \int_{\mathbb{R}} \sigma_s(z) \frac{V(s)}{N(s)} \delta(1 - \delta) I(s) \mu(ds, dz) \right) \\ - \frac{\underline{S} - \delta \underline{V}}{2K_1^2} \liminf_{t \to \infty} \frac{1}{t} \int_{0}^{t} \sigma_s^2(0) (\lambda_s^B)^2 ds \end{split}$$

where

$$F(t) := \frac{S(t) - S(0)}{t} + \frac{I(t) - I(0)}{t} + \delta \frac{V(t) - V(0)}{t} + \frac{\gamma}{\kappa + \gamma} \frac{R(t) - R(0)}{t}$$

and [I(t)] comes from the definition of F(t) after substituting the integral forms for S(t), I(t), V(t) and R(t):

Persistence in mean - outline of the proof

$$\begin{split} [S(t) + \delta V(t)] &\geq \frac{1}{\kappa} \left((\lambda + \rho(\delta - 1))\underline{S} - K(t) - \left(\frac{\theta\gamma}{\kappa + \gamma} - \kappa_1\right) [I(t)] \right. \\ &\left. + \frac{1}{t} \int_{0}^{t} \int_{\mathbb{R}} \sigma_s(z) \frac{V(s)}{N(s)} \delta(1 - \delta) I(s) \mu(ds, dz) \right) \end{split}$$

• from some natural properties of model parameters it follows that

$$\liminf_{t \to \infty} [I(t)] \ge \frac{(\kappa + \gamma)(\lambda + \rho(\delta - 1))}{\theta\gamma - \kappa_1(\kappa + \gamma)} \underline{S} - \frac{\kappa(\kappa + \gamma)}{\widetilde{\beta}(\theta\gamma - \kappa_1(\kappa + \gamma))} \frac{\underline{S} - \delta \underline{V}}{2K_1^2} \liminf_{t \to \infty} \frac{1}{t} \int_0^t \sigma_s^2(0) (\lambda_s^B)^2 \, ds$$

which is positive if

$$\liminf_{t\to\infty} \frac{1}{t} \int_0^t \sigma_s^2(0) (\lambda_s^B)^2 ds \leq \widetilde{\beta} \, \frac{\lambda + \rho(\delta - 1)}{\kappa} \, \frac{2K_1^2 \underline{S}}{\underline{S} - \delta \underline{V}} \quad \mathbb{P}-a.s.$$

Extinction and persistence - remarks

the condition

$$\limsup_{t \to \infty} \frac{\Lambda_t}{t} < \infty \quad \mathbb{P} - a.s.$$

can be interpreted as the "long term" comparability of the time-change process and the real time

- it can be replaced by a stronger assumption of **ergodicity** of the integrands in the absolutely continuous time-change processes Λ^B and $\widehat{\Lambda}^H$ (Serfozo, 1972)
- this condition is always fulfilled when the time-change process is slowing down the real time, i.e. when $\Lambda(t) \le t$ for all $t \ge 0$

Simulation study - contact rate model

- natural assumptions for contact rate model
 - non-negativity
 - mean-reverting property
 - presence of jumps and clustering
- an example of model for contact rate time-changed CIR jump diffusion
- SDE for the CIR jump diffusion (without time-change):

$$db(t) = -\theta \left(b(t) - \beta \right) dt + \sigma \sqrt{b(t)} \, dB_t + kZ_t$$

where $(Z_t, t \ge 0)$ is the compound Poisson process, k is the intensity of the jumps, σ is the volatility coefficient, β is the long-term level of the process and θ is the speed of reversion to β

Simulation study - time-change model

- choice of the absolutely-continuous time-change processes in Brownian and CPP part of the CIR jump diffusion - integrated process (λ_t, t ≥ 0):
 - integrated periodic function λ_t = a sin (kt)
 integrated compound Poisson process (CPP) with drift
 λ_t = dt + ∑_{k=0}^{N_t} X_k
 integrated inverse-Gaussian subordinator with Lévy measure
 π(dx) = δ/√2πx³ e^{-α²/2 dx}, x, α, δ > 0
 integrated Ornstein-Uhlenbeck process
 dλ_t = -θ(λ_t - μ) + σdB_t
- algorithm for building the time-changed process from simulated time-change process and simulated base process is given in (Magdziarz et al., 2007)

Contact rate - CIR jump diffusion time-changed by integrated periodic function

•
$$\lambda_t^B = \lambda_t^H = a \sin(kt), \ a = 1.5, \ k = 4$$

Contact rate - CIR jump diffusion time-changed by integrated CPP with drift

•
$$\lambda_t^B = \lambda_t^H = dt + \sum_{k=0}^{N_t} X_k$$
 CPP with drift, where $d = 0.05$, $X_t \sim \mathcal{U}(-1, 0.6)$, $(N_t, t \ge 0)$ Poisson process with intensity $\lambda = 2$

Time-changed CIR jump diffusion

37/45

Contact rate - CIR jump diffusion time-changed by integrated IG subordinator and CPP with drift

•
$$\lambda_t^B$$
 IG(α , δ) subordinator, $\alpha = 1$, $\delta = 5$

NI.

•
$$\lambda_t^H = dt + \sum_{k=0}^{N_t} X_k$$
 CPP with drift, $d = 0.05$, $X_t \sim \mathcal{U}(-1, 0.6)$, $(N_t, t \ge 0)$

Poisson process with intensity $\lambda = 2$

Contact rate - CIR jump diffusion time-changed by integrated IG subordinator and OU process

•
$$\lambda_t^B$$
 IG(α , δ) subordinator, $\alpha = 1$, $\delta = 5$

• $d\lambda_t^H = -\theta(\lambda_t^H - \mu) + \sigma dB_t$ Ornstein-Uhlenbeck process, $\theta = 5$, $\mu = 0$, $\sigma = 3$

Contact rate - CIR jump diffusion time-changed by integrated OU process

•
$$\lambda_t^B = \lambda_t^H$$

• $d\lambda_t^H = -\theta(\lambda_t^H - \mu) + \sigma dB_t$ Ornstein-Uhlenbeck process, $\theta = 5$, $\mu = 0$, $\sigma = 3$

Contact rate time-changed CIR diffusion without jumps

Time-changed CIR diffusion (sin)

Time-changed CIR diffusion (CPP)

Time-changed CIR diffusion (OU)

STORM Workshop, Oslo, 5-8/9/2022 Time-changed SIRV model for epidemic of SARS-CoV-2 virus

Contact rate - remarks and questions

- if 0 is the **absorbing barrier** of the process describing the dynamics of contact rate, the **extinction** appears after the first hitting time to 0
- if 0 is **reflecting barrier** and the process is **mean-reverting**, then the epidemic model is always in the **persistence regime**?
- what about extinction?
- recovering
 - contact rate process?
 - time-change process?

Recovering contact rate

- **contact rate is not directly observable**, it is "hidden" within the observable epidemiological data (number of susceptible, infected, vaccinated and recovered individuals)
- model-based recovery depends on the model and its parameters (Mummert, 2012), (Pollicot et al., 2012)
- the simplest model for $\beta(t)$, according to (Pollicot et al., 2012) is

$$\beta(t) = \frac{I(t+1)}{I(t)S(t)}$$

- in (Pollicot et al., 2012) the recovery algorithm for $\beta(t)$ in SIR model with permanent immunity is based on the **inverse problem** for the SIR system
- for SIRV model with **non-permanent immunity** the inverse problem yields the **implicit result for** $\beta(t)$ numerical procedures?

- if the day-by-day values of the contact rate are recoverd and the model without time-change is proposed, what would be the right choice of the time-change processes?
- (Winkel, 2001)

for a given Lévy process $(Y(t),\,t\geq 0)$ and an independent time-change process $(\tau(t),\,t\geq 0)$, the case when both processes are **completely** determined by time-changed process $(X(\tau(t)),\,t\geq 0)$ are identified

Bibliography

Bibliography

- Arroyo-Marioli, F., Bullano, F., Kucinskas, S., & Rondón-Moreno, C. (2021). Tracking R of COVID-19: A new real-time estimation using the Kalman filter. *PloS one*, 16(1), e0244474.
- Porien, R., Pang, G., & Pardoux, É. (2020). Estimating the state of the Covid-19 epidemic in France using a non-Markovian model. medRxiv.
- 3 Đorđević, J., Papić, I., & Šuvak, N. (2021). A two diffusion stochastic model for the spread of the new corona virus SARS-CoV-2. Chaos, Solitons & Fractals, 148, 110991.
- Jovanović, B., Đordević, J., Manojlović, J., & Šuvak, N. (2021). Analysis of Stability and Sensitivity of Deterministic and Stochastic Models for the Spread of the New Corona Virus SARS-CoV-2. Filomat, 1045-1063.
- 5 Allen, L. J. (2017). A primer on stochastic epidemic models: Formulation, numerical simulation, and analysis. Infectious Disease Modelling, 2(2), 128-142.
- (6) Di Nunno, G., & Sjursen, S. (2014). BSDEs driven by time-changed Lévy noises and optimal control. Stochastic Processes and their Applications, 124(4), 1679-1709.
- Serfozo, R. F. (1972). Processes with conditional stationary independent increments. Journal of Applied Probability, 9(2), 303-315.
- Bacod, J. (1979). Existence and uniqueness for stochastic differential equations. In Stochastic Control Theory and Stochastic Differential Systems (pp. 435-446). Springer, Berlin, Heidelberg.
- 9 Protter, P. E. (2005). Stochastic Integration and Differential Equations. Springer, Berlin, Heidelberg.
- 🚺 Mao, X. (2007). Stochastic Differential Equations and Applications. Elsevier.
- Magdziarz, M., Weron, A., & Weron, K. (2007). Fractional Fokker-Planck dynamics: Stochastic representation and computer simulation. *Physical Review E*, 75(1), 016708.
- Mummert, A. (2013). Studying the recovery procedure for the time-dependent transmission rate (s) in epidemic models. Journal of Mathematical Biology, 67(3), 483-507.
- Pollicott, M., Wang, H., & Weiss, H. (2012). Extracting the time-dependent transmission rate from infection data via solution of an inverse ODE problem. *Journal of Biological Dynamics*, 6(2), 509-523.
- Winkel, M. (2001). The recovery problem for time-changed Lévy processes. *MaPhySto*