ERASMUS+

EU programme for education, training, youth and sport

Incoming student mobility

Name of UNIOS University Unit: SCHOOL OF APPLIED MATHEMATICS AND INFORMATICS

COURSES OFFERED IN FOREIGN LANGUAGE FOR ERASMUS+ INDIVIDUAL INCOMING STUDENTS

Department or Chair within the UNIOS Unit	School of Applied Mathematics and Informatics
Study program	 Undergraduate university study programme in Mathematics and Computer Science Undergraduate university study programme in Mathematics
Study level	Undergraduate (Bachelor)
Course title	Theoretical Foundations of Computer Science
Course code	M097
Language of instruction	English
Brief course description	 Syllabus. Automata. Computability. Complexity. Regular languages: Finite Automata. Nondeterminism. Regular Expressions. Non-regular Languages. Context-Free Languages: Context-Free Grammars. Pushdown Automata. Non-Context-Free Languages. Deterministic Context- Free Languages. Decision problems for Context-Free Languages. Turing machines. Decidability. Rice's Theorem Time complexity. P and NP. NP-completeness. Polynomial time reductions (NP-complete reductions).
Form of teaching	Consultative teaching.
Form of assessment	Classes are organized through lectures and exercises. During lectures students will be familiarized with basic terms and results in mathematical theory of computation through illustrative examples and/or proofs. Exercises are auditory. During exercises students apply the acquired abstract knowledge to concrete problems. Lectures and exercises are obligatory. Final examination consists of a written and oral part which is taken after the completion of lectures.

ERASMUS+

EU programme for education, training, youth and sport

	Acceptable mid-term exam scores replace the written examination. Homework and seminar papers done during the semester could influence the final result of the exam.
Number of ECTS	6
Class hours per week	2+2+0
Minimum number of students	
Period of realization	Summer semester
Lecturer	Zoran Tomljanović