Incoming student mobility

UNIOS University Unit: SCHOOL OF APPLIED M ATHEM ATICS AND INFORM ATICS

COURSES OFFERED IN FOREIGN LANGUAGE FOR ERASMUS+INDIVIDUAL INCOM ING STUDENTS

Department or Chair within the	School of Applied Mathematics and Informatics
UNIOS Unit	

Study program	Graduate university study programme in mathematics (Master level) Branches: $\bullet \quad$ Financial Mathematics and Statistics $\bullet \quad$ Mathematics and Computer Science

Study level	Graduate (master)

Course title	Linear optimization
Course code (if any)	M 128
Language of instruction	English
Brief course description	Syllabus. 1. Introductory part: Definition of linear programming problem. Examples of linear programming problems. By parts linear convex function. Graphic solution of two-dimensional linear programming problem. 2. Linear programming geometry: Polyhedron and convex sets. Extreme points, vertices and basic feasible solution. Polyhedron in standard form. Degeneration. Extreme point existence and optimality 3. Simplex method: Optimality condition. Derivation and implementation of the simplex method. Bland's rule. Determining the initial basic solution. Complexity analysis of the simplex method. 4. Dual problem: Dual problem. Theorems of weak and strong duality. Farkas' lemma and linear inequalities. Theorems and separation. Dual simplex method. 5. Sensitivity analysis: Local sensitivity analysis. Global sensitivity analysis. Interpretation. 6. Ellipsoidal method: Geometric meaning and complexity. 7. Network Flow Problems: Definitions, Formulation of Network

	Flow Problems and Properties. The law of conservation of flow. Equivalent problems: transport problem, join problem, various variants of networf flow problems. Simplex algorithm for network flow problem: trees and basic permissible solutions, base change, simplex method for capacity problems.
8.Maximum flow problem: Definitions, formulation of maximum flow problem, properties, Ford-Fulkerson algorithm, magnifying path search, graph cut, Max-flow min-cut theorem. 9. Problems of integer programming (backpack problem, packing, partitioning, coverage, merchant passenger problem, scheduling problems, etc.) M odeling techniques. Strong formulation of the problem. Modeling with exponentially many conditions.	
Form of teaching	Lectures and exercises are obligatory. The exam consists of a written and an oral part. Upon completion of the course, students can take the exam. Successful midterm exam scores replace the written exam.
Form of assessment	$\mathbf{8}$
Number of ECTS	$\mathbf{3 + 2 + 1}$
Class hours per week	Winter semester
Minimum number of students	Ivana Kuzmanović lvicićc
Period of realization	Lecturer

