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Abstract

Let Gy, denote either the group SO(2n + 1, F') or Sp(2n, F') over
a non-archimedean local field of characteristic zero. We determine
the reducibility criteria for a parabolically induced representation of
the form ([v%p,1%p]) x 7, where ([1%p,1?p]) denotes the Zelevinsky
segment representation of the general linear group attached to the
segment [1%p, ¥p], with a half-integral, and 7 denotes an irreducible
tempered representation of G,,.

1 Introduction

We study the structure of parabolically induced representations of the form
([vep, °p]) x 7, where ([v%p,1"p]) denotes the Zelevinsky segment represen-
tation of the general linear group attached to the segment [1%p, v°p], and T
denotes an irreducible tempered representation of either odd special orthog-
onal or symplectic group over a non-archimedean local field of characteristic
zZero.

Zelevinsky segment representations and irreducible tempered representa-
tions both present prominent members of the unitary duals. Furthermore,
the Zelevinsky segment representations belong to the class of the essentially
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Speh representations, which are the basic building blocks in the unitary dual
of the general linear group. On the other hand, irreducible tempered rep-
resentations play a fundamental role in the Langlands classification for the
classical groups, and have been independently classified in [5] and [17], based
on the work of Goldberg ([2]) and on the Moeglin-Tadi¢ classification of dis-
crete series ([10, 12]).

The main aim of our investigation is to provide the reducibility criteria
for the induced representations of the form ([v%p,1%p]) x 7, with a half-
integral and 7 irreducible tempered. This is a natural continuation of our
previous work on the reducibility and composition factors of representations
induced from the Zelevinsky segment representation and a discrete series of
the classical p-adic group ([7, 8]). It appears that the reducibility criteria
mostly rely on a deeper knowledge on the structure of irreducible tempered
subquotients.

Our work builds on the methods introduced in [13, 14], and further de-
veloped in [7]. But, as expected, the tempered case happens to be much
more involved then the discrete series one. To obtain more precise informa-
tion regarding the irreducible tempered subquotients of ([v%p, v?p]) x 7, for
an irreducible tempered representation 7, in most of the cases we use the
reduction to the discrete series case, and then follow the results of [8]. We
note that proofs appearing in [8] can also be directly applied to the case of
positive integral a, so we also cover that case.

The main strategy used in [13, 14] is rather straightforward, and relies
on the determination of conditions under which the induced representation
contains at least two mutually non-isomorphic irreducible subquotients. We
mostly follow this strategy, in a similar way as in [7], but we also obtain more
precise results on the existence of irreducible tempered subquotients and on
the general form of irreducible non-tempered subquotients. This enables us
to provide a complete and uniform description of the reducibility criteria in
the cases considered.

For the convenience of the reader, we cite the less technical version of our
reducibility criteria here.

Theorem 1.1. Let p denote an irreducible cuspidal representation of the gen-
eral linear group and let T stand for an irreducible tempered representation
of either symplectic or odd special orthogonal group over a non-archimedean
local field of characteristic zero. Let a,b denote real numbers such that
b — a is a non-negative integer. If 2a ¢ 7, then the induced representation



([vep, v°p]) x 7 is irreducible.

If 2a is a positive integer, a > 1, and p ¥ p, then ([V°p,°p]) X T reduces
if and only if the Jacquet module of T with respect to the appropriate parabolic
subgroup contains an irreducible constituent of the form §([v=2T1p, v*~1p]) ®
7. If 2a is a positive integer, a > 1, and p = p, then ([v%p, V°p]) x T reduces
iof and only if one of the following holds:

(1) The Jacquet module of T with respect to the appropriate parabolic sub-
group contains an irreducible constituent of the form §([v=" M p, v 1p])®
.

(2) There is a ¢ € {a,a+ 1,...,b} such that ([V°p,v°p|) X T contains an
wrreducible tempered subquotient.

(8) Thereis ac € {a,a+1,...,b} and an irreducible tempered representation
7' such that {[v*p,v°p|) X T contains a unique irreducible subrepresenta-
tion of 6([v=p,v°1p]) x 7.

If a = %, then ([v"p,v’p]) X T reduces if and only if p = p and one of the

following holds:

(1) There is a c € {3,3,...,b} such that ([vip,v°p]) x T contains an irre-
ducible tempered subquotient.

(2) There is ac € %, g, ..., b} and an irreducible tempered representation 7/
such that (V2 p,v°p]) x T contains a unique irreducible subrepresentation
of 6([p.v"1p]) 0 7.

Ifa<0,2a €7Z,a¢Z and —a < b, then {[1%p,v°p|) x T reduces if and only
if p=p and there is a c € {3,3,...,b} such that ([vzp,v°p]) % T reduces.

The above criteria is explicitly given in terms of the classifications of
irreducible tempered representations and discrete series representations in
Theorems 4.5 and 5.3, and also summarized in Theorem 6.6.

In the following section we present some preliminaries. Also, we briefly
collect some results on the structure of tempered representations, and pro-
vide an adjustment of some technical results from [7]. The third section is
the technical core of the paper. Using the Jacquet modules method and em-
beddings of tempered representations, in that section we obtain necessary
and sufficient conditions under which ([v%p, v°p]) x 7 contains an irreducible



tempered subquotient for a < %, a half-integral. Also, under a technical
assumption which does not effect the reducibility criteria, we obtain similar
conditions for @ > 1. This enables us to provide an explicit description of the
reducibility points, using a case-by-case consideration. In the Section 4 we
study the case a > 1, while in the Section 5 we describe the case a = % We
close the paper with the investigation of the case a negative and half-integral,
which we reduce to the previously considered %—case, followed by a summary

of our results.

2 Preliminaries

Let F' denote a non-archimedean local field of the characteristic zero. We
first describe the groups that we consider.

Let J, = (0in+1-j)1<i,j<n denote the n X n matrix, where 6;,.1_; stands
for the Kronecker symbol. For a square matrix g, we denote by ¢' its trans-
posed matrix, and by ¢” its transposed matrix with respect to the second
diagonal. In what follows, we shall fix one of the series of classical groups

0 —J, 0 —-J, _
spn ) = {occrenry: () 7)o () )=o)

SO2n+1,F) = {gEGL(2n+1,F) :gng_l}

or

and denote by G,, the rank n group belonging to the series which we fixed.
Also, let GL(m, F) denote the general linear group of rank m over F.

The set of standard parabolic subgroups will be fixed in a usual way, i.e.,
we fix a minimal F-parabolic subgroup in the classical group G, consisting
of upper-triangular matrices in the usual matrix realization of the classical
group. Then the Levi factors of standard parabolic subgroups have the form
M = GL(ny, F)x---xGL(ng, F)xG,. If §; is a representation of GL(n;, F),
fori=1,...,k, and 7 a representation of Gz,, the normalized parabolically
induced representation Ind§7 (6, ®- - -®8,®7) will be denoted by &, x - - - X 6}, X
7. We use a similar notation to denote a parabolically induced representation
of GL(m, F).

By Irr(G,,) we denote the set of all irreducible admissible representations
of G,. Let R(G,) denote the Grothendieck group of admissible representa-
tions of finite length of G,, and define R(G) = ®,>0R(G,). In a similar way
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we define Irr(GL(n, F)) and R(GL) = &,>0R(GL(n,F)). We note that in
R(G)wehave m X T =T X7 and m X Ty X T =Ty X T X T.

For o € Irr(G,) and 1 < k < n we denote by ry)(c) the normalized
Jacquet module of o with respect to the maximal parabolic subgroup P,
having the Levi subgroup equal to GL(k, F) x G,,—. We identify r(;)(c) with
its semisimplification in R(GL(k, F)) ® R(G,_) and consider

—1®U+Zr ) € R(GL) ® R(G).

Let v stand for a composition of the determinant mapping with the nor-
malized absolute value on F. Let p € R(GL) stand for an irreducible cus-
pidal representation. By a segment in R(GL) we mean a set of the form
[p,v™p] :={p,vp,...,v"p}, where m stands for a non-negative integer. The
induced representation p X vp X --- X ™ p has a unique irreducible subrep-
resentation ([18]), which is denoted by ([p, v™p]) and called the Zelevinsky
segment representation.

The induced representation v™p x v™ !p x - -+ x p contains a unique irre-
ducible subrepresentation, denoted by d([p, v p]). Representation d([p, v p])
is essentially square-integrable, and, by [18], every irreducible essentially
square-integrable representation in R(GL) can be obtained in this way.

We frequently use the following structural formulas, obtained in [3, The-
orem 1.4] and in [16, Theorems 5.4, 6.5]:

Theorem 2.1. Let p € R(GL) denote an irreducible cuspidal representation
and k,l € R such that k + 1 is a non-negative integer. Let o € R(G) de-
note an irreducible admissible representation of finite length. Write p*(o) =
Y ono TR0 Then we have:

k+I+1 4

w{(F ey o) = > Y N (v v ) x (v T E ) xow

=0 35=0 m,o’
® (7 Fp, v pl) 3o,

(6" p, o)) Z 225 v, VR X S p, v pl) x

i=—k—1 j=i w0’
® ([ p, 7 pl) x o',
We omit ([v*p,v¥p]) and §([v"p,v¥p]) if v > y.
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Let us take a moment to recall the subrepresentation version of the Lang-
lands classification for general linear groups.

For every irreducible essentially square-integrable representation § € R(GL),
there is a unique e(d) € R such that v»~*%§ is unitarizable. We note that
e(6([v?p,%p])) = (a+ b)/2. Suppose that d1,ds, ..., d;, are irreducible essen-
tially square-integrable representations such that e(d,) < e(da) < ... < e(dy).
Then the induced representation d; X dy X - -+ X d; has a unique irreducible
(Langlands) subrepresentation, denoted by L(d1,0s,...,d;), which appears
with multiplicity one in the composition series of §; X dg X - -+ X ;. Every
irreducible representation m € R(GL) is isomorphic to some L(dy, da, . . ., 0x)
and, for a given 7, the representations dy,ds, ..., d; are unique up to a per-
mutation.

We also use the subrepresentation version of the Langlands classification
for classical groups, and realize a non-tempered irreducible representation m
of G,, as the unique irreducible (Langlands) subrepresentation of an induced
representation of the form d; X d5 X - - - X §, X 7, where 7 is an irreducible tem-
pered representation of some Gy, and 01,09, ..., € R(GL) are irreducible
essentially square-integrable representations such that e(d;) < e(dp) < -+ <
e(dx) < 0. In this case, we write m = L(d1,d2,...,0k; 7).

In the following theorem we gather some results from [2] and [15, Sec-
tion 1] on irreducible tempered representations in R(G).

Theorem 2.2. (1) Suppose that 01, ...,0; € R(GL) and o1 € R(G) are dis-
crete series. Let us denote by m the number of mutually nonisomorphic
representations 0; such that d; X o1 reduces. The induced representation
01 X -+ X0 X0y 18 a direct sum of 2™ mutually nonisomorphic irreducible
tempered representations.

(2) For an irreducible tempered representation 1 € R(G), exist discrete se-
ries 01,...,0p € R(GL) and o1 € R(G) such that 7 is a subrepresenta-
tion of 1%+ - -x 0 xoy. Ifd),...,6, € R(GL) and o} € R(G) are discrete
series such that 7 is a subrepresentation of 01 X ---x 6, X0}, then o1 = o]
and the sequence 01, ...,0; can be obtained from the sequence o1, ..., J
by permuting and taking contragredients.

(8) Suppose that an irreducible tempered representation 7, € R(G) is a sub-
representation of 61 X - -+ X 8 X oy, for discrete series 0y, ...,0, € R(GL)
and o1 € R(G). Let 6 € R(GL) stand for a discrete series. The induced



representation § X 1y reduces if and only if § & {01, ..., , ci, . ,&} and
0 X o reduces.

(4) Let 6 € R(GL) denote a discrete series, and let 7y € R(G) denote an
irreducible tempered representation. If 6 x T reduces, then it is a direct
sum of two mutually nonisomorphic tempered representations.

We frequently use the following result ([4, Lemma 5.5)):

Lemma 2.3. Suppose that m € R(G,,) is an irreducible representation, \ an
wrreducible representation of the Levi subgroup M of G, and m is a subrep-
resentation of IndAGf()\). If L > M, then there is an irreducible subquotient
p of Ind%,(\) such that T is a subrepresentation of Inds™(p).

To shorten the notation, for an irreducible essentially square-integrable
representation § € R(GL) and a positive integer m, we denote by d™ the
induced representation § x --- X §, where § appears m times.

Throughout the paper, we fix an irreducible tempered representation 7 €
R(G) and an irreducible cuspidal representation p € R(GL).

We are interested in determining when the induced representation ([%p, °p]) x
7, for real numbers a and b such that b — a is a nonnegative integer. Since
in R(G) we have ([1%p, 1°p]) x 7 = ([v=°p,v~%p]) x T, we can always assume
that a + b > 0.

Also, from now on we fix a discrete series 0 € R(G) such that 7 can
be written as a subrepresentation of 6 x --- x §) x o, for discrete series
MW ..., 80 € R(GL). By the part (2) of Theorem 2.2, ¢ is unique up to an
isomorphism.

By the Moeglin-Tadi¢ classification, which now holds unconditionally, due
to [1] and [11, Théoreme 3.1.1], every discrete series 0’ € R(G) corresponds
to an admissible triple, consisting of the Jordan block, the partial cuspidal
support, and the e-function. The admissible triple corresponding to ¢ will
be denoted by (Jord(o’), 07, €-7). For more details on these invariants we
refer the reader to [10], [12], and [14, Section 1].

For a discrete series ¢’ € R(G) and an irreducible selfcontragredient cusp-
idal representation p’ € R(GL) we write Jord, (¢’) = {z : (x,p’) € Jord(c’)}.

If Jord, (¢’) # 0 and = € Jord, (¢’), denote z_ = max{y € Jord, (¢’) : y <
x}, if it exists.

We note that, by the classification of discrete series, d([v " p;, v"ip;]) X o
reduces if and only if p; = p;, 2x; + 1 is of the appropriate parity, and
(2z; + 1, p;) ¢ Jord(o’).
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Proof of the following lemma is immediate.

Lemma 2.4. Let 6 € R(GL) denote an irreducible square-integrable repre-
sentation. Then p*(T) contains an irreducible constituent of the form 6 @
if and only if there is an irreducible tempered representation 7' € R(G) such
that T is a subrepresentation of § x 7', Also, if p*(7) contains an irreducible
constituent of the form 6 ® w, then w is tempered.

The following result can be obtained following the same lines as in the
proofs of [17, Lemma 4.1, Lemma 4.4].

Lemma 2.5. Let ; € R(G) denote an irreducible tempered representa-

tion, which is a subrepresentation of 61 X -+ X &, X o1, for discrete series

d1,...,0p € R(GL), 01 € R(G). Let py € R(GL) stand for an irreducible

self-contragredient cuspidal representation, and let m and c¢ denote positive

integers such that 0([v™"F p1,v°T p1])™ x 71 reduces.

(1) If Jord, (1) N [1,¢] # O and d = max(Jord,, (1) N [1,c]), then there
is a unique irreducible subrepresentation 7 of 8([v"2 p1, v py])™ X 7
which contains an irreducible constituent of the form

d+1 c—1
2

(= prv 7)) @m

in its Jacquet module with respect to the appropriate parabolic subgroup.

ord,, (04 ,c] =0 and c is even, then there is a unique irreducible

2) If Jord,, N[l 0 and c i then there 4 ' rreducibl
subrepresentation 1o of 5([1/_%p1, V%plbm X 11 which contains an ir-
reducible constituent of the form

c—1

2 ) @n

5<[V%P1> v
i its Jacquet module with respect to the appropriate parabolic subgroup.
At the end of this section we obtain several useful technical results.

Lemma 2.6. Suppose that 2a is a positive integer. Let L(d,...,0;7") stand
for an irreducible non-tempered subquotient of {[v%p,v°p]) x T, and let §; =
S([v¥ips, v¥ip;]) fori=1,... k. Then for alli=1,... k we have p; = p and
x; € {yi, —y; — 1}. Furthermore, we have the following:

(1) Suppose that for every i € {1,2,...,k} we have z; = y;. Then z; =
—b+i—1 and 7' is an irreducible subquotient of ([v*p, V" p]) x 7.
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(2) Suppose that there is ani € {1,2,...,k} such that x; = —y; — 1, x; # y;.
Then @ = k, and there is an wrreducible tempered representation 11 €
R(G) such that T is a subrepresentation of ([v=""*p, v*~*p]) x 11, and
7' is a subquotient of ([Vp, V>~ p]) x 1.

Proof. Since L(d1,...,0;7") is a subrepresentation of d; x L(ds, ..., 0 T),
Frobenius reciprocity implies that u*(([v%p, v°p]) x7) contains 6;RL(Jy, . . ., 0p; 7').
By the structural formula, there are ¢, 7 such that a — 1 <7 < 7 <b, and an
irreducible constituent 0 ® 7 of u*(7) such that

S([* pr, v pr]) < (v "p, v 771 p)) x ([Wp, v'p]) X &
and
L(8a, ..., 6k 7") < (v p, 17 p]) .

Since a > 0 and 7 is tempered, it follows that p; & p and x; = —b. Also,
since O([v*1 p1, ¥ p1]) is an irreducible essentially square-integrable represen-
tation and a > 1 implies a > —b+ 1, we obtain that j =b—1and 7 =a — 1.
Consequently, either 7 = 7 or § = §([v**™!p, ¥ p]). Since z1 + 3, < 0 and
7 is tempered, we conclude that 7 2 7 implies xr; = —y; — 1. Thus, 7 is
tempered, z, € {y1, —y1 — 1} and L(da,...,0x; 7’) is an irreducible subquo-
tient of ([v%p, "~ 1p]) x m. Repeating this procedure, we obtain that for all
i=1,...,k we have p; = p and z; € {y;, —y; — 1}.

Suppose that there is an ¢ € {1,2,...,k} such that x; = —y; — 1,
x; # y;, and let iy;, denote the minimal such 7. From the first part of
the proof, we deduce that L(J; . ,...,d;7') is an irreducible subquotient of
([vep, VP tmntlpl) 2 7.

If iin = k, we get that there is an irreducible tempered representation
71 € R(G) such that 7 is a subrepresentation of §([v=°**p, **p]) x 7 and
7' is a subquotient of ([v%p, v*~*p]) x 7.

Suppose that i,,;, < k. Then there is an irreducible tempered representa-
tion 7, € R(G) such that 7 is a subrepresentation of §( [y =0T imin . /0= tmin 5] xq
i and L(d; . 11, ..,0;7') is an irreducible subquotient of ([v%p, pP~min p]) xq
71. In the same way as in the first part of the proof, we deduce 9; . 1 €
{y=OFbmin g §([pbimin g b=tmin=1 5L f any case, we have

L( X0y XL(6 . oy 0k T)
X L(éimin""z’ ce ,5k; 7'/),

0T ) = 0

tmin? * min

min



which is impossible since the structural formula implies that g*({[v%p, 0~ mint1 p]) x
7) does not contain an irreducible constituent of the form d; , 1 ® 7 for
i 1 € {yOtiming §([p~bFimin g pbmimin =1 Thus, 45, = k. O

The following two lemmas can be proved following exactly the same lines
as in the proofs of [7, Lemma 2.3, Lemma 2.4].

Lemma 2.7. Let 7 stand for L(v=py,61,...,0k;71), where —c < e(dy) and
let p1 € R(GL) denote an irreducible self-contragredient cuspidal representa-
tion. If L(8y,...,0;71) is an irreducible subquotient of {[1epy, v 1p1]) X 7o,
for some irreducible tempered representation 5 and —c+1 < d, then w is an
irreducible subquotient of {[Vip1, v°p1]) X 7.

Lemma 2.8. Let w stand for L(v=p1,v~°p1,01,...,0k;T1), where —c < e(dy)
and let py € R(GL) denote an irreducible self-contragredient cuspidal repre-
sentation. If L(d1,...,0,;71) is an irreducible subquotient of ([~ py, v¢~p]) %
79, for some irreducible tempered representation 1o, then m is an irreducible
subquotient of ([v~°p1,v°p1]) X To.

3 On tempered subquotients

Throughout this section, a and b denote real numbers such that b — a is a
non-negative integer. If a < 0, we assume that —a < b and either 2a ¢ Z or
a is half-integral (i.e., 2a € Z but a ¢ Z).

In this section we determine when the induced representation ([v%p, v°p]) x
T contains an irreducible tempered subquotients, under a technical assump-
tion on 7 in the case a > 1.

The next lemma follows directly from [9, Section 8].

Lemma 3.1. Suppose that ¢’ € R(G) is a discrete series, and let p' € R(GL)
denote an irreducible self-contragredient cuspidal representation. Let c,d be
such that 1 < c¢<d, d—c,2c € Z.

(1) If 2¢ — 1 & Jordy(o') and x € Jord,(o') for all x € {2¢+ 1,2¢ +
3,...,2d + 1}, then the Jacquet module of o' with respect to the appro-
priate parabolic subgroup contains an irreducible representation of the
form Vc—i—lp/ ® I/C+2p/ R & I/dp/ Q.
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(2) If x € Jordy(o') for all x € {2c+1,2¢c+3,...,2d+1}, (2c+1)_ is defined
and €,/(((2¢ + 1), p"),(2c + 1,p")) = 1, then the Jacquet module of o
with respect to the appropriate parabolic subgroup contains an irreducible
representation of the form v°tp @ v 2y @ - @ vip @ 7.

(8) The Jacquet module of o' with respect to the appropriate parabolic sub-
group does not contain an irreducible representation of the form v°p’ ®
I/C+1pl® .. ®Vd_1pl®ydp/ X l/dp,®7r

Lemma 3.2. Suppose that either 2a ¢ Z or p is not a self-contragredient
representation. Then ([v%p,v°p]) X7 does not contain an irreducible tempered
subquotient.

Proof. Inspecting the cuspidal support of a tempered representation, we ob-
tain that if ([v%p, %p]) X7 contains an irreducible tempered subquotient, then
2a € 7Z. It remains to consider the case 2a € Z and p 2 p. Since twists of p
do not appear in the cuspidal support of a discrete series, we obtain that if
([v*p,v°p]) x T contains an irreducible tempered subquotient and p % p, then
a = —b. Suppose that 7 is a subrepresentation of §([v=p, v°p])™ x7’, for an ir-
reducible tempered representation 7’ such that 7’ is not a subrepresentation of
an induced representation of the form §([v="p, v?p]) x 7. Then an irreducible
tempered subquotient of ([v~°p,1%p]) x 7 has to be a subrepresentation of
an induced representation of the form §([v=bp,%p])™* x 7, but it follows
directly from the structural formula that p*({[v=°p,p]) x 7) does not con-
tain an irreducible constituent of the form §([v=p, v°p])" ! @ 7. If T is not a
subrepresentation of an induced representation of the form §([v=p, 1%p]) x 7,
it follows that an irreducible tempered subquotient of ([v=2p,1%p]) x 7 is a
subrepresentation of an induced representation of the form 6([v=°p, v%p]) x 7/,
but p*({[v="p,v’p]) x 7) does not contain an irreducible constituent of the
form §([v=p,%p]) @ 7', This ends the proof. O

The following proposition can be proved following the same lines as in
the proof of [7, Proposition 3.3] and using Lemma 3.2, details being left to
the reader.

Proposition 3.3. Suppose that 2a ¢ 7Z. Then the induced representation
([vep, v°p]) x T is irreducible.

From now on, we assume that 2a € Z. In the rest of this section we
handle the case p = p.
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Lemma 3.4. Suppose that T is a subrepresentation of §([v=py, v°p1])™ X 11,
for a non-negative c, positive m, an irreducible cuspidal p; € R(GL), and
an irreducible tempered 7 € R(G) such that p*(m) does not contain an
irreducible constituent of the form 6([v=¢py,v°p1]) @ m. Suppose that one the
following holds:

(1) a =1 and (¢, p1) & {(a—1,p), (b,p)},
(2) a <0 and (¢, p1) & {(—a,p), (b, p)},
(3) a= % and (C7p1) # (b,p).

If ([vep, V°p]) xT contains an irreducible tempered subquotient, then {[1%p, v°p]) x
71 contains an irreducible tempered subquotient.

Proof. Suppose that ([v%p,’p]) x T contains an irreducible tempered sub-
uqotient 7’. Using the cuspidal support considerations, together with the as-
sumptions of the lemma, we deduce that 7’ is a subrepresentation of 6([v¢py, v p;])™ X
7" for an irreducible tempered representation 77 such that p*(7”) does not

contain an irreducible constituent of the form d([v=¢p1,v°p1]) ® m. Thus,
w({[v*p, vPp]) x T) contains §([v=Cpy, v¢p1])™ @ 7”. By the structural for-

mula, there are 7, j such that a—1 <7 < 7 < b and an irreducible constituent

91 ® m of p*(7) such that

S([v = pr, v pa])™ < (v, v pl) x (W2, vp]) X 6y
and

1
T

IN

([ p, Vgl ¢ .

If v=p ¢ [v=Cpy1, v°p1], we obtain j = b. If v=bp € [v™py,v°p1] and j < b—1,
from the assumptions of the lemma clearly follows that §; embeds into an
induced representation of the form §([v=<py, v=*"1p1]) X Js, contradicting the
temperedness of 7. In the same way we conclude that i = a—1. Thus, there is
an irreducible constituent of x*(7) of the form §([vpy, v°p1])™ @ 7 such that
([vep, °p]) x 7 contains 7”. It is easy to conclude, using the structural for-
mula, that the unique irreducible constituent of the form d([v¢py, vp1])" @7
appearing in p*(7) is 6([v = p1, v°p1])™ & 71, and the lemma is proved. O]

Theorem 3.5. Suppose that a is half-integral and a < 0. Then ([1%p, v°p])xT
does not contain an irreducible tempered subquotient.
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Proof. By Lemmas 3.2 and 3.4, it suffices to consider the case p = p and
T 0 X - X 0 ¥, for & € {5([v%p,v™]),d([v"1p, v°p])}. We note that
the case 7 = o is covered by [8, Theorem 3.9].

Suppose, on the contrary, that ([1%p,%p]) x T contains an irreducible
tempered subquotient 7/. First we consider the case —a = b. Using the
cuspidal support considerations, we deduce that 7’ is a subrepresentation of
§([v=p, vPp])EHL x o’ for a discrete series o/ € R(G) such that Jord(c) =
Jord(e’). If 2b+1 € Jord, (o), the induced representation d([v="p, *p])*+1 x
o’ is irreducible, so p*(7') contains an irreducible constituent of the form
(°p)?**2 @ 7, but it follows from the structural formula, description of T,
and Lemma 3.1(3) that u*({[v°p,v°p]) x 7) does not contain an irreducible
constituent of such a form.

If 26+1 ¢ Jord, (o), then p1* (o) does not contain an irreducible constituent
of the form v*p®@m, and the structural formula implies that p*(([v=p, v°p]) x
7) does not contain &([v="p, v°p])**! ® o’, contradicting the Frobenius reci-
procity.

Let us now consider the case —a # b. There is no loss of generality in
assuming that &; = §([v%p,v%p]) for i = 1,2,...,1, and §; = §([v=p, v°p])
fori=10141,1+2,...,k, for some [ € {0,1,...,k}.

We consider several possibilities separately.

o —2a+1¢ Jord,(0), 20+ 1 ¢ Jord,(o).

In this case, 7’ is a subrepresentation of d; x - - - X § x o', for a discrete series
o' € R(G) such that Jord(¢’) = Jord(o) U{(20 + 1,p),(—2a + 1,p)}. This
implies that d; X - -+ X 0 x 0’ is irreducible. Note that p*(o) does not contain
an irreducible constituent of the form v*p @ 7 for x € {—a, b}.

If u*(o’) contains an irreducible constituent of the form v=%p ® 7, it fol-
lows that p*(7') contains an irreducible constituent of the form (v=%p)**@x,
which is impossible since p*({[v%p, 1*p]) x 7) does not contain an irreducible
constituent of such a form. Thus, p*(¢’) does not contain an irreducible
constituent of the form vr~%p ® 7w, so there is an irreducible tempered sub-
representation 7" of §([v*Tlp, v 1p])t x §([v=p,v°p])*! x o’ such that
pi(t') > (v %)% @ 7", Tt follows that there is an irreducible tempered
subrepresentation 7, of 6([v2p, v~ 1p])t x §([v=p, "p])%~! x o such that
([v=p,vbp]) x 71 contains 7”. Following the same lines as in the proof of
Lemma 3.4 we deduce that there is an irreducible tempered subrepresenta-
tion 7 of 6([v="p, ?p])* I x ¢’ and an irreducible tempered subrepresentation
75 of 8([vbp, °p])*~! x o such that ([v=%p, v°p]) x 75 contains 7. Repeating
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the same arguments as before we conclude that ([v=%p, v°p]) x o contains o,
which contradicts [8, Theorem 3.9].

o —2a+1¢ Jord,(0), 20+ 1 € Jord,(o).

In this case, there is a discrete series o/ € R(G) with the property
Jord(¢’) = Jord(c) U {(—2a+ 1,p)} \ {(2b+ 1, p)} and an irreducible tem-
pered subrepresentation 77 of §([v=°p, vp])k =+ % ¢’ such that 7/ is isomor-
phic to §([v%p, v %])! x 7. In the same way as in the previously consid-
ered case we obtain that p*(o’) does not contain an irreducible constituent
of the form v~ %p ® m, and that there is an irreducible tempered subrep-
resentation 7, of d([vbp, %p])*~! x o such that ([v=%p,1%p]) x 7 contains
7. Since p*(7") > 6([v="bp, v°p])* ! ® o', using the structural formula, to-
gether with Lemma 3.1(3), we deduce that there is an irreducible constituent
§([v="p, vbp]) ® oy of u* (o) such that ([v=%, v*~1p]) x o contains o’. Since
b > %, [17, Proposition 7.2] implies that oy is a discrete series, contradicting
8, Theorem 3.9].
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o —2a+1¢€ Jord,(0), 20+ 1 ¢ Jord,(o).

In this case, there is a discrete series o/ € R(G) with the property
Jord(o’) = Jord(o) U {(2b+ 1,p)} \ {(—2a + 1,p)} such that 7’ is an ir-
reducible subrepresentation of d([v%p, v=%])!"*! x §([vtp, °p])*~! x o’. Note
that §([v=p,Pp])*~! x o’ is irreducible. Using the Frobenius reciprocity
and the structural formula we deduce that there is an irreducible constituent
§([v*tip, v~ )®0y of u* (o) such that ([v=2*1p, 1Pp]) xm; contains §([v=p, vPp])*F~
o' for an irreducible subquotient my of §([v~p, VPp])" ! 3 0y, If a < —3, it
follows from [17, Proposition 7.2] that oy is a discrete series. If a = —3, it
can be easily obtained from [8, Lemma 3.6] that o is a discrete series such
that (2, p) ¢ Jord(o;). Consequently, 7 is a tempered subrepresentation of
§([v=p,°p])k~t x oy. In the same way as in the previously considered cases
we obtain that ([v=!p,%p]) x o1 contains ¢’. If a < —3, this contradicts
8, Theorem 3.9], and if a = —3 this contradicts [8, Proposition 3.7].

s

e —2a+1¢€ Jord,(0), 20+ 1 € Jord,(o).

In this case, there is a discrete series 0’ € R(G) with the property Jord(o') =
Jord(o) \ {(—2a + 1,p),(2b+ 1,p)} and an irreducible tempered subrepre-
sentation 77 of §([v=tp, Pp])*~*1 x ¢’ such that 7/ is an irreducible subrep-
resentation of §([v%p, v=%p])"*! x 7. In the same way as in the previously
considered cases, we first deduce that there is a discrete series o7 € R(G) such
that y*(0) > 0([v**p,v™%]) @y and ([v=*p, v°p]) x 6([v="p,°p]) ! ¥ 0
contains 7”. Note that 20 + 1 € Jord,(o) implies 2b + 1 € Jord,(oy), so
S([vbp,vp))*t % oy is irreducible. Also, —2a + 1 ¢ Jord,(cq). Using the
same reasoning again, we obtain that there is a discrete series oo € R(G)
such that p*(oy) > 6([v=""p, vbp]) ® o9 and (v~ 1p, P~ 1p]) x oy contains
o'. Again, this contradicts either [8, Theorem 3.9] or [8, Proposition 3.7]. [

The following lemma enables an inductive procedure for the construction
of irreducible tempered subquotients.

Lemma 3.6. Let 7,5 € R(G) denote irreducible tempered representations
and suppose that there is an irreducible square-integrable 6 € R(GL) and a
positive integer m such that T is a subrepresentation of 0™ X T and that
(1) does not contain an irreducible constituent of the form 6 @ w. Suppose
that for an irreducible cuspidal self-contragredient representation p; € R(GL)
and c,d such that % <c<d,d—cé€Z,2 €7, the induced representation
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([vep1,v¥p1]) X T2 has a unique irreducible tempered subquotient ', which is
a subrepresentation. Also, suppose that & x 7' reduces if and only if § X T
reduces. If § ¢ {0([v="p1, v 1p1]), 0([v=%p1, vep1))}, then ([vepr, vip1]) x
has a unique irreducible tempered subquotient, which is a subrepresentation.

Proof. Let § = §([v=2p/,v*p']). Let us first prove that & x ([°p1,v%p1]) is
irreducible if (z, p’) # (¢ — 1, p1). Denote by 7 an irreducible subquotient of
§ x ([vepr,vep1]), and let ™ = L(d1,0y, ... ,0,) where §; = §([v®ip@, v¥i p)]).
It follows that there is a unique j € {1,2,...,n} such that (z;, p¥)) = (-2, o)
and for i € {1,2,...,5 — 1} we have z; > z;. Since e(d;) < e(d;) for i €
{1,2,...,7 — 1}, we obtain y; < y; for ¢ € {1,2,...,5 — 1}. Thus, for
ie{l,2,...,5 — 1} we have ¢; X §; = J; x J;, so 7 is a subrepresentation of

0; X 01 X =++ X 0j_1 X 0jp1 X =+ X Op.

Frobenius reciprocity and transitivity of the Jacquet modules imply that the
Jacquet module of m with respect to the appropriate parabolic subgroup
contains an irreducible representation of the form J; ® 7/, such that the
Jacquet module of 7’ with respect to the appropriate parabolic subgroup
contains 0; ® -+ ® 01 ® 0j11 X - -+ @ ..

Note that if the Jacquet module of ([v°py, v%p;]) with respect to the ap-
propriate parabolic subgroup contains an irreducible representation of the
form ¢’ ® 7, with ¢ essentially square-integrable, then 0" = v°p;. Since
the Jacquet module of § x {[v°p,v%p1]) with respect to the appropriate
parabolic subgroup contains 0; ® 7" and (z, p') # (¢ — 1, p1), it follows that
6; = § and 7’ = ([v°p1, v9p1]). Consequently, every irreducible subquotient
of 6 x {[v°p1,v¥p1]) is isomorphic to the unique irreducible subrepresentation
of § x v¢p1 x v p; x - - - x vp;. It can be easily seen that the Jacquet module
of § x {[v°p1,v%p,]) contains § ® vp; @ v°Hip @ -+ @ vip; with multiplicity
one, so § X ([Vp1,v%p1]) is irreducible. This leads to

3" M T = ™ x <[ch1,ydp1]) X Ty = ([Vp, l/dpl]> X 0™ X Ty.

If 6™ x 7/ is irreducible, then 71 = 6™ X 7 and 0™ x 7/ is an irreducible
tempered subrepresentation of ([1°py, v%p1]) x 1. If we denote an irreducible
tempered subquotient of ([1°p1, v%p1]) x 71 by 7”7, using the cuspidal support
considerations one can easily obtain that 7" = §™ x 73, for an irreducible
tempered representation 73 such that p*(73) does not contain an irreducible
constituent of the form §®@7. The structural formula now implies that p*(7")
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contains 0™ ® 73 with the multiplicity 2. On the other hand, since (z, p’) ¢
{(c—1,p1),(d, p1)} it follows that if 6™ @ 73 appears in u*({[°p1, v¢p1]) x
1), then 73 is an irreducible tempered subquotient of ([°p1, v%p;]) X T2, s0
73 = 7'. Since p*(m) contains ™ ® 75 with the multiplicity 2™ and 7’ is a
unique irreducible tempered subquotient of ([vpy, v%p1]) ¥ 7o, we deduce that
w*({{vep1,v¥p1]) X 71) contains 6™ @ 7/ with the multiplicity 2™, so §™ x 7/ is
a unique irreducible tempered subquotient of {[v°py, v9p1]) x 7.

Let us now assume that 8 x 7/ reduces and let 8 x 7/ = () 4+ 72 for
mutually non-isomorphic irreducible tempered representations 7(!) and 7(2).
By the assumption of the lemma, the induced representation ¢™ X 7 also
reduces, and let 6" x 7 = 73 +7*) | for mutually non-isomorphic irreducible
tempered representations 76 and 7®. By Lemma 2.3, for i € {1,2} there
is a j € {3,4} such that 7% is a subrepresentation of ([v°p1, v%p;]) x 7).

Note that for i € {1,2} there is an irreducible tempered subrepresentation
7! of § x 7/ such that 7 = §™~1 % 7. Since § x 7’ reduces, p*(7!") contains
§ ® 7/ with the multiplicity 1, so for i € {1,2}, u*(7%)) contains 6™ ® 7/ with
the multiplicity 2™ 1.

Applying the same argument, we deduce that p*(70)) contains 0™ ® 7,
with the multiplicity 2! for j € {3,4}. Following the same reasoning as
in the previously considered case, we obtain that for each irreducible con-
stituent of the form 0™ @7 appearing in u*({[1°p1, vip1]) x 7)), for j € {3,4}
and 7 tempered, we have 7 = 7. Also, for j € {3,4}, u*(([v°p1, vp1]) x 71))
contains 6™ ® 7’ with the multiplicity 2™~ !. Consequently, for every j €
{3,4} there is a unique i € {1,2} such that 7V is a subrepresentation of
([vep1, vep1]) x 79) and ([v°p1, v¥p1]) x 71 contains a unique irreducible tem-
pered subquotient, which is a subrepresentation. O

Proposition 3.7. Suppose thata > 1, p = p, and that p*(7) does not contain
an irreducible constituent of the form 6([v="p, v tp]) @ w. Also, suppose
that 2b+ 1 ¢ Jord,(c). If {([v*p,v"p]) ¥ T contains an irreducible tempered
subquotient, then the following holds:

(1) x € Jord,(o) for allz € {2a—1,2a+1,...,2b—1}, €,((z_, p), (x,p)) = —1
forallx € {2a +1,2a+3,...,2b — 1},

(2) if u*(7) contains an irreducible constituent of the form 5([v="p, 1°p]) @y,
and m stands for the largest positive integer such that p*(7) contains
an irreducible constituent of the form &([v="p,°p])™ & ma, then p*(7)
contains an irreducible constituent of the form (v°p)*™ @ ms.
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Proof. Tempered representation 7 can be written as a subrepresentation of an
induced representation of the form §; X - - - X §;, x 7/, where §; is an irreducible
square-integrable representation, d; % 6([v="p, vbp]) fori =1,2,...,k, and 7/
is an irreducible tempered representation such that if ©*(7') contains an irre-
ducible constituent of the form é ® 7 for ¢ irreducible and square-integrable,
then 6 = §([v="p, 1%p)).

By Lemma 3.4, if ([v%p, v°p]) x 7 contains an irreducible tempered sub-
quotient, then {[1%p, v°p]) x 7/ contains an irreducible tempered subquotient.
If 7 is a discrete series representation, then an irreducible tempered subquo-
tient of ([1%p, vp]) x 7" also has to be a discrete series since 2b+1 ¢ Jord, (o),
and the claim of the proposition follows from [8, Theorem 3.4]. We note that
nowhere in the proof of [8, Theorem 3.4] is used the fact that a is half-integral,
so the proof also covers the case a € Z.

Suppose that 7’ is not a discrete series. Since 2b+ 1 ¢ Jord,(o), 7' is
a subrepresentation of §([v="p, %p])™ x o, we have 2a — 1 € Jord, (o) and
an irreducible tempered subquotient 7 of ([v%p,v’p]) % 7 is isomorphic to
§([v=p,Pp])™ % o, for a discrete series o’ such that Jord(c’) = Jord(c) \
{(2a—1,p)} U{(26+1,p)}.

Let us first consider the case a < b. The structural formula implies
that p*({{v%p, ’p]) x 1) does not contain an irreducible constituent of the
form (v°p)>""! @ 7, so u*(0’) does not contain an irreducible constituent
of the form 1’p @ 7. It follows that p*(71) contains an irreducible con-
stituent of the form (v°p)*™ ® 73, where 75 is an irreducible tempered sub-
representation of &([v =T p,v*71p])™ % o’. Thus, 7 is an irreducible sub-
quotient of ([v%p,%p]) x 7", for an irreducible tempered subrepresentation
7 of §([v="p, P 1p])™ x 0. Applying Lemma 3.4 again, we obtain that
([v*p,v’p]) x o contains o’, and [8, Theorem 3.4] implies that x € Jord,(o)
for v € {2a — 1,2a + 1,...,2b — 1}, €,((2_,p),(x,p)) = —1 for all z €
{2a 4+ 1,2a+3,...,2b — 1}.

Note that 7 can also be written as a subrepresentation of §([v=°p, 1%p])™ x
7", for an irreducible tempered subrepresentation 7”7 of §; X --- X J, X 0.
Since 2b + 1 ¢ Jord,(o) and &; ¥ (v bp, %)) for i = 1,2,...,k, the
induced representation &([v="p,vp])™ x 7" reduces by Theorem 2.2 (3).
Also, a < b implies that 20 — 1 € Jord,(c), so §([v="Tp, P~ 1p])™ x 7"
is irreducible. It is now a direct consequence of the structural formula
that (1°p)*™ @ §([v="p, P 1p])™ x 7" is a unique irreducible constituent
of u*(6([v="p, °p])™ x 7") of the form (1°p)*™ @ 7, and appears there with
multiplicity one. Thus, there is a unique irreducible subrepresentation of
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§([v=bp,vbp])™ x 7" which contains an irreducible constituent of the form
(1°p)*™ @ 7 in the Jacquet module with respect to an appropriate parabolic
subgroup.

In the same way we conclude that an irreducible tempered subquotient
W of ([1%p, VPp]) x T is isomorphic to &([v°p, Pp])™ x 72, for an irreducible
tempered subrepresentation 72 of 6; x - - - x &, x ¢’. Thus, p*(7(")) contains
an irreducible constituent of the form (1°p)*" @, so u*({{v%p, °p]) x 7) also
contains an irreducible constituent of such a form. Since a < b, we obtain
that u*(7) contains an irreducible constituent of the form (v°p)?™ @ =.

Let us now consider the case a = b. Inspecting the cuspidal support of 7,
we deduce at once that 2a — 1 € Jord,(o). In the same way as in the previ-
ously considered case, we get that an irreducible tempered subquotient 7(!
of 1Pp x 7 is isomorphic to &([v™p, 1°p])™ x (), for an irreducible tempered
subrepresentation 7 of §; X - -+ x 8, x ¢, where ¢’ is a discrete series such
that Jord(o’) = Jord(o) \ {(20—1,p)} U{(20+1,p)}. From [17, Lemma 8.1]
follows that there is an irreducible representation 7; such that o’ is a sub-
representation of 1°p x 7. By the assumption of the proposition, §; x v°p is
irreducible for i = 1,2, ... k, and the standard commuting argument shows
that 7? is a subrepresentation of v%p x §; X -+ x 6, x 7. Consequently,
p* (7)) contains an irreducible constituent of the form (1°p)>"*' @ 7, so
p*(7) contains an irreducible constituent of the form (v°p)*™ @ =. O

The following result is contained in the proof of [6, Theorem 3.18], but
for the sake of completeness we provide a proof here.

Lemma 3.8. Let o/ € R(G) denote a discrete series, and let p' € R(GL)
stand for an irreducible cuspidal self-contragredient representation. Suppose
that ¢ is such that Jord,(o') contains {2c — 3,2¢ — 1,2c + 1}, and €,/((2¢c —
1,0, (2c+1,p")) = 1. We denote by 7" an irreducible tempered representation
such that o' is a subrepresentation of v¢p’ x 17'. Then €,/((2¢ — 3, p'), (2¢ —
L, p") = 1 if and only if p*(7") contains an irreducible constituent of the form
Vc—lpl % Vc—lp/ ® T.

Proof. From €,((2c—1,p'),(2c+ 1, p')) = 1 follows that 7’ is an irreducible
subrepresentation of d([v="p/,v°71p]) x o”, for a discrete series o” such
that Jord(c”) = Jord(c’) \ {(2¢ — 1,0), 2c+ 1, p')}.

Let us first assume that €,/ ((2c — 3,0'), (2¢ — 1, p')) = 1. Using Lemma

2.3, we deduce that there are irreducible representations m; and 7 in R(G)
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such that

/ c—1 1/

o' = o([p ) xm
and
o — v X,

The structural formula implies that p*(7;) contains an irreducible constituent
of the form v°71p’ ® m3. Since v°~!p’ is cuspidal, using Lemma 2.3 we get
that there is also an irreducible representation 74 such that 7 is a subrepre-
sentation of v°1p’ X my.

Using o’ < 6([v°1p',vp']) x v 1p’ x my and the Frobenius reciprocity,
we conclude that pu*(v°p’ x 7') contains §([v° o/, vp']) x v 1p @ my. Tt
directly follows that pu*(7") does not contain an irreducible constituent of
the form v°p’ ® 5, so p*(7’) contains an irreducible constituent of the form
Vc—lp/ % Vc—lp/ ® .

Let us now assume that p*(7’) contains an irreducible constituent of the
form vty x vl @ 7. By [17, Corollary 4.2], 7/ embeds into v !p’ x
o' x w. Thus, o’ embeds into v°p’ x v 1p’ x v°71p’ x 7, and by Lemma
2.3, there is an irreducible subquotient 7’ of vp’ x v~ 1o/ x 71 p such that o’
is a subrepresentation of 7' x 7. Since 7' € {L(v° o/, v 1o/ vop), v X
S([ve=tp, vep])}, it follows that ¢ embeds into an induced representation
of the form v°71p’ x 7", and, by the definition of the e-function, we have

60'/((20_37p/)7<20_ 17pl)) =L [

Proposition 3.9. Suppose that a > 1, p = p, and that p*(7) does not
contain an irreducible constituent of the form 6([v=""p, v 1p]) @ w. Also,
suppose that 2b + 1 € Jord,(c). If {[v*p,v’p]) x T contains an irreducible
tempered subquotient then x € Jord,(o) for all x € {2a —1,2a+1,...,2b—
1}, e((x-, p), (x,p)) = —1 for all x € {2a + 1,2a + 3,...,2b — 1}, and
e((2b—1,p), (20 +1,p)) = 1.

Proof. In the same way as in the proof of Proposition 3.7, we write 7 as a
subrepresentation of an induced representation of the form d; x - -+ X §;, X 7/,
where §; is an irreducible square-integrable representation, §; 2 §([v=p, v°p])
fori=1,2,...,k, and 7’ is an irreducible tempered representation such that
if p1*(7') contains an irreducible constituent of the form d ® 7 for ¢ irreducible
and square-integrable, then § = §([v°p, %p]).
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If ([v%p,1%p]) x 7 contains an irreducible tempered subquotient, then
Lemma 3.4 implies that ([p, °p]) x 7" also contains an irreducible tempered
subquotient. If 7/ is a discrete series representation, using 2b+ 1 € Jord, (o)
we conclude that an irreducible tempered subquotient of {[1%p, %p]) x 7/ is
not a discrete series representation, and the claim of the proposition follows
from [8, Theorem 3.12], the proof of which is also valid in the case a € Z.

In the rest of the proof we can assume that 7’ is a subrepresentation of
§([v="p,v%p])™ x o, for a positive integer m, and the cuspidal support con-
siderations enable us to conclude that an irreducible tempered subquotient
71 of {[1%p,1Pp]) x 7' is a subrepresentation of §([v=p,v%p])™ ! x o', for a
discrete series o’ such that Jord(o’) = Jord(o) \ {(2a — 1,p),(2b + 1,p)}.
It follows that p*({[v%p,’p]) x 7') contains &([v~p, vp])™ ™ ® o', and an
easy application of the structural formula implies that p*(o) contains an
irreducible constituent of the form &([v=""!p,%p]) ® oy such that ¢’ is an
irreducible subquotient of ([v%p, v*~1p]) x . Using [17, Proposition 7.2] we
conclude that 2b — 1 € Jord,(o), €,((2b — 1,p), (20 + 1,p)) = 1 and oy is
a discrete series. This completes the proof in the case a = b. If a < b, [8,
Theorem 3.12] implies z € Jord,(o) for € {2a — 1,2a + 1,...,2b — 3},
eo((xp), (x,p)) =—1forall z € {2a +1,2a + 3,...,2b — 3}.

It remains to prove €,((2b — 3,p),(20 — 1,p)) = —1 in the case a <
b. There is an irreducible tempered subrepresentation 7, of §([v=tp, vbp]) x
o’ such that 7 = §([v="p,%p])™ x 72. Using 2b — 1 € Jord,(o), in the
same way as in the proof of [17, Lemma 4.1] we conclude that there is a
unique irreducible subrepresentation of §([v~"p, v°p]) x o’ which contains an
irreducible representation of the form 1?px *p®@ in its Jacquet module with
respect to an appropriate parabolic subgroup. Since a < b, u*({[vp, v°p]) x
7') does not contain an irreducible constituent of the form (1°p)*™*2 @ 7', so
w*(72) does not contain an irreducible constituent of the form *p x vPp @ .

From €,((z_, p), (z,p)) = —1 for all x € {2a + 1,2a + 3,...,2b — 3},
we deduce that p*(o) does not contain an irreducible constituent of the
form vWp @ for y € {a+ 1,a+ 2,...,b — 1}. This implies at once that
w({[v*p, v°p]) x 7') also does not contain an irreducible constituent of the
form vWp @ for y € {a + 1,a +2,...,b — 1}. Using irreducibility of
§([v="p,%p]) x vWp for y € {a+1,a+2,...,b— 1}, a simple commuting ar-
gument shows that p*(¢’) does not contain an irreducible constituent of the
form vWp@mfory € {a+1,a+2,...,b—1}, 50 €, ((z-, p), (z,p)) = —1 for all
x € {2a+1,2a+3,...,2b—3}. This also implies that u*(7) does not contain
an irreducible constituent of the form vWp®m fory € {a+1,a+2,...,b—1}.
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Using 2a — 1 ¢ Jord,(o’) and a repeated application of [17, Lemma 8.1],
we obtain that there is a discrete series o’ such that ¢’ is a subrepresentation
of V% x v p x - x ’71p x ¢”. By Lemma 2.3, there is an irreducible
subquotient of v%p x v%1p x - -+ x v*~1p such that ¢’ is a subrepresentation
of 7 xa”. From ey ((z_, p), (z,p)) = —1forall z € {2a+1,2a+3,...,2b—3}
follows at once that © =2 ([v%p, 1*~1p]).

In the same way as in the proof of Lemma 3.6 one can see that §([v°p, %p]) x
([vep, v*~1p]) is irreducible, so 7 is a subrepresentation of

3([v"p, vp)) x [V p, "7 p]) 3 0" = ([ p, " p]) X O([v 00, v0p]) 3 0,
and there is an irreducible tempered subrepresentation 73 of §([v=°p, v p]) x 0"
such that 7, is a subrepresentation of ([%p, v*~1p]) x 73. Note that 2b — 1 ¢
Jord,(c"), so [14, Theorem 6.1] implies that v°p x ¢ is irreducible. Thus,
we have

5 = 8([vp, %)) x 0" — 6([v " p, vp]) x vbp X o
= 5[ p, ) x o x o = Pp x S([vTp,v0p]) X 0",
so there is an irreducible subquotient oy of 6([v="*1p, %p]) x ¢” such that 73 is
a subrepresentation of 1°p x 5. Embedding 75 < 1°p x 6([v=0 1 p, v%p]) x "
implies that p*(73) contains an irreducible constituent of the form v°px 1 p®
7. Thus, p*(o3) contains an irreducible constituent of the form 1°p®m. Since
2b+1 ¢ Jord,(¢”) and 6([v="p, "~ 1p]) x 0" is a length two representation,
it follows that there are exactly two mutually non-isomorphic constituents
of the form °p ® 7 appearing in §([v=""1p,v°p]) x ¢, and each of them ap-
pears there with multiplicity one. Now, using 2b—1,2b+ 1 ¢ Jord,(¢”) and
[13, Theorem 2.1|, we obtain that oy is a discrete series subrepresentation
of §([v=t"p,vbp]) x o”. Thus, there is an irreducible tempered subrepre-
sentation 74 of 6([v="*1p, *71p]) x 0" such that o, is a subrepresentation of
Voo X 7y
From embeddings

7 — ([Vp, Vb_lp]> X 13 — ([Vp, I/b_lp]> x VPp % oy

and Lemma 2.3, we deduce that there is an irreducible subquotient m; of
([v%p, "~ 1p]) x vPp such that 7, is a subrepresentation of m; x gy. It can
be directly seen that every irreducible subquotient of ([v%p, v*~1p]) x %p is
isomorphic either to L(v%p, v*p, ... 17 2p, 5([°1p, vbp])) or to ([v2p, 10p)).
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Suppose that m = L(v%p, v p, ..., v272p, 5([v*"1p, %p])). Note that it
can be seen in the same way as in the proof of Lemma 3.6 that the induced
representation L(v%p, v* lp, ... 1°72p) x vbp is irreducible. We have the
following embeddings and isomorphisms:

T L(p, v p, P2 5([ p, 10p])) X o
= Lwp, v p, . P 2p) x 0([V"p, vPp]) x Pp xmy
= L p, v p, . 02 p) x VP < 6([0 T p, v p]) X Ty

a+1 Vb_2

— L(v'p, v p, ..., p) x vPp x Pp x v p X 7y

a+1 Vb72

=~ o x Pp x L(v*p, v p, ..., p) x V" p X7y

This implies that 4*(72) contains an irreducible constituent of the form 1°p x
vPp ® 7, a contradiction. Thus, 7 = ([v%p, 1p]).

Note that Jord,(c2) contains {20—3,2b—1,2b+1} and €,,((2b—1, p), (2b+
1L,p) =1 Ife,((20 —3,p),(2b — 1, p)) = 1, there is an irreducible represen-
tation 7, such that o, is a subrepresentation of *~!p x m,. This yields

9 > [V 0, V0p]) Xy = ([, V0p]) x VP p X T

Since a < b—1, it can be seen in the same way as in the proof of Lemma 3.6
that ([v%p, 1%p]) x v*~1p is irreducible, so 75 is a subrepresentation of

VT < (v, vPp]) X,

a contradiction. Thus, we have €,,((2b— 3, p), (20 — 1, p)) = —1 and Lemma
3.8 implies that p*(74) does not contain an irreducible constituent of the form
VWl x v lp e

Following the same lines as in the proof of Lemma 3.6, we obtain

1 2= 5([v "o, v )™ ) = O([v o, v p])™ < ([v7p, 0p]) X o
= ([v?p, v°p]) x 8([v="p,v"p])™ x 0.

Since 2b + 1 € Jord,(o3), the induced representation d([v="p, v p])™ x 73 is
irreducible. It follows that there is an irreducible representation 7 such that
the Jacquet module of d([v"p, v%p])™ x o, with respect to an appropriate
parabolic subgroup contains an irreducible quotient of the form 1*p ® --- ®
’p ® 7, where v°p appears 2m + 1 times. Using the Frobenius reciprocity,
together with Lemma 2.3, we obtain that there is an irreducible representa-
tion 7’ such that §([v°p, °p])™ x 04 is a subrepresentation of (v°p)?™+1 x 1.
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Since p* (§([v=p, Pp])™ X 09) contains (1°p)*™ @7’ and 1Pp® 74 is a unique
irreducible constituent of p*(o3) of the form 1’p ® 7, an easy application of
the structural formula implies 7 = §([v="p, P71 p])™ X 74.

Consequently, 71 is a subrepresentation of

Vap N, Vb_lp % pr % (pr)2m+1 % 5([1/—b—|—1107 Vb—lp])m X Ty,

and the Jacquet module of 71 with respect to the appropriate parabolic sub-
group contains

Vip® - @1 p @ (V)P @ 6([v v )™ X (1)

On the other hand, since 7 is an irreducible subquotient of {[1%p, vp]) x 7/
and 7’ is a subrepresentation of J([v="p, v%p])™ x o, the Jacquet module of
([vep, v°p]) x 6([v="p,vp])™ x o with respect to the appropriate parabolic
subgroup also contains (1).

From €,((2b — 1,p),(2b + 1,p)) = 1 follows that there is an irreducible
tempered subrepresentation 75 of §([v="1p, 1*~1p]) x oy such that u*(o) con-
tains 1°p ® 75, and 1’p ® 75 is a unique irreducible constituent of the form
o @ mof p*(o).

By the transitivity of Jacquet modules, the Jacquet module of {[1%p, 1°p]) x
§([v=p,"p])™ x o with respect to the appropriate parabolic subgroup con-
tains an irreducible representation of the form v% ® --- ® v*~1p ® 7, with
71 such that

pr(m) > (e @ ol e, v )™ .
Since o is a discrete series, using Lemma 3.1(3) we conclude
m < vPp x 6([vlp, vPp]))™ % 0.
The structural formula implies
3" o, ") oy < ([T p, v p])™ s

It directly follows that both induced representations 6([v =" p, 1>~1p])™ x 74
and 0([v="p, P~ 1p])™ x 15 are irreducible. If *(75) contains an irreducible
constituent of the form v*~1p x v*=1p @ 7, then p*(6([v=""1p, 2~ 1p])™ x 75)
contains an irreducible constituent of the form (v*~!p)*"*? @ 7, but using
the structural formula, together with the description of p*(74), we obtain
that p*(0([v=""p, "= 1p])™ x 74) does not contain an irreducible constituent
of such a form. Lemma 3.8 implies €,((2b — 3, p), (2b — 1,p)) = —1 and the
proposition is proved. ]
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Theorem 3.10. Suppose that a > 1, p = p, and that p*(7) does not con-
tain an irreducible constituent of the form §([v="p, v 1p]) @ m. Then
([vep, v°p]) x T contains an irreducible tempered subquotient if and only if
x € Jord,(o) for allz € {2a —1,2a+1,...,20 — 1}, &, ((z_, p), (z,p)) = —1
for all x € {2a+ 1,2a+ 3,...,2b — 1}, and one of the following holds:

(1) 2b+1 ¢ Jord,(0) and p* (1) does not contain an irreducible constituent
of the form §([v="p,v°p]) @ =,

(2) 2b+1 ¢ Jord,(o), (1) contains an irreducible constituent of the form
§([v=bp,vbp]) @71, and if m stands for the largest integer such that p*(7)
contains an irreducible constituent of the form §([v="p, v°p])™ @ 9, then
w* (1) contains an irreducible constituent of the form (V°p)*™ @ s,

(3) 2b+1 € Jord,(0) and €,((2b —1,p),(2b+1,p)) = 1.

Furthermore, if {[v%p,v°p|) x T contains an irreducible tempered subquotient
then it contains an irreducible tempered subrepresentation.

Proof. The necessity part follows from Propositions 3.7 and 3.9. To prove
the sufficiency part, we use an inductive procedure based on Lemma 3.6.
By the classification of tempered representations, there is an ordered n-tuple
(11, T2, . .., Tn) of irreducible tempered representations 71, 7s,...,7, € R(G)
such that 7 = 7,, 7y is a discrete series, and for ¢ = 2,3,...,n there is
an irreducible square-integrable representation ¢; € R(GL) and a positive
integer m; such that 7; is a subrepresentation of 6;" x 7,1, and d§; 2 0y
for j,k € {2,3,...,n}, j # k. If there is an i € {2,3,...,n} such that
8 = 6([v="p, %p]), we can take i = n. Note that §; % §([v=2TLp, v* 1p]) for
alli€{2,3,...,n},and 1, = 0.

Suppose that z € Jord,(o) for all z € {2a —1,2a +1,...,20 — 1}, and
(2, p), (z,p)) = —1forall x € {2a+1,2a+3,...,20 — 1}.

Let us first assume that 20 + 1 ¢ Jord,(o). By [8, Theorem 3.4], there
is a unique discrete series subrepresentation 71 of ([1%p,1p]) x 71, and
Jord(tM) = Jord(m) \ {(2a — 1,p)} U {(2b+ 1,p)}. Let us assume that
60 2 6([vtp, vbp]). Tt follows that 6, x 7™ reduces if and only if 5 x7; reduces
and Lemma 3.6 implies that ([v%p,%p]) x 75 contains a unique irreducible
tempered subquotient 7(2), which is a subrepresentation. Also, if n > 2, since
6o & {0([v= 1 p, o)), 6([vbp, 1Pp])}, 03 x 72 reduces if and only if &5 x 7
reduces. Repeating this procedure, we obtain that ([v%p,%p]) x T contains
an irreducible tempered subrepresentation.
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If 5, = 6([v=p,v’p]), in the same way as in the previously considered
case we conclude that ([v%p,%p]) x 7,,_; contains an irreducible tempered
subrepresentation 7"~ . Suppose that p*(7) contains an irreducible con-
stituent of the form (v°p)?™ ® 7. It can be seen in the same way as in
the proof of [17, Lemma 4.1 that 7 is a unique irreducible subquotient of
§([v=tp, vbp])™ x 7,,_; which contains an irreducible constituent of the form
(V°p)*™ @ in the Jacquet module with respect to the appropriate parabolic
subgroup.

The induced representation 6™ x 7"~ is an irreducible tempered sub-
representation of ([v%p,%p]) x 6™ x 7,,_;. By Lemma 2.3 there is an irre-
ducible subrepresentation 7/ of 6™ x 7,,_; such that 67 x 7"~ embeds into
([vep, vPp]) x 7. Let x = 0isa < b, and z = 1is a = b. Then p* (67 x 7"~ 1)
contains an irreducible constituent of the form (v°p)?™+* @ 7, and it follows
that 4*(7') has to contain an irreducible constituent of the form (vp)*™ @,
so T =T

Let us now assume that 2b+1 € Jord,(c). By [8, Theorem 3.12], there is
a unique irreducible tempered subrepresentation 7 of ([v%p, 1%p]) x 71, and
for § 2 6([v=""'p, v 'p]) the induced representation § x 7™ reduces if and
only if § x 7, reduces. If &, % 6([v="p,%p]), the claim follows in the same
way as in the previously considered case.

It remains to consider the case 6, = §([v="p, v*p]), and let 7"~V stand for
a unique irreducible tempered subrepresentation of ([v%p, 1%p]) x 7,,_;. From
2b + 1 € Jord,(o) follows that 7 = §([v="p,"p])™ x 7,—1. The induced
representation &([v"p, 1%p])™ x 7"~V is an irreducible tempered subrepre-
sentation of ([1%p, °p]) x 6([v="p,vp])™ x 7,,_1, and the claim follows. [

In the rest of this section we discuss irreducible tempered subquotients

in the case a = %

Proposition 3.11. Suppose that p = § and 2b+1 ¢ Jord,(c). If ([vzp, v*p])
T contains an irreducible tempered subquotient, then the following holds:

(1) x € Jord,(o) for all x € {2,4,...,20 -1}, e,((z_, p), (x, p)) = —1 for all
ze{4,6,...,2b— 1},

(2) if b > %, then €,(2,p) = —1,
(3) if w*(7) contains an irreducible constituent of the form §([v="p, 1°p]) @y,

and m stands for the largest integer such that p*(7) contains an irre-
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ducible constituent of the form §([v=bp, V°p])™ & 9, then u*(T) contains
an irreducible constituent of the form (1°p)*™ @ 3.

Proof. We write 7 as an irreducible subrepresentation of d; X - -+ X & % 7/,
for irreducible square-integrable 4y, ...,d;, € R(GL), & % 6([v"p,vbp]) for
i=1,...,k, and an irreducible tempered representation 7/ € R(G) such that
if p1*(7') contains an irreducible constituent of the form d ® 7 for ¢ irreducible
and square-integrable, then § = 6([v=°p, %p]).

In the same way as in the proof of Proposition 3.7 we deduce that if
([vzp, v*p]) ¥ 7 contains an irreducible tempered subquotient, then ([v2 p, 12p]) x
7/ also contains an irreducible tempered subquotient.

If 7 is a discrete series, then the claim of the proposition follows from [8,
Proposition 3.7]. Let us assume that 7 is a subrepresentation of §([v~=°p, 1%p])™
o, for a positive integer m. If b > %, the rest of the proof follows the same
lines as the one of Proposition 3.7.

Let us discuss the case b = % Using the cuspidal support considerations
we get that there is a discrete series o’ € R(G), Jord(o’) = Jord(o)U{(2,p)},
such that an irreducible tempered subquotient 7 of V3 p X T is isomorphic
to 8([v"2p, v2p])™ x 7", for an irreducible tempered subrepresentation 7 of
(51 X"'X(SkX]U/.

It follows that p*(v2p x §([v~2p, v2p])™ x &) contains &([v~2p, vz p])™ X
dp X -+ X 0 ® o’ Since p*(o) does not contain an irreducible constituent
of the form v*p @ m for = € {%, —%}, we obtain that ¢’ is an irreducible
subquotient of v2p x . As in [8, Lemma 3.6(2)], we conclude that o is a
subrepresentation of v2p x . Consequently, p*(7") contains an irreducible
constituent of the form V%p@)m, so p*(7) contains an irreducible constituent
of the form (v2p)?™ ! @ m,. This implies that p*() contains an irreducible
constituent of the form (V%p)Qm ® 73, and the proposition is proved. O]

The following lemma can be proved in the same way as Lemma 3.8, details
being left to the reader.

Lemma 3.12. Let o' € R(G) denote a discrete series, and let p' € R(GL)
stand for an irreducible cuspidal self-contragredient representation. Suppose
that Jord,(o') contains {2,4} and €,((2,0'),(4,p)) = 1. Let 7' denote
an irreducible tempered representation such that o' is a subrepresentation
of V%pl X 1'. Then €,/(2,p") =1 if and only if u*(7') contains an irreducible
constituent of the form V%pl X l/%p/ ® m or, equivalently, if and only if 7'
embeds into an induced representation of the form l/%p/ X I/%pl X T
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Proposition 3.13. Suppose that p = p and 2b+1 € Jord,(o). If ([v2p, v"p]) x
T contains an irreducible tempered subquotient, then one of the following
holds:

(1) b> 3, x € Jord,(o) forz € {2,4,...,2b—1}, &,((z_, p), (z,p)) = —1 for
allz € {4,6,...,20—1}, €,((2b—1, p), (20+1,p)) = 1, and €,(2, p) = —1,

(2) b= 3 and €,(2,p) = 1.

Proof. Similarly as in the proof of Proposition 3.11, we suppose that ([V%p, VPp])
T contains an irreducible tempered subquotient and write 7 as an irreducible
subrepresentation of §; X - - - xd;, x7’, for irreducible square-integrable d1, ..., 0 €
R(GL), §; % §([v=p,v%p]) for i = 1,...,k, and an irreducible tempered
representation 7 € R(G) such that if p*(7') contains an irreducible con-
stituent of the form 6 ® m for § irreducible and square-integrable, then

6 = 6([v="p,1"p)).

In the same way as in the proof of Proposition 3.7 we obtain that (2 p, 7 p]) »
7' contains an irreducible tempered subquotient. If 7/ is a discrete series, the
claim of the proposition follows from [8, Propositions 3.13, 3.14].

It remains to discuss the case 7/ = §([v=p,v%p])™ x o, for m > 1. If
b > %, the claim of the proposition can be proved following the same lines as
in the proof of Proposition 3.9, so we consider the case b < % Let 7 denote
an irreducible tempered subquotient of ([v2p, 1%p]) x 7.

Let us first assume that b = 5. Then 7’ is a subrepresentation of (5([1/_% P,
vap])™ 1 xo’, for a discrete series o It follows that p* (v2 px ([ 2 p, v2 p])™ x
o) contains d([v"2p,v2p])™ ™ @ ¢’. Since o is square-integrable, it follows
that (o) has to contain an irreducible constituent of the form y%p ®m. By
[17, Proposition 7.4] we have €,(2, p) = 1.

It remains to consider the case b = % Using the cuspidal support con-
siderations, we get that 7; is a subrepresentation of an induced representa-
tion of the form 8([v=2p,v2p])™*! x oy, for a discrete series o such that
Jord(oy) = Jord(o) \ {(4, p)}. Frobenius reciprocity implies

1 3

w([vep,vapl) x 8([v "2 p,v2p))™ 3 0) = 8([v "2 p,v2p))"H @ o,

and in the same way as in the proof of Proposition 3.9 we deduce that
1

{2,4} C Jord,(0), €,((2,p), (4,p)) = 1, and o is a subquotient of vzp x o',

for a discrete series o’ such that o is a subrepresentation of §([v=2p, 12 p]) x 0"
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Then 2,4 ¢ Jord,(¢'), and by [8, Lemma 3.6], 0y is a subrepresentation of
vipx o

We denote by 7”7 an irreducible tempered subrepresentation of 5([1/’% 0,
v2p]) x o such that o embeds into v3p x 7.

There is an irreducible tempered subrepresentatlon Ty of &([v %p, v3p]) %
oy such that 7, is isomorphic to 8([v=2p, v2 p])™ x 75. Since p*(([v2p, v2p]) x
7/) does not contain an irreducible constituent of the form (12 )22 @ 7, it
follows that p*(73) does not contain an irreducible constituent of the form
Vs p X Vi pRT.

From

3 3

T 0([v 2 p,vep)) x vipxa’ Zvip x 8 2p,v2p)) 1o

Lemma 2.3 and Theorem 2.2 (1), we get that there is an irreducible subrep-

resentation 73 of 8([v =2 p, v2p]) X o’ such that 7 embeds into 1/2/) XT3, Since

(1 (72) does not contain an irreducible constituent of the form Vi p X Vi PR,

we deduce that 73 is not a subrepresentation of an induced representation of

the form 6([v2p, v2p]) x 8([v2p,vip]) x 7. Also, from 2 ¢ Jord,(o’) we get

that u*(73) does not contain an irreducible constituent of the form v2p ® .
By [14, Theorem 6.1}, Vi p x ¢’ is irreducible. This leads to:

vipx (v 2p,v2p]) %o
and Lemma 2.3 implies that there is an irreducible subquotient o5 of § ([I/_%,O,
v2p]) x o’ such that 73 embeds into V3p X 0y, Since p*(73) contains an irre-
ducible constituent of the form V%,O X v p®m, it follows that p*(o9) contains
an irreducible constituent of the form v2p ® w. Using [13, Theorem 2.1],
together with Theorem 2.2 (1), we get that oy is a discrete series subrepre-
sentation of §([v2p, v2p]) x o, and let 74 denote an irreducible tempered
. 1 / . 3

subrepresentation of §([v~2p, vzp]) x o' such that oy embeds into vzp x 74.

Let us now prove that p*(74) does not contain an irreducible constituent
of the form V%p X V%p ® 7, which is, by [17, Corollary 4.5] equivalent to the
fact that 74 does not embed into v2 p X Ve p X o'. Otherwise, oy embeds in

3 1 1 , o : . :
vzp X vzp X vzp x o', and Lemma 2.3 implies that there is an irreducible
3 1 1
subquotient m; of v2p X V2 p X V2 p such that oy embeds into m; xo’. It is easy
. 1 1 3

to see, using Lemma 3.1(3), that m; = vzp x §([v2p,v2p|). Thus, 73 embeds
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into y%p X 1/%,0 X 5([V%p, y%p]) X o', so there is an irreducible subquotient my
of v3p x v2p x §([v2p, v2p]) such that 73 embeds into 7 x ¢’. Since p*(73)
does not contain an irreducible constituent of the form vz p ® m, it follows
that 75 2 6([v2p, v2p]) x 0([v2p, v2p]), a contradiction.
From

Ty < y%p X T3 < y%p X V%p X 09,
we see that there is an irreducible subquotient 73 of vz p X I/%p such that 7
embeds into w3 X 0. If 75 = §([v2p, 12 p]), we obtain

Ty <> (5([V%p, V%p]) X 09 <> 5([V%p,ygp]) XVIPpXN Ty < VIpX VEpX VIp X Ty,

a contradiction. Thus, 7 is a subrepresentation of ([v2p,v2p]) x ga. This
leads to an embedding

n = ([2p,v2pl) x 8([v"2p,v2p])™ X 0.

In the same way as in the proof of Proposition 3.9 we deduce that 7 is a
subrepresentation of

vep x (v2p)?" 2 x 3([v 2 p,vEp))™ X 7,
so the Jacquet module of 71 with respect to the appropriate parabolic sub-
group contains

vip® (v2p)"™2 @ 6([v "2 p, w2 p))™ X 7.

Since 71 is an irreducible subquotient of ([v2p, v2p]) x 8([v"2p, v2p])™ % o,
and I/%p®7'” is a unique irreducible constituent of u*(o) of the form Vi PRT,
following the same lines as in the proof of Proposition 3.9 we obtain that

7" = 74. Thus, p*(7") does not contain an irreducible constituent of the
form y%p X V%p ® 7, and Lemma 3.12 implies €,(2, p) = —1. This completes
the proof. O

Theorem 3.14. Suppose that b—% s a nonnegative integer and p = p. Then

<[V%p, VPp]) X T contains an irreducible tempered subquotient if and only if one

of the following holds:

(1) b= 3, 2 ¢ Jord,(0), and if u*(7) contains an irreducible constituent of
the form (5([1/_%,0, V%p]) ® m, and m stands for the largest integer such
that ju* (1) contains an irreducible constituent of the form 6([v=2 p, v2 p])™®

o, then p*(t) contains an irreducible constituent of the form (v2p)?™
URY
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(2) b=1,2¢€ Jord,(o), and €,(2,p) =1,
(3) b> 1 20+1¢ Jord,(o), x € Jord,(c) for all x € {2,4,...,2b— 1},

e(,((xQ,, p),(x,p)) =—1 forallx € {4,6,...,20—1}, €,(2,p) = —1, and if
w* (1) contains an irreducible constituent of the form 5([v="p,°p]) @ 71,
and m stands for the largest integer such that u*(7) contains an irre-
ducible constituent of the form d([v=p, vp])™ & mq, then u*(T) contains

an irreducible constituent of the form (V°p)*™ @ 73,

(4) b > 3,20+ 1 € Jord,(0), x € Jord,(0) for all x € {2,4,...,2b — 1},

e (2o, p), (x,p)) = =1 for all x € {4,6,...,2b— 1}, €,((2b — 1, p), (2b +
L,p)) =1, and €,(2,p) = —1.

Furthermore, if ([v2p,vPp]) x T contains an irreducible tempered subquotient
then it contains an irreducible tempered subrepresentation.

Proof. The proof can be obtained following the one of Theorem 3.10, using
Propositions 3.11 and 3.13, together with [8, Theorems 3.8, 3.15, Proposi-
tion 3.13]. O

4 The case a >1

Throughout this section, a and b denote real numbers such that b — a is a
non-negative integer, 2a € Z, and a > 1.
We determine when the induced representation ([v%p, %p]) x 7 reduces.

Lemma 4.1. Suppose that T is a subrepresentation of §([v=°p, v*=1p]) x 7y,
for an irreducible tempered representation 1. Then the induced representa-
tion vp x T contains L(5([v=p,v*1p]); 1).

Proof. Let us first suppose that §([v="!p, v271p]) x 7, is irreducible. Then
in R(G) we have

L pv* A)im) < ("o, v 1 p)) x v
=1 x 6([v "o, v ) x T 2 vtp X T

Now we suppose that §([v="1p, v2715]) x 7 reduces. It follows that p = p
and 2a+1 ¢ Jord, (o). Using a repeated application of [15, Lemma 2.1] we ob-
tain that there are irreducible square-integrable representations d1,...,d; €
R(GL) and an irreducible tempered representation 75 € R(G) such that

T’éélx---xdkmrg,
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and 7 is a subrepresentation of an induced representation of the form d;.1 X
- X 0; X o, for irreducible square-integrable representations dgi1,...,0; €
R(GL) such that §; 22 6, for i,j € {k+1,...,1}, i # j, and §; X o reduces
for i € {k+1,...,1}. Obviously, we can take ;.1 = §([v"p, 271 p]), and
there is an irreducible tempered subrepresentation 73 of dp0 X -+ X § X &
such that 7 is a subrepresentation of 6([v=*"p, v !p]) x 13. Also, it follows
that 71 is a subrepresentation of d; X - -+ X Jp X 73.
It is proved in [15, Lemmas 2.2, 2.3] that L(6([v=%p, " 'p]);73) is an
irreducible subquotient of v%p x 5. In R(G) we have

L(S([vp, v 1p)); 1) <61 x -+ x 6 x 8([v P, v 1p]) % 73.

Thus, there is an irreducible subquotient 7 of 6([v~p, v*~!p]) x 73 such that
L(6([v=p,v*1p]); 71) is contained in §; X -+ X 0, X 7. An easy application
of the structural formula implies that © = L(6([v=%p, v 1p]); 73). This leads
to

L6([v™p, v ' p); 1) < 61 x - -+ x 0 x L(6([v™"p, v* 1)) 73)
<Oy X oo X O XV X Ty

=V X0 X X0 XTo=1" XT.
This ends the proof. m

Corollary 4.2. Suppose that there is an irreducible tempered representation
71 such that T is a subrepresentation of §([v="p, v 1p]) x 7. Then the
induced representation ([v2p,v°p]) x T reduces.

Proof. Using the previous lemma, in the same way as in the proof of [7,
Proposition 3.5] we deduce that ([v%p,%p]) x T contains both irreducible
representations

Lw™p,...,v™%;7), L(v™"p,...,v "5, 6([v"p, v* ' p)); 1)
so it reduces. O]

Proposition 4.3. Suppose that p is not a self-contragredient representation.
Then the induced representation ([v%p, 1°p|) x T reduces if and only if u* (1)
contains an irreducible constituent of the form d([v=""p, v 1p]) @ .
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Proof. If u*(7) contains an irreducible constituent of the form ¢ ([~ p, 71 p])®
7, the claim follows from Lemma 2.4 and Corollary 4.2. Let us now sup-
pose that p*(7) does not contain an irreducible constituent of the form
S([v=op, v 1p]) @ mr, and let L(dy,...,0,;7') denote an irreducible non-
tempered subquotient of ([v%p,vbp]) x 7, where &; = §([v%p, v¥ip]) for i =
1,..., k.

If x; = y; for all i € {1,2,...,k} it follows from Lemmas 2.6(1) and 3.2
that k=b—a+iand 7" = 7.

Suppose that x;, = —y, — 1 and xy # yg. From Lemma 2.6(2) follows that
ke{l,2,...,b—a+ 1}, and there is an irreducible tempered representation
71 € R(G), such that 7 is a subrepresentation of

(5([1/_b+kﬁ, Vb_kﬁ]) X 71

and 7' is a subquotient of {[v%p,*~*p]) x 7. Since pu*(7) does not contain
an irreducible constituent of the form &([v="'p,v* 1p]) @ m, we deduce k <
b — a + 1, which contradicts Lemma 3.2.

Since by Lemma 3.2 every irreducible subquotient of ([v%p,1%p]) x 7T is
non-tempered, we obtain that every irreducible subqotient of ([v%p, v°p]) x T
has to be isomorphic to L(v="p,v="*1p, ... v=%p; 7). Using [7, Lemma 3.2]
we get that L(v="p,v="*1p, ... v7%p; 7) appears in the composition series of
({[v*p,v°p]) x 7 with multiplicity one, so {[%p,v°p]) x 7 is irreducible. [

Lemma 4.4. Suppose that ¢ and d are such that 2c, 2d are positive inte-
gers, ¢ > 1, and d — ¢ is a positive integer. Let py € R(GL) denote an
irreducible self-contragredient representation. Let 7 € R(G) denote an irre-
ducible tempered subrepresentation of 61 X -+ X 0 X o1, for discrete series
81,...,0r € R(GL) and o1 € R(G). Suppose that §; 2 6([v= p1, v 1 p1]),
fori=1,2,...k, x € Jord, (01) for all v € {2c —1,2c +1,...,2d — 3},
2d —1 ¢ Jord, (01), and €, ((x — 2,p1), (x,p1)) = —1 for all x € {2c +
1,...,2d — 3}. Suppose that p*(m1) contains an irreducible constituent of the
form 6([v=py,v? 1 p1]) @ 7, and let m denote the largest integer such that
w*(m1) contains an irreducible constituent of the form §([v=py, v3¥ 1p])" ®
. Suppose that p*(m) does not contain an irreducible constituent of the
form (v¥1p1)>™ @ . Then there is an irreducible tempered representation
7 € R(G) such that ([v°p1, v%p1]) x 71 contains L(5([v=%p1, v¥ p1]); 7).

Proof. Let 7/ denote an irreducible tempered representation such that 7
embeds into §([v=4p;, v p])™ % 7{. By Theorem 3.10, there is an irre-
ducible tempered subrepresentation of ([vpy, ¥4 1p;]) x 7{, which we denote
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by 7. Note that §([v=%1p;, 1971 p])! x 75 is irreducible for a positive integer
[, and let 75 = §([v=4 L py, v4 71 pi )™ X 7 (we omit §([v=4 L py, vd1p ] )™t
if m=1).

We have the following embeddings and an isomorphism:

LS(v~pr, v pi))im) = (v~ pr, vt pa]) x 0([v pr, v )

= 5( v o) X o[ v ) a7

— 6([ ™, v p )™ x vy X T
Lemma 2.3 implies that there is an irreducible subquotient 7 of v=%p; %
75 such that L(5([v=%p1, v 1p1]); 72) is a subrepresentation of §([v=4t1p;,
v )™y Since p* (L(5([v=%p1, v4 1 p1]); 72)) contains 6 ([v =%y, v¥ 1 p] )@
Ty, Ty is tempered and p*(745) does not contain an irreducible constituent of
the form §([v=%1p;, v4 1 py]) @, it follows that u* () contains an irreducible
constituent of the form v=%p; @ m, so 71 = L(v=%p1;75).

Since p*(71) does not contain an irreducible constituent of the form ¢ ([ =41 py,

v lp )@, it directly follows that L(v~¢py, 71) is a unique non-tempered ir-
reducible subquotient of v%p; x7{. Using 2d—1 ¢ Jord,, (1) and the cuspidal
support considerations we conclude that there are no irreducible tempered
subquotients of v%p; x 7{. Thus, v9p; x 7] is irreducible. This leads to
o) xem

) x vipy T,

L(v™py; 1) = v%p1 x 1) — v x ([v°p1,v
= ([vopr, v o)) x vy = ((Vopr, v
Using Lemma 2.3 again, we obtain that there is an irreducible subquotient
7y of ([Vp1, v p1]) x v¥py such that L(v~pi;75) is a subrepresentation of
7o X 7. Since p*(L(v=4py;73)) > v %p @ 75 and 7] is tempered, we deduce
™o = ([v°pr, v7p1]).

In the proof of Lemma 3.6 we have seen that the induced representation
S([v=py, v p1]) x ([v°p1, vepy] is irreducible, so we have

L(S([v=pr, " pi])im2) == ([ pr, v o)™ x (oo, i) o7
= ([vpr, v pal) x ([ pr, v pu])™ .

Now there is an irreducible subquotient 73 of d([v=4"1py, v4 1pi])™ x 7/ such
that L(6([v=%p1, v 1p1]); 7o) is a subrepresentation of ([°p;, v%p1]) X 3.

In R(G) we have 6([v=%py, v 1p)™ x 7] = 71 + 7_1, where 7_; is an
irreducible tempered representation which embeds into an induced represen-
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tation of the form (¥4 1p;)?™ x 7y, If 3 = 7_1, we get

L(S([v™p1, v 1)) ) = ([Vopr, v7pa]) x (V¥ p1)*™ x

=~ (V5 p)?™ x ([Vopr, v0pr]) % T

Let x = 1if c = d—1, and let = 0 otherwise. Frobenius reciprocity implies
that pu*(L(6([v=%p1, v p1]); 2)) contains an irreducible constituent of the
form (v41p;)?m™te @ .

Using 75 & §([v=%py, v¥ 1 py] )™=t x 74, together with the structural for-
mula and the definition of 75, we deduce that if p*(75) contains an irre-
ducible constituent of the form (v?1p;)! @ 7 then | < 2m + z — 2. Since
L(§([v=%py, v 1 p1]); 72) is an irreducible subquotient of §([v=4p1, 4 1p1]) %
9, using the structural formula we see at once that if p*(L(5([v=%p1, v 1p1]); 72))
contains an irreducible constituent of the form (v4~1p;)! ® 7 then | < 2m +
x — 1, a contradiction. Thus, w3 = 71 and L(5([v=%py, v 1p1]); 72) is a sub-
representation of ([vpy, v9p1]) % 71. O

Theorem 4.5. Suppose that a > 1 and p = p. The induced representation
([vep, v°p]) x T reduces if and only if one of the following holds:

(1) p*(7) contains an irreducible constituent of the form d([v="p, " 1p])®
.

(2) We have x € Jord,(o) for all x € {2a —1,2a+1,...,20+ 1}, e,((2-, p),
(x,p)) =—1 forallx € {2a — 1,2a + 1,...,2b — 3}, and €,((2b — 1, p),
(2b+1,p)) = 1.

(3) We have x € Jord,(o) for allx € {2a —1,2a+1,...,2b— 1}, e,((z-, p),
(x,p)) = =1 forallz € {2a—1,2a+1,...,20—3}, 2b+1 ¢ Jord,(0), and
if w* (1) contains an irreducible constituent of the form &([v="p, v°p])@m,
and m stands for the largest integer such that p*(7) contains an irre-
ducible constituent of the form d([v=p, v p])™ & my, then u*(T) contains
an irreducible constituent of the form (v°p)*™ ® s,

(4) There is a ¢ € {a,a+1,...,b— 1} such that x € Jord,(o) for all x €
{2a—1,2a+1,...,2c—1}, e,((z_, p), (z,p)) = —1 for all x € {2a+1, 2a+
3,...,2c—1}, and if 2c+1 € Jord, (o) then €,((2c—1,p), (2¢+1,p)) = 1.

Proof. If (1) holds, ([v%p,v°p]) x T reduces by Corollary 4.2. If either (2)
or (3) holds, it follows from Theorem 3.10 that ([p,v°p]) x T contains an
irreducible tempered subquotient, so it reduces.
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Let us now suppose that (4) holds. If ([v%p, v p]) X 7 contains an irre-
ducible tempered subquotient, we denote it by 71, and it can be seen in the
same way as in the proof of [7, Proposition 3.5] that ([v%p, °p]) x T contains
L(v=p,...,v=¢"1p;7), so it reduces.

If ([v%p,v°p]) x 7 does not contain an irreducible tempered subquotient,
using Theorem 3.10 we obtain that 2c + 1 ¢ Jord,(o), p*(7) contains an
irreducible constituent of the form &([v=¢p, v°p]) ® 71, and if m stands for the
largest integer such that p*(7) contains an irreducible constituent of the form
d([v~p,v°p])™ @ ma, then p*(7) does not contain an irreducible constituent
of the form (v°p)*™ @ 3. Now Lemma 4.4 implies that there is an irreducible
tempered representation 7, € R(G) such that ([v%p,v“Tp]) x 7 contains
L(5([v="1p,vp]); 2). Using an inductive application of Lemma 2.7, we
deduce that

Lw™p,. ., v 2p,8([v™ p, o)) 7o)

is an irreducible subquotient of ([%p, v°p]) x 7, so {[%p, v°p]) x T reduces.

Let us now assume that neither of (1), (2), (3), (4) holds. Then ([vp, v°p]) x
7 does not contain an irreducible tempered subquotient. Let L(6y, ..., d; 7’
denote an irreducible non-tempered subquotient of {[%p, v°p]) x 7, and §;
I([v"ip,v¥ip]) fori=1,..., k.

If x; = y; for all i € {1,2,...,k}, using Lemma 2.6(1) we get that there
isacée€ {a—1,a,...,b— 1} such that 7’ is an irreducible subquotient of
([v®p,v°p]) x 7. Theorem 3.10 implies that ¢ = a — 1 and 7/ = 7.

Suppose that there is ¢ € {1,2,...,k} such that x; # vy;. Lemma 2.6
implies ¢ = k and 2, = —y; — 1. Since p*(7) does not contain an irreducible
constituent of the form §([v=*"'p, v 1p|) @ m, in the same way as in the
proof of Proposition 4.3 we deduce that £ < b— a and there is an irreducible
tempered representation 7y € R(G) such that 7 is a subrepresentation of

~—

I

S([v"*p, " Fp]) x 7y

and 7’ is an irreducible tempered subquotient of {[1%p,v**p]) x 7. It di-
rectly follows that there are irreducible square-integrable representations
d,...,0, € R(GL) such that 7 is a subrepresentation of ] X --- X §; X 0.
Using a < b — k and Theorem 3.10, we conclude that x € Jord,(o) for
all v € {2a — 1,2a + 1,...,2b — 2k — 1}, e,((z-, p), (x,p)) = —1 for all
re{2a+1,...,2b — 2k — 1}, and if 2b — 2k + 1 € Jord, (o) then €,((2b —
2k—1,p),(2b—2k+1,p)) = 1. Since (4) does not hold, we obtain b —k = b,
which is impossible.
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Thus, every irreducible subquotient of ([v%p,%p]) x T is isomorphic to
L(v=bp,v=p ... . v7%;7), and in the same way as in the proof of Propo-
sition 4.3 we deduce that ([v%p,1%p]) x 7 is irreducible. O

We emphasize that if we write, as in the part (2) of Theorem 2.2, 7 as a
subrepresentation of 5! x - - -x " x ¢, for discrete series 61, ..., 80 € R(Q),
then p*(7) contains an irreducible constituent of the form §([v =" p, 1271 p|)®
7 if and only if we have 6 22 §([v=**p, 12~ 1p]) for some i € {1,...,r}.

Suppose that 2b+1 ¢ Jord,(o), p*(7) contains an irreducible constituent
of the form 6([v="p,%p]) @ 71, and let m denote the largest integer such
that p*(7) contains an irreducible constituent of the form &([v="p, v°p])™ @
7y. Then 7 is a subrepresentation of §([v=p,v%p])™ x 7/, for an irreducible
tempered representation 7’ such that p*(7') does not contain an irreducible
constituent of the form 6([v="p, °p]) @ 73. Since 2b+ 1 ¢ Jord, (o), the part
(3) of Theorem 2.2 implies that the induced representation §([v=°p, v p])™ x 7/
reduces, and by the part (4) of Theorem 2.2, it is a direct sum of two mutually
non-isomorphic tempered representations 7, and 7, and 7 € {7, »}. By the
part (1) of Lemma 2.5, there is a unique ¢ € {1,2} such that u*(7;) contains
an irreducible constituent of the form (v°p)*™ @ 7. Thus, if we additionally
assume that p*(7) does not contain an irreducible constituent of the form
S([v=tp, v tpl) @ m, @ € Jord,(o) for all z € {2a — 1,2a+1,...,2b — 1},
and €,((z_, p), (z,p)) = —1 for all x € {2a — 1,2a + 1,...,2b — 3}, then
there is a unique i € {1, 2} such that {[v%p, %p]) x 7; contains an irreducible
tempered subquotient.

We also provide a rephrasing of the previous theorem:

Corollary 4.6. Suppose that p = p and a > 1 such that 2a is an integer.
The induced representation ([v%p,v°p]) x T reduces if and only if one of the
following holds:

~

(1) The Jacquet module of T with respect to the appropriate parabolic sub-
group contains an irreducible subquotient of the form §([v=2"p, v*1p])®
.

(2) There is a ¢ € {a,a+ 1,...,b} such that ([vp,v°p|) X T contains an
wrreducible tempered subquotient.

(3) Thereis ac € {a,a+1,...,b} and an irreducible tempered representation
7 € R(G) such that {[v*p,v°pl) x T contains L(6([v—<p, v 1p]); 7).
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5 The case a =

DO |—

In this section, b denotes a real number such that b — % is a non-negative

integer. We determine when the induced representation ([v2p, vp]) % 7 re-
duces.

Lemma 5.1. If p is not a self-contragredient representation, then the induced
1
representation ([v2p, 1°p|) x T is irreducible.

Proof. By Lemma 3.2, ([v2p, v*p]) x 7 does not contain an irreducible tem-
pered subquotient. Let L(dy,...,d0;7") denote an irreducible non-tempered
subquotient of ([v2p,%p]) x 7, where 8; 2 §([v™ip,v¥ip)) for i = 1,... k.
Suppose that there is an i € {1,2,...,k} such that x; = —y; — 1, z; # y;.
From Lemma 2.6(2) follows that z;, = —y, — 1, and from x # yx we obtain
T # —%. Lemma 2.6(2) also implies that there is an irreducible tempered
representation 71 and ¢ € {%, %, ...,b— 1} such that 7 is an irreducible
subquotient of ([v2p,v%p]) x 71, which is impossible by Lemma 3.2.
Consequently, we have x; = y; for all ¢ € {1,2,...,k}. Now the rest of
the proof follows in the same way as the one of Proposition 4.3. O

The following lemma can be proved in the same way as Lemma 4.4, using
Theorem 3.14.

Lemma 5.2. Suppose that ¢ — % is a positive integer and let p; € R(GL)

denote an irreducible self-contragredient representation. Let 71 € R(G) de-
note an irreducible tempered representation, which is a subrepresentation of
01 X - -+ X 0 X 01, for discrete series 0y, ...,0, € R(GL) and 01 € R(G). Sup-
pose that x € Jord,, (01) for all x € {2,4,...,2c — 3}, 2¢c — 1 & Jord,, (01),
€, (= 2,p1), (z,p1)) = =1 for all x € {4,...,2c — 3} and €,(2,p) = —1 if
c > g Suppose that p*(m) contains an irreducible constituent of the form
S([v=Ttpy, v p]) @, and let m denote the largest integer such that yu*(m)
contains an irreducible constituent of the form 6([v=<"p, v 1p)™ @ 7.
Suppose that p*(1y) does not contain an irreducible constituent of the form
(v71p1)*™ @ . Then there is an irreducible tempered representation T, €
R(G) such that {[vzpy,vp1]) x 71 contains L(8([v=p1, " p1]); 7).

Theorem 5.3. Suppose that p = p and let b be such that b — % is a non-

negative integer. The induced representation ([V%p, VPp]) x 7 reduces if and
only if one of the following holds:

38



(1) 2 € Jord,(0) and €,(2,p) = 1.

(2) 2 ¢ Jord,(o) and if p*(7) contains an irreducible constituent of the form
§([v=2p,v2p]) @i, and m stands for the largest integer such that p*(7)
contains an irreducible constituent of the form 5([u_%p, u%p])’”@m, then
1* (1) contains an irreducible constituent of the form (v2p)*™ @ .

(3) b> %, x € Jord,(o) for all x € {2,4,...,2b+ 1}, e,((z-, p), (z,p)) = —1
for all x € {4,6,...,20 — 3}, €,(2,p) = —1, and €,((2b — 1,p), (2b +
Lp)) =1

(4) b> 3, x € Jord,(o) for allx € {2,4,...,2b—1}, e,((z-, p), (z,p)) = —1
for all x € {4,6,...,2b =3}, 2b+ 1 ¢ Jord,(0), €,(2,p) = —1, and if
w* (1) contains an irreducible constituent of the form 5([v="tp,°p]) @ 71,
and m stands for the largest integer such that p*(7) contains an irre-
ducible constituent of the form d([v=p, v p])™ & mq, then u*(T) contains
an irreducible constituent of the form (v°p)*™ @ w3,

(5) b > %, and there is a c € {2,...,b— 1} such that © € Jord,(o) for all
x€{2,4,...,2c—1}, e,((z_, p), (x,p)) = =1 forallz € {2,4,...,2c—1},

€-(2,p) = —1, and if 2c+1 € Jord, (o) then e,((2¢—1,p), (2c+1,p)) = 1.

Proof. 1f b > %, the theorem can be proved following the same lines as in the
proof of Theorem 4.5, just using Lemma 5.2 instead of Lemma 4.4.

Let us comment the case b = % In the same way as in the proof of Lemma
2.6 we deduce that every irreducible non-tempered subquotient of V%p X T 1S
isomorphic to L(V_%p; 7), and it can be seen at once that L(z/_%p; T) appears
in the composition series of V3 p » 7 with multiplicity one. Consequently,
I/%p x 7 reduces if and only if contains an irreducible tempered subquotient.
Now Theorem 3.14 can be used to finish the proof. n

Suppose that 2 ¢ Jord,(c), u*(7) contains an irreducible constituent of
the form §( [1/*% P, V3 p]) ® w1, and let m denote the largest integer such that
1*(7) contains an irreducible constituent of the form §([v=2p, v2p])™ @ 7.
Then there is an irreducible tempered representation 7/ € R(G) such that
7 is a subrepresentation of 8([v"2p,v2p])™ x 7/ and p*(7') does not contain
an irreducible constituent of the form §([v~2p,v2p]) ® ms. By the parts (2)
and (3) of Theorem 2.2, §([v"2p, v2p])™ x 7 is a direct sum of two mutually
non-isomorphic tempered representations, which we denote by 71 and 7. It
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follows from the part (2) of Lemma 2.5 that there is a unique ¢ € {1,2}
such that y*(7;) contains an irreducible constituent of the form (v2p)*™ @ ,.
Thus, there is a unique i € {1,2} such that ([v2p, 1%p]) x 7; reduces.

We also note that Theorem 5.3 can be rephrased as follows:

Corollary 5.4. Suppose that p = p and let b be such that b — % i a non-

negative integer. The induced representation ([V%p, VPp|) x 7 reduces if and

only if one of the following holds:

(1) Thereis a c € {3,3,...,b} such that ([vip,v°p]) x T contains an irre-
ducible tempered subquotient.

(2) There is a ¢ € %, 2,...,b} and an irreducible tempered representation
7 € R(G) such that {[v2p,v°pl) x 7 contains L(8([v=<p, v p]): 7).

6 The case a < 0, a half-integral

In this section, until said otherwise, a and b denote half-integers such that
a < 0 and —a < b. We first determine when the induced representation
([v%p,v°p]) x 7 reduces. At the end of the section, we provide a summary of
our main results.

Let us first discuss the case of self-contragredient p.

[

Proposition 6.1. Suppose that a is negative and half-integral, and p =
p. Let L(d1,...,0k;7') stand for an irreducible non-tempered subquotient of
([vep, v°p]) x 7, and let &; = 6([v*¥ip;, v¥ip;]) fori = 1,..., k. Then for all
i =1,....k we have p; = p and x; € {y;,y; — 1,—y; — 1}. Also, there is
at most one i € {1,...,k} such that z; ¢ {y;,yi —1}. If j € {2,3,...,k}
is such that x; € {y;,y; — 1} for all i € {1,2,...,j — 1}, then there are c
and d, a < ¢ < %, 3 < d <b, such that L(d;,...,0,;7') is a subquotient of
([vep,vip]) x 7.

Proof. In the same way as in the proof of Lemma 2.6, we deduce that are
i, 7 such that a — 1 < i < 7 <b, and an irreducible constituent 6 ® 7 of p*(7)
such that

51 < ([ p. v p]) x ([, vip]) x &
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and
L8, ..., 65 7) < [V hp, 1 p]) x m.

It follows at once that p; = p, i € {a — 1,a}, and j € {b — 1,b}. Using the
temperedness criterion, we obtain

1 €{vlp, %0, 6([v " p, v ")), 0([v 0, ")),
o([vep, v pl), 0([v="p, " 2p]) }.

Furthermore, d; € {5([v=2p, v=""1p]), §([v="p,*~2p])} implies a = —b + 1.
Also, if

v € v, v, 0([v " p, v "))},
then 7 = 7.

Suppose that there is an i € {1,2,...,k} such that y; ¢ {z;,z; + 1},
and let us denote the minimal such ¢ by 4,;,. Then for ¢ < i,;, we have
y; € {x;,z; + 1} and an inductive application of the first part of the proof
shows that there are ¢ and d such that a < ¢ < %, % <d < b, and

LB 037) < (00,0 7.

tmin? *

Again, p; . = p. We have already seen that y; . € {—z; . — 2, —z; . —
1}. Suppose that y; = —z;  — 2. Since u*(([°p,v%p]) x 7) contains
Oi @ L(6; . 11,...,0,;7"), it follows that d > %, x . = —d, c=—d+1,
and there is an irreducible tempered representation 7, such that p*(7) >
§([v=42p, v 2p]) ® 7, and

L(ainlin+17 A 75k7 TI) S <|:V7d+2p, Vdilp]> >4 7—1.

Since —d + 2 < 0, Theorem 3.5 implies i,;, < k. We directly obtain
e(5lmm+1> Z _1 and pimin+1 g p If :Cimin‘i“1 = yimin“l’l? from e<574m1n+1) 2 _1
follows that d; . +1 = v=2p. Thus Oi o X 0541 =0 41 X 0., SO we de-

duce that pu*({[v=%*1p,v%p]) x 7) contains an irreducible constituent of the
3

form z/*%p ® m, which is impossible since —d +1 < —3

Consequently,

st € {0104 p, 0" 20]), 8([v 20,143 )), 6([1v~ 0, )}

and 7 is tempered.

This again gives 0; . X &; . v1 = & 1 X &, so p*({[v~=p,vp]) x 7)
contains an irreducible constituent of the form ¢, , 11 ® 7, and it follows
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directly from the structural formula that this is possible only if ¢; . 1 =
5([4+p, 4% Using
L(d .. 75k7 T,) — 5imin+1 X 0, X L(éimin+2’ R, ,(Sk, T,),

tmin? * min

together with the structural formula, we deduce that there is an irreducible
tempered representation 7; such that p*(7) contains §([v=4*2p, v %p]) ® 7y
and p*(([v=42p,v%p]) x 71) contains §; . & L(&; . 19,...,0; 7). It follows
that p*(71) contains an irreducible constituent of the form &([v=4+1p, v%p]) ®
m, for x < d — 2, which contradicts the temperedness of 7. Thus, we obtain
Yimin = ~Tiga — L.

Suppose that there is an ¢ > 4., such that y; = —z; — 1 and y; > 0.
Since e(0;,,,) = e(9;), it follows that e(d;) = e(d;) for j € {imin,...,7 — 1}, so
§; % 0; = §;x9; for j € {imin, . ..,i—1}. This enables us to assume i = i,y +1.
It follows that p*(([v°p, v¥p]) X T) contains &;_, x8; . 1 Q@L(;, . 1,0k T).
Also, u*({[v°p, v%p]) x T) contains irreducible constituents of the form §; . @7
and 9; . +1 ® 7. Now an easy application of the structural formula shows
that {z;,, zi,.+1} = {—d,c}, ¢ < —2, and there is an irreducible tempered
representation 7, such that p*(7) > 6([v=tp, v41p]) x5([ve i p, v tp]) @7

and L(d; . yo,...,0;7') is a subquotient of ([v¢™p, v41p]) x 7.

Theorem 3.5 implies iymin +2 < k, so x;, 10 € {c+1,—d + 1}. Also,
from e(d,, ) < e(ds, ,) We obtain that either y; 1o = 2,12 = —5 or
Yi 42 = —T; . 19 — 1. A standard commuting argument implies

L<5 o ’6k’ Tl) — 5imin+2 X 5imin+1 X 5 X L((Sirnin“l‘g? st 75k’ T’)?

?min ) * ?min

Thus, p*({[v°p,v%p]) x 7) contains an irreducible constituent of the form
Oipinte ®m, and using x; , o € {c+ 1, —d+ 1} we get z; 1o =c=—d+ 1.
Now it can be seen at once that u*({[v°p,v%p]) x T) does not contain an
irreducible constituent of the form §; , 1o x §; ® 7, for j € {imin, imin + 1}
such that z; = c¢. Consequently, there is a unique i € {1,2,...,k} such that
y; & {x;,x; + 1} O

Lemma 6.2. Suppose that ¢ and d are half-integers such that ¢ < —%,

—c<d, and g <d. Let 1 € R(G) denote an irreducible tempered represen-
tation, and let py € R(GL) denote an irreducible cuspidal self-contragredient

representation. Suppose that {[v°p1,vep1]) x T contains L(dy,...,0u;7),
where §; = §([v¥ipr,VYip1]) for i = 1,... k, such that xr1 = —y; — 1 and
Yy > % Then ¢ = —%, k=2, 0y = V’%pl, and <[l/%p1,l/dp1]> X 11 reduces.
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Proof. We first show that k£ > 2. Suppose, on the contrary, that £ = 1. It
can be directly seen that z; € {—d,c}. If 21 = ¢, then ¢ < —%, and an
easy application of the structural formula implies that there is an irreducible
tempered representation 7, such that u*(7) > 6([v* o, v="1p1]) ® 7 and
7' is an irreducible subquotient of {[v°™'p;, v9pi]) % 75, which contradicts
Theorem 3.5. The case 1 = —d # ¢ — 1 can be handled in the same way.
Let us consider the case xr1 = —d = ¢ — 1, and write 7, as a subrepre-
sentation of 0([v=9"2py, v 2p1])™ x 73, where 7, is a tempered representa-
tion such that p*(72) does not contain an irreducible constituent of the form
§([v=2py, 12 py])@m. Here we also allow m; = 0, in which case p*(71) does
not contain an irreducible constituent of the form &([v=%2py, v 2p1]) @ 7.
Using the cuspidal support considerations we deduce that 7/ embeds into an
induced representation of the form &([v=4"2p;, v 2p,])™ % 7/, where 7{ is
a tempered representation such that p*(7{) does not contain an irreducible
constituent of the form §([v=42p;, ¥4 2p;]) ® 7. Consequently,

L(S([vpr, v pa]); ) = (v~ pr, v pa]) X 6([ 2oy, v pr])™ 2Ty
= ([ 2, v p])™ xS pr, v ) X,

and there is an irreducible subquotient 71 of §([v=%p1, 41 p1]) x 7/ such that
L(5([v=%p1, v 1p1]); 7') embeds into §([v=4"2py, v 2p1])™ x ;. Using
L™ o, v ] )i 7)) Z 0 v T ) @ 7
we obtain 7 = L(6([v=4p1, v p1]);7]). Thus, p*({{v= py, vip1]) x 1)
contains §([r=2py, v 2p )™ @ L(6([v~%p1, v p1]); 7]). This implies that
L(5([v%p1, v 1p1]); 1) is an irreducible subquotient of ([~ p;, v9p;]) x 7.
Now we write 7o as a subrepresentation of ([~ p;, 4 1p])™2 x 73,
where 73 is a tempered representation such that p*(73) does not contain an
irreducible constituent of the form &([v=4"1p;, 14 1pi]) ® 7. Here we also
allow my = 0. Similarly as before, 7{ can be written as a subrepresentation
of §([v=1py, v 1p1])™2 x 75, for an irreducible tempered representation 75

such that p*(75) does not contain an irreducible constituent of the form
S([v=tpy, v p]) ® 7. Let us denote by §7,...,8" € R(GL), o1 € R(G)

) ms3
discrete series representations such that 73 embeds into ) X --- X 6;,. X 07.

We have
L(S([vpr, v pa]); ) = 6([v o1, v pu]) X O ([ pr, v pn])™2 2
= ([, v o)™ X O[T, v ) 1oy

—d+1p1’ I/d_lpl])m2+1

— ([v x v x 1,
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and in the same way as before we conclude that L(5([v=%p1,v4 1p1]); 71) is
a subrepresentation of §([v=%*1p;, 37 p ])™2 L % L(v=%py;75). This leads to
B (i ]) 3 m) > 8y, A ) @ Lot 7).

From the structural formula and the description of 75, we get that p*(oq)

contains an irreducible constituent of the form §([v=4"2p;, v 1p]) ® o9,
and there is an irreducible subquotient 7; of ] x -+ X 5;713 X 09 such that

L(v=4py;75) is a subquotient of ([v=%2p;, v9p]) x 7. From [17, Proposi-
tion 7.2] we deduce that o9 is a discrete series, so 7 is an irreducible tem-
pered representation. Since p*(([v=%2p;, v9p1]) x 7)) > v=9p, @75, it follows
at once that 75 is an irreducible subquotient of {[v=42p;, 141 p;]) x 7y, which
contradicts Theorem 3.5. Thus, k£ > 2.

Using Proposition 6.1 and e(d;) = we get that 0; = v=2p, for all

1
-1

j€{2,...,k}. From 6; x y‘%pl = V_%,Ol X 01 we obtain £k =2 and ¢ = —%.

Using the embedding

L(51,52;7'/) — I/_%pl X (51 X 7'/

and Lemma 2.3, we easily deduce that L(d1,do;7") is a subrepresentation of
v=2py % L(6y; 7). Thus, w*({({v"2p1, v%p1]) x71) contains =2 py @ L(8y; 7'), s0
L(8y:7') is an irreducible subquotient of ([12 py, v%p1]) 1y and (V2 py, v9p1]) x
71 reduces. This proves the lemma. O

Lemma 6.3. Suppose that 71 € R(G) is an irreducible tempered represen-
tation and let py € R(GL) denote an irreducible cuspidal self-contragredient
representation. If (V™2 py,v2 p1])xr contains L(6([v™2pr,v2pm]), 02, - - ., 043 7)

then there is a ¢ € {3,3} such that ([vzpy,vop1]) x 7 reduces.
Proof. Let us first assume that k& > 2. Since e(8([v 2p1,v2p])) = -1,
using Proposition 6.1 we obtain that §; = V*%pl for v = 2,... k. Since

(5([V_%p1, y%pl]) x v~ 2 py is irreducible, it easily follows that k = 2. Note that
L(é([u‘gpl,uépl]), v~2p1:7') is a subrepresentation of v 2 p; X L(5([1/_%p1,
1 p wi )1 3 L1 _3 1 ,
vipi));7'), so u*({{v=2p1,v2p1|) x7) contains v 2y QL(5([v "2 p1, v2p1]); 7).

1
Using the structural formula and temperedness of 71, we deduce that ([vzp;,

3 . 3 1 1 3

vzp1]) x 1 contains L(§([v~2p1,v2p]); 1), so ([v2p1,v2p1]) ¥ 11 reduces.

Let us now assume that £ = 1, and write 7; as a subrepresentation of
1 1

I([v™2p1,v2p1])™ X Ty, where 75 is a tempered representation such that p*(7z)
does not contain an irreducible constituent of the form 9 ([V_%pl, I/%pl]) .
Here we also allow m = 0. Let 01 € R(G) denote a discrete series such that
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Ty is a subrepresentation of §] x --- x d/, x oy, for discrete series 97, ...,0,, €
R(GL).

Using the cuspidal support considerations, we deduce that there is an
irreducible tempered representation 7{ € R(G) such that 7’ is a subrepresen-
tation of 6([v=2py, v2py])™ x 7{. This yields

_3 1 , _3 1 _1 1 ovm o
L(o([v™2p1,v2p]); 7)) = 6([v72pr,vzp]) x 6([v ™ 2p1,v2p])™ X 7y
=~ §([v ™2 pr, v i)™ X O([v 21, v pa)) X 7

< S([v 2py,vip)™ T x v 2py T,

so w*({[v"2p1,v2pm]) X 71) contains an irreducible constituent of the form
§([v=2p1,v2p1])™ ™ @ 7. The structural formula implies that p* (o) contains
an irreducible constituent of the form vz p1 ®m, so 2 € Jord, (o) and, by
[17, Proposition 7.4], €,(2, p1) = 1. Now Theorem 5.3 implies that 2 p; X 7
reduces. [

This leads us to the main result of this section.

Theorem 6.4. Suppose that p = p and let a, b denote half-integers such that
a < —3 and —a < b. The induced representation ([1*p,v’p]) x T reduces if

and only if there is a c € {3,2,...,b} such that ([vzp,v°p]) x T reduces.

Proof. Let us first assume that thereisac € {2, 5, ..., b} such that ([vzp, v°p]) %
7 reduces. By Corollary 5.4, either there is a d € {2, S,....c}y such that

([vip,v p]) X 7 contains an irreducible tempered subquotient, or there is a
de {2, 2 ,c} and an irreducible tempered representation 7 € R(G) such
that ([v2p, v%p]) % T contains L(é([ufdp, v 1pl); 7).

Suppose that thereisad € {2, 5., C}such that ([V%p, v?p]) x 7 contains
an irreducible tempered subquotient, which we denote by 7'. If d > —a, a
repeated application of Lemma 2.7 implies that ([v%p, %p]) x T contains

—b —b+1 —d—1 +1 -1
L(I/ p?” p?"'?y p?yap7ya p?"'?y 2p77-)7

so it reduces. If d < —a, using Lemma 2.7 and Lemma 2.8, we obtain that
([vep, v°p]) x T contains

—b a—1 a a —d—1 —d—1 —d -1
L(V p?"'7l/ pal/pal/pa"'>y p>V p>V p?"'al/ 2p77_>7
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so it reduces.

Suppose that thereis a d € {%, ..
resentation 7 € R(G) such that ([v2 p, v%p]) 37 contains L(8([v~%p, v p]): 7).
If d > —a, using Lemma 2.7 we get that ([v%p, %p]) x T contains

., ¢} and an irreducible tempered rep-

L(v~p, v p, v v, v, w2, 8([ 0, v )5 ),

so it reduces. If d < —a, using Lemma 2.7 and Lemma 2.8, we obtain that
([v*p,v°p]) x T contains

1

71p7 I/idilpa I/idp7 tt Vﬁgﬂ? 5([V7d107 Vdilp]); T/)’

Lw™p,...,v" tp, v, 0%, ... v ¢
so it reduces.

Let us now assume that ([v2p,1%]) x 7 is irreducible for every ¢ €

.2, ...,b}. By Theorem 3.5, ([*p, "p]) x T does not contain an irreducible
tempered subquotient. Let us denote by L(d1,...,dx;7") an irreducible non-
tempered subquotient of ([1%p,%p]) x 7, where §; = §([v%p, v¥ip]) for i =
...,k If ; = y; for all ¢ € {1,2,...,k}, it follows from Proposition 6.1
that there are c and d, a < ¢ < %, % < d < b such that L(dx;7') is a sub-
quotient of ([vp,v¥p]) x 7. Thus, z;, € {c, —d} and if ¢ # d then 7’ is an
irreducible subquotient of ([ p,v¥ p]) x 7, for ¢ < d', which is impossible
since ¢ < 1. Thus, if z; = y; for all i € {1,2,...,k}, we have
L0y, ..., 007 = L "p,..., 0" tp, %, 0%, ..., V_%p, V_%p; T).

Suppose that for all i € {1,2,... k} we have x; € {y;,y; — 1} and there is
aj e {1,2,...,k} such that z; = y; — 1. We denote the largest such j by
Jmax- From Proposition 6.1 we deduce that there is a d, % < d < b, such
that L(d;,..,...,0k;7') is an irreducible subquotient of ([v=41p, v9p]) x T,
and 6. = 5([v=4p, v p]). If jumax = k, it follows that 7/ is an irreducible
subquotient of ([v=42p, v~ p]y 7. If —d+2 < —1, this contradicts Theorem
3.5. If =d+2 =1, it follows that ([vzp,v™1p]) x 7 reduces, a contradiction.
Thus, jmax < k and L(6j,..+1,---,0k;7) is an irreducible subquotient of
([v=42p, % 1p]) x 7. From ;. +1 = Yju.+1 we deduce that &, .1 €
{v=32p v p} If 55, 1 v~y we have

L(4; 0T = ([, v ) X v LG, t2y 5 Ok T)
—d+1

max? *

—d+1 —d .
Sy +p><l/ p XV pNL(éjmax+27'-'76k77/)7

46



0 u*(L(0j,,rs - - -, Ok; T')) contains an irreducible constituent of the form v—¢+1

v=4lp @ 7, which is impossible since pu*(([v=4"p, v4p]) x 1) does not con-
tain an irreducible constituent of such a form. Thus, §;,. +1 = v~ %?p and
L(8juit2y -+, 0;7') is an irreducible subquotient of ([v=%3p v4=1p]) % 7.
Repeating this procedure, we get that there is an z, —d + 3 < z < %, such
that 7/ is an irreducible subquotient of ([ p, v?~1p]) x 7, and we have already
seen that this is impossible.

It remains to consider the case x; = —y; — 1, with y; > %, for some
i€ {1,2,... k}. Tt follows from Proposition 6.1 that there are ¢ and d, a <
c < %, % < d < bsuch that L(6;, ..., ;') is a subquotient of ([v°p, vip]) ¥ T.
Since <[l/%p, v?p]) x 7 is irreducible by our assumption, we obtain ¢ < —1. If
(c,d) # (—2,32), this contradicts either Lemma 6.2 or Lemma 6.3. Suppose

that (c,d) = (=2,3). Then & = 6([v2p,v2p]) and L(0iy1,...,007) is

272
an irreducible subquotient of <[I/_%p, l/%p]> x 71, for an irreducible tempered

pX

representation 71 such that p*(7) contains 6([v=2p, v2p])®71. From Theorem
3.5 we get i + 1 < k. Using e(d;) < e(d;11) we easily obtain ;1 = l/’%p,
S0 0 X i1 = 0iyq X 6, and p*({[v~2p,v2p]) x 7) contains an irreducible
constituent of the form V_%,O ® 7, which is impossible.
Consequently, every irreducible subquotient of ([v%p, °p]) x T is isomor-
phic to
Lw™p,...,v" p, 0%, 1%, ..., V_%p, y_%p; 7).

It is an easy consequence of the structural formula that
vl @@ p @1 X V“p®-~~®v‘%p X y‘%p@)f

appears with the multiplicity one in the Jacquet module of {[v%p,v’p]) % T
with respect to the appropriate parabolic subgroup. Thus, {[v%p, /°p]) x T is
irreducible. O

Let us now discuss the remaining case.

Proposition 6.5. Suppose that p % p and let a, b denote half-integers such
that a < —3 and —a < 'b. Then the induced representation ([1"p,vPp]) 3 T is
wrreducible.

Proof. Again, we denote by L(dy, ..., dx; 7') an irreducible non-tempered sub-
quotient of ([v%p,vbp]) x 7, where &§; = 6([v%ip;, v¥ip)) for i = 1,... k. It
is enough to prove that x; = y; for all ¢ € {1,... k}, the rest of the proof
follows in the same way as the one of Theorem 6.4.
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In the same way as in the proof of Proposition 6.1 we deduce that for
i=1,...,k wehave p; € {p,p} and z; € {y;, —y; — 1}. Suppose that there is
ani € {1,...,k} such that z; = —y; — 1, y; > 3 and that for j < i we have
xj; = y;. In the same way as in the proof of Proposition 6.1 we see that there
arecand d, a < ¢ < %, % < d < b, such that L(d;,...,0;7") is a subquotient
of ([v°p,vp]) x 7. If ¢ = 1, it follows that ([vzp, vip]) x 7 reduces, which
contradicts Lemma 5.1. Thus, ¢ < —3. We get (z;, ) € {(¢, p), (—d,p)},
and there is an irreducible tempered representation 77 such that p*(7) >
S([v~Yip;, vWip]) ® 11, and L(0;41,...,0k; 7") is an irreducible subquotient of
([ve p, v pl) x 71, for some ¢ € {c,c+1} and d’ € {d,d — 1}. Tt follows that
1+ 1 < k. Now, following the same lines as in the proof of Lemma 6.2, we
obtain that this is possible only if ¢ = —% and ([vzp, vp]) x 7 reduces, which

contradicts Lemma 5.1. O
We close this section with a detailed summary of our main results.

Theorem 6.6. Let p € R(GL) stand for an irreducible cuspidal represen-
tation, and let 7 € R(G) denote an irreducible tempered representation.
We denote by o € R(G) a discrete series such that T is a subrepresenta-
tion of 0 x --- x 6" x o, for discrete series 6V, ..., 60" € R(GL). Let
(Jord(o), Oeusps €5) stand for the admissible triple corresponding to o by the
Meeglin-Tadic¢ classification. Let a,b denote real numbers such that b — a s
a non-negative integer and a + b > 0.

If 2a ¢ Z, then the induced representation ([v%p,v°p]) x T is irreducible.

If 2a is a positive integer and p % p, then ([Vop,1°p]) x T reduces if
and only if a > 1 and p*(7) contains an irreducible constituent of the form
5([V_a+1,5, Va—lﬁ]) R T.

If 2a is a positive integer, a > 1, and p = p, then {[v%p,V°p]) X T reduces
iof and only if one of the following holds:

(1) p*(7) contains an irreducible constituent of the form §([v=" p,v*1p])®
.

(2) We have x € Jord,(o) for allx € {2a —1,2a+1,...,20+ 1}, €,((z-, p),
(x,p)) = —1 for all x € {2a — 1,2a + 1,...,2b — 3}, and €,((2b — 1, p),
(24 1.p) = 1.

(3) We have x € Jord,(o) for allx € {2a —1,2a+1,...,2b— 1}, e,((z-, p),
(z,p)) = —1 forallx € {2a—1,2a+1,...,20—3}, 2b+1 ¢ Jord, (o), and
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if (1) contains an irreducible constituent of the form &([v="p, vbp])@m,
and m stands for the largest integer such that u*(7) contains an irre-
ducible constituent of the form §([v=p, v°p])™ ® 7, then u*(T) contains
an irreducible constituent of the form (1°p)*™ ® 3,

(4) There is a ¢ € {a,a+1,...,b— 1} such that x € Jord,(o) for all z €
{2a—1,2a+1,...,2c—1}, e,((z_, p), (x,p)) = =1 for all x € {2a+1, 2a+
3,...,2c—1}, and if 2c+1 € Jord, (o) then €,((2c—1,p), (2¢+1,p)) = 1.

Ifb— % is a non-negative integer and p = p, then <[V%p, Vo)) x T reduces if
and only if one of the following holds:

(1) 2 € Jord,(o) and €,(2,p) = 1.

(2) 2 ¢ Jord,(c) and if *(7) contains an irreducible constituent of the form
5([v=2p,v2p]) @ 71, and m stands for the largest integer such that u*(7)
contains an irreducible constituent of the form (5([1/_%p, I/%p])m@)ﬂ'g, then
p* (1) contains an irreducible constituent of the form (v2p)2™ @ .

(3) b> %, x € Jord,(o) for all x € {2,4,...,2b+ 1}, e,((z_, p), (z,p)) = —1
for all x € {4,6,...,2b — 3}, €,(2,p) = —1, and €,((2b — 1,p), (2b +

(4) b> 3, x € Jord,(o) for all x € {2,4,...,2b—1}, e,((z, p), (z,p)) = —1
for all x € {4,6,...,2b =3}, 2b+ 1 ¢ Jord,(o), €,(2,p) = —1, and if
w* (1) contains an irreducible constituent of the form 5([v="p, °p]) @ 1,
and m stands for the largest integer such that p*(7) contains an irre-
ducible constituent of the form §([v"°p,V°p])™ & T, then u*(T) contains
an irreducible constituent of the form (V°p)*™ @ 73,

(5) b > L and there is a c € {2,...,b— 1} such that © € Jord,(o) for all
xe€{2,4,...,2c—1}, e,((z_, p), (x,p)) = =1 forallz € {2,4,...,2c—1},

€:(2,p) = =1, and if 2c+1 € Jord,(o) then e,((2c—1,p), (2c+1,p)) = 1.

Ifa<0,2a€Z,a¢Z, and p = p, then {[v%p,V°p]) x T reduces if and only

if there is a c € {3,3,...,b} such that ([vzp,v°p]) % T reduces.
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