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Abstract

Let Gn denote either the group SO(2n + 1, F ) or Sp(2n, F ) over
a non-archimedean local field of characteristic zero. We determine
the reducibility criteria for a parabolically induced representation of
the form 〈[νaρ, νbρ]〉 o τ , where 〈[νaρ, νbρ]〉 denotes the Zelevinsky
segment representation of the general linear group attached to the
segment [νaρ, νbρ], with a half-integral, and τ denotes an irreducible
tempered representation of Gn.

1 Introduction

We study the structure of parabolically induced representations of the form
〈[νaρ, νbρ]〉o τ , where 〈[νaρ, νbρ]〉 denotes the Zelevinsky segment represen-
tation of the general linear group attached to the segment [νaρ, νbρ], and τ
denotes an irreducible tempered representation of either odd special orthog-
onal or symplectic group over a non-archimedean local field of characteristic
zero.

Zelevinsky segment representations and irreducible tempered representa-
tions both present prominent members of the unitary duals. Furthermore,
the Zelevinsky segment representations belong to the class of the essentially
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Speh representations, which are the basic building blocks in the unitary dual
of the general linear group. On the other hand, irreducible tempered rep-
resentations play a fundamental role in the Langlands classification for the
classical groups, and have been independently classified in [5] and [17], based
on the work of Goldberg ([2]) and on the Mœglin-Tadić classification of dis-
crete series ([10, 12]).

The main aim of our investigation is to provide the reducibility criteria
for the induced representations of the form 〈[νaρ, νbρ]〉 o τ , with a half-
integral and τ irreducible tempered. This is a natural continuation of our
previous work on the reducibility and composition factors of representations
induced from the Zelevinsky segment representation and a discrete series of
the classical p-adic group ([7, 8]). It appears that the reducibility criteria
mostly rely on a deeper knowledge on the structure of irreducible tempered
subquotients.

Our work builds on the methods introduced in [13, 14], and further de-
veloped in [7]. But, as expected, the tempered case happens to be much
more involved then the discrete series one. To obtain more precise informa-
tion regarding the irreducible tempered subquotients of 〈[νaρ, νbρ]〉 o τ , for
an irreducible tempered representation τ , in most of the cases we use the
reduction to the discrete series case, and then follow the results of [8]. We
note that proofs appearing in [8] can also be directly applied to the case of
positive integral a, so we also cover that case.

The main strategy used in [13, 14] is rather straightforward, and relies
on the determination of conditions under which the induced representation
contains at least two mutually non-isomorphic irreducible subquotients. We
mostly follow this strategy, in a similar way as in [7], but we also obtain more
precise results on the existence of irreducible tempered subquotients and on
the general form of irreducible non-tempered subquotients. This enables us
to provide a complete and uniform description of the reducibility criteria in
the cases considered.

For the convenience of the reader, we cite the less technical version of our
reducibility criteria here.

Theorem 1.1. Let ρ denote an irreducible cuspidal representation of the gen-
eral linear group and let τ stand for an irreducible tempered representation
of either symplectic or odd special orthogonal group over a non-archimedean
local field of characteristic zero. Let a, b denote real numbers such that
b − a is a non-negative integer. If 2a /∈ Z, then the induced representation
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〈[νaρ, νbρ]〉o τ is irreducible.
If 2a is a positive integer, a ≥ 1, and ρ 6∼= ρ̃, then 〈[νaρ, νbρ]〉o τ reduces

if and only if the Jacquet module of τ with respect to the appropriate parabolic
subgroup contains an irreducible constituent of the form δ([ν−a+1ρ̃, νa−1ρ̃])⊗
π. If 2a is a positive integer, a ≥ 1, and ρ ∼= ρ̃, then 〈[νaρ, νbρ]〉o τ reduces
if and only if one of the following holds:

(1) The Jacquet module of τ with respect to the appropriate parabolic sub-
group contains an irreducible constituent of the form δ([ν−a+1ρ, νa−1ρ])⊗
π.

(2) There is a c ∈ {a, a + 1, . . . , b} such that 〈[νaρ, νcρ]〉 o τ contains an
irreducible tempered subquotient.

(3) There is a c ∈ {a, a+1, . . . , b} and an irreducible tempered representation
τ ′ such that 〈[νaρ, νcρ]〉o τ contains a unique irreducible subrepresenta-
tion of δ([ν−cρ, νc−1ρ]) o τ ′.

If a = 1
2
, then 〈[νaρ, νbρ]〉o τ reduces if and only if ρ ∼= ρ̃ and one of the

following holds:

(1) There is a c ∈ {1
2
, 3
2
, . . . , b} such that 〈[ν 1

2ρ, νcρ]〉 o τ contains an irre-
ducible tempered subquotient.

(2) There is a c ∈ {3
2
, 5
2
, . . . , b} and an irreducible tempered representation τ ′

such that 〈[ν 1
2ρ, νcρ]〉o τ contains a unique irreducible subrepresentation

of δ([ν−cρ, νc−1ρ]) o τ ′.

If a < 0, 2a ∈ Z, a /∈ Z and −a ≤ b, then 〈[νaρ, νbρ]〉o τ reduces if and only

if ρ ∼= ρ̃ and there is a c ∈ {1
2
, 3
2
, . . . , b} such that 〈[ν 1

2ρ, νcρ]〉o τ reduces.

The above criteria is explicitly given in terms of the classifications of
irreducible tempered representations and discrete series representations in
Theorems 4.5 and 5.3, and also summarized in Theorem 6.6.

In the following section we present some preliminaries. Also, we briefly
collect some results on the structure of tempered representations, and pro-
vide an adjustment of some technical results from [7]. The third section is
the technical core of the paper. Using the Jacquet modules method and em-
beddings of tempered representations, in that section we obtain necessary
and sufficient conditions under which 〈[νaρ, νbρ]〉o τ contains an irreducible
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tempered subquotient for a ≤ 1
2
, a half-integral. Also, under a technical

assumption which does not effect the reducibility criteria, we obtain similar
conditions for a ≥ 1. This enables us to provide an explicit description of the
reducibility points, using a case-by-case consideration. In the Section 4 we
study the case a ≥ 1, while in the Section 5 we describe the case a = 1

2
. We

close the paper with the investigation of the case a negative and half-integral,
which we reduce to the previously considered 1

2
-case, followed by a summary

of our results.

2 Preliminaries

Let F denote a non-archimedean local field of the characteristic zero. We
first describe the groups that we consider.

Let Jn = (δi,n+1−j)1≤i,j≤n denote the n× n matrix, where δi,n+1−j stands
for the Kronecker symbol. For a square matrix g, we denote by gt its trans-
posed matrix, and by gτ its transposed matrix with respect to the second
diagonal. In what follows, we shall fix one of the series of classical groups

Sp(n, F ) =

{
g ∈ GL(2n, F ) :

(
0 −Jn
Jn 0

)
gt
(

0 −Jn
Jn 0

)
= g−1

}
,

or

SO(2n+ 1, F ) =

{
g ∈ GL(2n+ 1, F ) : gτ = g−1

}
and denote by Gn the rank n group belonging to the series which we fixed.
Also, let GL(m,F ) denote the general linear group of rank m over F .

The set of standard parabolic subgroups will be fixed in a usual way, i.e.,
we fix a minimal F -parabolic subgroup in the classical group Gn consisting
of upper-triangular matrices in the usual matrix realization of the classical
group. Then the Levi factors of standard parabolic subgroups have the form
M = GL(n1, F )×· · ·×GL(nk, F )×Gn′ . If δi is a representation of GL(ni, F ),
for i = 1, . . . , k, and τ a representation of Gn′ , the normalized parabolically
induced representation IndGn

M (δ1⊗· · ·⊗δk⊗τ) will be denoted by δ1×· · ·×δko
τ . We use a similar notation to denote a parabolically induced representation
of GL(m,F ).

By Irr(Gn) we denote the set of all irreducible admissible representations
of Gn. Let R(Gn) denote the Grothendieck group of admissible representa-
tions of finite length of Gn and define R(G) = ⊕n≥0R(Gn). In a similar way
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we define Irr(GL(n, F )) and R(GL) = ⊕n≥0R(GL(n, F )). We note that in
R(G) we have π o τ = π̃ o τ and π1 × π2 o τ = π2 × π1 o τ .

For σ ∈ Irr(Gn) and 1 ≤ k ≤ n we denote by r(k)(σ) the normalized
Jacquet module of σ with respect to the maximal parabolic subgroup P(k)

having the Levi subgroup equal to GL(k, F )×Gn−k. We identify r(k)(σ) with
its semisimplification in R(GL(k, F ))⊗R(Gn−k) and consider

µ∗(σ) = 1⊗ σ +
n∑
k=1

r(k)(σ) ∈ R(GL)⊗R(G).

Let ν stand for a composition of the determinant mapping with the nor-
malized absolute value on F . Let ρ ∈ R(GL) stand for an irreducible cus-
pidal representation. By a segment in R(GL) we mean a set of the form
[ρ, νmρ] := {ρ, νρ, . . . , νmρ}, where m stands for a non-negative integer. The
induced representation ρ × νρ × · · · × νmρ has a unique irreducible subrep-
resentation ([18]), which is denoted by 〈[ρ, νmρ]〉 and called the Zelevinsky
segment representation.

The induced representation νmρ× νm−1ρ×· · ·× ρ contains a unique irre-
ducible subrepresentation, denoted by δ([ρ, νmρ]). Representation δ([ρ, νmρ])
is essentially square-integrable, and, by [18], every irreducible essentially
square-integrable representation in R(GL) can be obtained in this way.

We frequently use the following structural formulas, obtained in [3, The-
orem 1.4] and in [16, Theorems 5.4, 6.5]:

Theorem 2.1. Let ρ ∈ R(GL) denote an irreducible cuspidal representation
and k, l ∈ R such that k + l is a non-negative integer. Let σ ∈ R(G) de-
note an irreducible admissible representation of finite length. Write µ∗(σ) =∑

π,σ′ π ⊗ σ′. Then we have:

µ∗(〈[ν−kρ, νlρ]〉o σ) =
k+l+1∑
i=0

i∑
j=0

∑
π,σ′

〈[ν−lρ̃, ν−i+kρ̃]〉 × 〈[ν−kρ, νj−k−1ρ]〉 × π

⊗ 〈[νj−kρ, νi−k−1ρ]〉o σ′,

µ∗(δ([ν−kρ, νlρ]) o σ) =
l∑

i=−k−1

l∑
j=i

∑
π,σ′

δ([ν−iρ̃, νkρ̃])× δ([νj+1ρ, νlρ])× π

⊗ δ([νi+1ρ, νjρ]) o σ′.

We omit 〈[νxρ, νyρ]〉 and δ([νxρ, νyρ]) if x > y.
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Let us take a moment to recall the subrepresentation version of the Lang-
lands classification for general linear groups.

For every irreducible essentially square-integrable representation δ ∈ R(GL),
there is a unique e(δ) ∈ R such that ν−e(δ)δ is unitarizable. We note that
e(δ([νaρ, νbρ])) = (a+ b)/2. Suppose that δ1, δ2, . . . , δk are irreducible essen-
tially square-integrable representations such that e(δ1) ≤ e(δ2) ≤ . . . ≤ e(δk).
Then the induced representation δ1 × δ2 × · · · × δk has a unique irreducible
(Langlands) subrepresentation, denoted by L(δ1, δ2, . . . , δk), which appears
with multiplicity one in the composition series of δ1 × δ2 × · · · × δk. Every
irreducible representation π ∈ R(GL) is isomorphic to some L(δ1, δ2, . . . , δk)
and, for a given π, the representations δ1, δ2, . . . , δk are unique up to a per-
mutation.

We also use the subrepresentation version of the Langlands classification
for classical groups, and realize a non-tempered irreducible representation π
of Gn as the unique irreducible (Langlands) subrepresentation of an induced
representation of the form δ1×δ2×· · ·×δkoτ , where τ is an irreducible tem-
pered representation of some Gt, and δ1, δ2, . . . , δk ∈ R(GL) are irreducible
essentially square-integrable representations such that e(δ1) ≤ e(δ2) ≤ · · · ≤
e(δk) < 0. In this case, we write π = L(δ1, δ2, . . . , δk; τ).

In the following theorem we gather some results from [2] and [15, Sec-
tion 1] on irreducible tempered representations in R(G).

Theorem 2.2. (1) Suppose that δ1, . . . , δk ∈ R(GL) and σ1 ∈ R(G) are dis-
crete series. Let us denote by m the number of mutually nonisomorphic
representations δi such that δi o σ1 reduces. The induced representation
δ1×· · ·×δkoσ1 is a direct sum of 2m mutually nonisomorphic irreducible
tempered representations.

(2) For an irreducible tempered representation τ1 ∈ R(G), exist discrete se-
ries δ1, . . . , δk ∈ R(GL) and σ1 ∈ R(G) such that τ1 is a subrepresenta-
tion of δ1×· · ·×δkoσ1. If δ′1, . . . , δ

′
k ∈ R(GL) and σ′1 ∈ R(G) are discrete

series such that τ1 is a subrepresentation of δ′1×· · ·×δ′loσ′1, then σ1 ∼= σ′1
and the sequence δ′1, . . . , δ

′
l can be obtained from the sequence δ1, . . . , δk

by permuting and taking contragredients.

(3) Suppose that an irreducible tempered representation τ1 ∈ R(G) is a sub-
representation of δ1×· · ·×δkoσ1, for discrete series δ1, . . . , δk ∈ R(GL)
and σ1 ∈ R(G). Let δ ∈ R(GL) stand for a discrete series. The induced
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representation δoτ1 reduces if and only if δ /∈ {δ1, . . . , δk, δ̃1, . . . , δ̃k} and
δ o σ reduces.

(4) Let δ ∈ R(GL) denote a discrete series, and let τ1 ∈ R(G) denote an
irreducible tempered representation. If δ o τ1 reduces, then it is a direct
sum of two mutually nonisomorphic tempered representations.

We frequently use the following result ([4, Lemma 5.5]):

Lemma 2.3. Suppose that π ∈ R(Gn) is an irreducible representation, λ an
irreducible representation of the Levi subgroup M of Gn, and π is a subrep-
resentation of IndGn

M (λ). If L > M , then there is an irreducible subquotient
ρ of IndLM(λ) such that π is a subrepresentation of IndGn

L (ρ).

To shorten the notation, for an irreducible essentially square-integrable
representation δ ∈ R(GL) and a positive integer m, we denote by δm the
induced representation δ × · · · × δ, where δ appears m times.

Throughout the paper, we fix an irreducible tempered representation τ ∈
R(G) and an irreducible cuspidal representation ρ ∈ R(GL).

We are interested in determining when the induced representation 〈[νaρ, νbρ]〉o
τ , for real numbers a and b such that b − a is a nonnegative integer. Since
in R(G) we have 〈[νaρ, νbρ]〉o τ ∼= 〈[ν−bρ̃, ν−aρ̃]〉o τ , we can always assume
that a+ b ≥ 0.

Also, from now on we fix a discrete series σ ∈ R(G) such that τ can
be written as a subrepresentation of δ(1) × · · · × δ(r) o σ, for discrete series
δ(1), . . . , δ(r) ∈ R(GL). By the part (2) of Theorem 2.2, σ is unique up to an
isomorphism.

By the Mœglin-Tadić classification, which now holds unconditionally, due
to [1] and [11, Théorème 3.1.1], every discrete series σ′ ∈ R(G) corresponds
to an admissible triple, consisting of the Jordan block, the partial cuspidal
support, and the ε-function. The admissible triple corresponding to σ′ will
be denoted by (Jord(σ′), σ′cusp, εσ′). For more details on these invariants we
refer the reader to [10], [12], and [14, Section 1].

For a discrete series σ′ ∈ R(G) and an irreducible selfcontragredient cusp-
idal representation ρ′ ∈ R(GL) we write Jordρ′(σ

′) = {x : (x, ρ′) ∈ Jord(σ′)}.
If Jordρ′(σ

′) 6= ∅ and x ∈ Jordρ′(σ
′), denote x = max{y ∈ Jordρ′(σ

′) : y <
x}, if it exists.

We note that, by the classification of discrete series, δ([ν−xiρi, ν
xiρi])oσ′

reduces if and only if ρi ∼= ρ̃i, 2xi + 1 is of the appropriate parity, and
(2xi + 1, ρi) /∈ Jord(σ′).
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Proof of the following lemma is immediate.

Lemma 2.4. Let δ ∈ R(GL) denote an irreducible square-integrable repre-
sentation. Then µ∗(τ) contains an irreducible constituent of the form δ ⊗ π
if and only if there is an irreducible tempered representation τ ′ ∈ R(G) such
that τ is a subrepresentation of δ o τ ′. Also, if µ∗(τ) contains an irreducible
constituent of the form δ ⊗ π, then π is tempered.

The following result can be obtained following the same lines as in the
proofs of [17, Lemma 4.1, Lemma 4.4].

Lemma 2.5. Let τ1 ∈ R(G) denote an irreducible tempered representa-
tion, which is a subrepresentation of δ1 × · · · × δk o σ1, for discrete series
δ1, . . . , δk ∈ R(GL), σ1 ∈ R(G). Let ρ1 ∈ R(GL) stand for an irreducible
self-contragredient cuspidal representation, and let m and c denote positive
integers such that δ([ν−

c−1
2 ρ1, ν

c−1
2 ρ1])

m o τ1 reduces.

(1) If Jordρ1(σ1) ∩ [1, c] 6= ∅ and d = max(Jordρ1(σ1) ∩ [1, c]), then there

is a unique irreducible subrepresentation τ2 of δ([ν−
c−1
2 ρ1, ν

c−1
2 ρ1])

m o τ1
which contains an irreducible constituent of the form

δ([ν
d+1
2 ρ1, ν

c−1
2 ρ1])

2m ⊗ π

in its Jacquet module with respect to the appropriate parabolic subgroup.

(2) If Jordρ1(σ1)∩ [1, c] = ∅ and c is even, then there is a unique irreducible

subrepresentation τ2 of δ([ν−
c−1
2 ρ1, ν

c−1
2 ρ1])

m o τ1 which contains an ir-
reducible constituent of the form

δ([ν
1
2ρ1, ν

c−1
2 ρ1])

2m ⊗ π

in its Jacquet module with respect to the appropriate parabolic subgroup.

At the end of this section we obtain several useful technical results.

Lemma 2.6. Suppose that 2a is a positive integer. Let L(δ1, . . . , δk; τ
′) stand

for an irreducible non-tempered subquotient of 〈[νaρ, νbρ]〉 o τ , and let δi ∼=
δ([νxiρi, ν

yiρi]) for i = 1, . . . , k. Then for all i = 1, . . . , k we have ρi ∼= ρ̃ and
xi ∈ {yi,−yi − 1}. Furthermore, we have the following:

(1) Suppose that for every i ∈ {1, 2, . . . , k} we have xi = yi. Then xi =
−b+ i− 1 and τ ′ is an irreducible subquotient of 〈[νaρ, νb−kρ]〉o τ .

8



(2) Suppose that there is an i ∈ {1, 2, . . . , k} such that xi = −yi−1, xi 6= yi.
Then i = k, and there is an irreducible tempered representation τ1 ∈
R(G) such that τ is a subrepresentation of δ([ν−b+kρ̃, νb−kρ̃]) o τ1, and
τ ′ is a subquotient of 〈[νaρ, νb−kρ]〉o τ1.

Proof. Since L(δ1, . . . , δk; τ
′) is a subrepresentation of δ1 o L(δ2, . . . , δk; τ

′),
Frobenius reciprocity implies that µ∗(〈[νaρ, νbρ]〉oτ) contains δ1⊗L(δ2, . . . , δk; τ

′).
By the structural formula, there are i, j such that a− 1 ≤ i ≤ j ≤ b, and an
irreducible constituent δ ⊗ π of µ∗(τ) such that

δ([νx1ρ1, ν
y1ρ1]) ≤ 〈[ν−bρ̃, ν−j−1ρ̃]〉 × 〈[νaρ, νiρ]〉 × δ

and

L(δ2, . . . , δk; τ
′) ≤ 〈[νi+1ρ, νjρ]〉o π.

Since a > 0 and τ is tempered, it follows that ρ1 ∼= ρ̃ and x1 = −b. Also,
since δ([νx1ρ1, ν

y1ρ1]) is an irreducible essentially square-integrable represen-
tation and a ≥ 1 implies a > −b+ 1, we obtain that j = b− 1 and i = a− 1.
Consequently, either π ∼= τ or δ ∼= δ([νx1+1ρ̃, νy1 ρ̃]). Since x1 + y1 < 0 and
τ is tempered, we conclude that π 6∼= τ implies x1 = −y1 − 1. Thus, π is
tempered, x1 ∈ {y1,−y1 − 1} and L(δ2, . . . , δk; τ

′) is an irreducible subquo-
tient of 〈[νaρ, νb−1ρ]〉 o π. Repeating this procedure, we obtain that for all
i = 1, . . . , k we have ρi ∼= ρ̃ and xi ∈ {yi,−yi − 1}.

Suppose that there is an i ∈ {1, 2, . . . , k} such that xi = −yi − 1,
xi 6= yi, and let imin denote the minimal such i. From the first part of
the proof, we deduce that L(δimin

, . . . , δk; τ
′) is an irreducible subquotient of

〈[νaρ, νb−imin+1ρ]〉o τ .
If imin = k, we get that there is an irreducible tempered representation

τ1 ∈ R(G) such that τ is a subrepresentation of δ([ν−b+kρ̃, νb−kρ̃]) o τ1 and
τ ′ is a subquotient of 〈[νaρ, νb−kρ]〉o τ1.

Suppose that imin < k. Then there is an irreducible tempered representa-
tion τ1 ∈ R(G) such that τ is a subrepresentation of δ([ν−b+imin ρ̃, νb−imin ρ̃])o
τ1 and L(δimin+1, . . . , δk; τ

′) is an irreducible subquotient of 〈[νaρ, νb−iminρ]〉o
τ1. In the same way as in the first part of the proof, we deduce δimin+1 ∈
{ν−b+imin ρ̃, δ([ν−b+imin ρ̃, νb−imin−1ρ̃])}. If any case, we have

L(δimin
, . . . , δk; τ

′) ↪→ δimin
× δimin+1 o L(δimin+2, . . . , δk; τ

′)
∼= δimin+1 × δimin

o L(δimin+2, . . . , δk; τ
′),
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which is impossible since the structural formula implies that µ∗(〈[νaρ, νb−imin+1ρ]〉o
τ) does not contain an irreducible constituent of the form δimin+1 ⊗ π for
δimin+1 ∈ {ν−b+imin ρ̃, δ([ν−b+imin ρ̃, νb−imin−1ρ̃])}. Thus, imin = k.

The following two lemmas can be proved following exactly the same lines
as in the proofs of [7, Lemma 2.3, Lemma 2.4].

Lemma 2.7. Let π stand for L(ν−cρ1, δ1, . . . , δk; τ1), where −c < e(δ1) and
let ρ1 ∈ R(GL) denote an irreducible self-contragredient cuspidal representa-
tion. If L(δ1, . . . , δk; τ1) is an irreducible subquotient of 〈[νdρ1, νc−1ρ1]〉o τ2,
for some irreducible tempered representation τ2 and −c+ 1 ≤ d, then π is an
irreducible subquotient of 〈[νdρ1, νcρ1]〉o τ2.

Lemma 2.8. Let π stand for L(ν−cρ1, ν
−cρ1, δ1, . . . , δk; τ1), where −c < e(δ1)

and let ρ1 ∈ R(GL) denote an irreducible self-contragredient cuspidal repre-
sentation. If L(δ1, . . . , δk; τ1) is an irreducible subquotient of 〈[ν−c+1ρ1, ν

c−1ρ1]〉o
τ2, for some irreducible tempered representation τ2, then π is an irreducible
subquotient of 〈[ν−cρ1, νcρ1]〉o τ2.

3 On tempered subquotients

Throughout this section, a and b denote real numbers such that b − a is a
non-negative integer. If a ≤ 0, we assume that −a ≤ b and either 2a /∈ Z or
a is half-integral (i.e., 2a ∈ Z but a /∈ Z).

In this section we determine when the induced representation 〈[νaρ, νbρ]〉o
τ contains an irreducible tempered subquotients, under a technical assump-
tion on τ in the case a ≥ 1.

The next lemma follows directly from [9, Section 8].

Lemma 3.1. Suppose that σ′ ∈ R(G) is a discrete series, and let ρ′ ∈ R(GL)
denote an irreducible self-contragredient cuspidal representation. Let c, d be
such that 1 ≤ c ≤ d, d− c, 2c ∈ Z.

(1) If 2c − 1 6∈ Jordρ′(σ
′) and x ∈ Jordρ′(σ

′) for all x ∈ {2c + 1, 2c +
3, . . . , 2d + 1}, then the Jacquet module of σ′ with respect to the appro-
priate parabolic subgroup contains an irreducible representation of the
form νc+1ρ′ ⊗ νc+2ρ′ ⊗ · · · ⊗ νdρ′ ⊗ π.
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(2) If x ∈ Jordρ′(σ
′) for all x ∈ {2c+1, 2c+3, . . . , 2d+1}, (2c+1) is defined

and εσ′(((2c + 1) , ρ′), (2c + 1, ρ′)) = 1, then the Jacquet module of σ′

with respect to the appropriate parabolic subgroup contains an irreducible
representation of the form νc+1ρ′ ⊗ νc+2ρ′ ⊗ · · · ⊗ νdρ′ ⊗ π.

(3) The Jacquet module of σ′ with respect to the appropriate parabolic sub-
group does not contain an irreducible representation of the form νcρ′ ⊗
νc+1ρ′ ⊗ · · · ⊗ νd−1ρ′ ⊗ νdρ′ × νdρ′ ⊗ π.

Lemma 3.2. Suppose that either 2a /∈ Z or ρ is not a self-contragredient
representation. Then 〈[νaρ, νbρ]〉oτ does not contain an irreducible tempered
subquotient.

Proof. Inspecting the cuspidal support of a tempered representation, we ob-
tain that if 〈[νaρ, νbρ]〉oτ contains an irreducible tempered subquotient, then
2a ∈ Z. It remains to consider the case 2a ∈ Z and ρ 6∼= ρ̃. Since twists of ρ
do not appear in the cuspidal support of a discrete series, we obtain that if
〈[νaρ, νbρ]〉oτ contains an irreducible tempered subquotient and ρ 6∼= ρ̃, then
a = −b. Suppose that τ is a subrepresentation of δ([ν−bρ, νbρ])moτ ′, for an ir-
reducible tempered representation τ ′ such that τ ′ is not a subrepresentation of
an induced representation of the form δ([ν−bρ, νbρ])oπ. Then an irreducible
tempered subquotient of 〈[ν−bρ, νbρ]〉 o τ has to be a subrepresentation of
an induced representation of the form δ([ν−bρ, νbρ])m+1 o π, but it follows
directly from the structural formula that µ∗(〈[ν−bρ, νbρ]〉o τ) does not con-
tain an irreducible constituent of the form δ([ν−bρ, νbρ])m+1⊗π. If τ is not a
subrepresentation of an induced representation of the form δ([ν−bρ, νbρ])oπ,
it follows that an irreducible tempered subquotient of 〈[ν−bρ, νbρ]〉 o τ is a
subrepresentation of an induced representation of the form δ([ν−bρ, νbρ])oπ′,
but µ∗(〈[ν−bρ, νbρ]〉 o τ) does not contain an irreducible constituent of the
form δ([ν−bρ, νbρ])⊗ π′. This ends the proof.

The following proposition can be proved following the same lines as in
the proof of [7, Proposition 3.3] and using Lemma 3.2, details being left to
the reader.

Proposition 3.3. Suppose that 2a /∈ Z. Then the induced representation
〈[νaρ, νbρ]〉o τ is irreducible.

From now on, we assume that 2a ∈ Z. In the rest of this section we
handle the case ρ ∼= ρ̃.
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Lemma 3.4. Suppose that τ is a subrepresentation of δ([ν−cρ1, ν
cρ1])

mo τ1,
for a non-negative c, positive m, an irreducible cuspidal ρ1 ∈ R(GL), and
an irreducible tempered τ1 ∈ R(G) such that µ∗(τ1) does not contain an
irreducible constituent of the form δ([ν−cρ1, ν

cρ1])⊗ π. Suppose that one the
following holds:

(1) a ≥ 1 and (c, ρ1) /∈ {(a− 1, ρ), (b, ρ)},

(2) a ≤ 0 and (c, ρ1) /∈ {(−a, ρ), (b, ρ)},

(3) a = 1
2

and (c, ρ1) 6= (b, ρ).

If 〈[νaρ, νbρ]〉oτ contains an irreducible tempered subquotient, then 〈[νaρ, νbρ]〉o
τ1 contains an irreducible tempered subquotient.

Proof. Suppose that 〈[νaρ, νbρ]〉 o τ contains an irreducible tempered sub-
uqotient τ ′. Using the cuspidal support considerations, together with the as-
sumptions of the lemma, we deduce that τ ′ is a subrepresentation of δ([ν−cρ1, ν

cρ1])
mo

τ ′′, for an irreducible tempered representation τ ′′ such that µ∗(τ ′′) does not
contain an irreducible constituent of the form δ([ν−cρ1, ν

cρ1]) ⊗ π. Thus,
µ∗(〈[νaρ, νbρ]〉 o τ) contains δ([ν−cρ1, ν

cρ1])
m ⊗ τ ′′. By the structural for-

mula, there are i, j such that a−1 ≤ i ≤ j ≤ b and an irreducible constituent
δ1 ⊗ π1 of µ∗(τ) such that

δ([ν−cρ1, ν
cρ1])

m ≤ 〈[ν−bρ, ν−j−1ρ]〉 × 〈[νaρ, νiρ]〉 × δ1

and

τ ′′ ≤ 〈[νi+1ρ, νjρ]〉o π1.

If ν−bρ /∈ [ν−cρ1, ν
cρ1], we obtain j = b. If ν−bρ ∈ [ν−cρ1, ν

cρ1] and j ≤ b−1,
from the assumptions of the lemma clearly follows that δ1 embeds into an
induced representation of the form δ([ν−cρ1, ν

−b−1ρ1])× δ2, contradicting the
temperedness of τ . In the same way we conclude that i = a−1. Thus, there is
an irreducible constituent of µ∗(τ) of the form δ([ν−cρ1, ν

cρ1])
m⊗π such that

〈[νaρ, νbρ]〉 o π contains τ ′′. It is easy to conclude, using the structural for-
mula, that the unique irreducible constituent of the form δ([ν−cρ1, ν

cρ1])
m⊗π

appearing in µ∗(τ) is δ([ν−cρ1, ν
cρ1])

m ⊗ τ1, and the lemma is proved.

Theorem 3.5. Suppose that a is half-integral and a < 0. Then 〈[νaρ, νbρ]〉oτ
does not contain an irreducible tempered subquotient.
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Proof. By Lemmas 3.2 and 3.4, it suffices to consider the case ρ ∼= ρ̃ and
τ ↪→ δ1 × · · · × δk o σ, for δi ∈ {δ([νaρ, ν−aρ]), δ([ν−bρ, νbρ])}. We note that
the case τ ∼= σ is covered by [8, Theorem 3.9].

Suppose, on the contrary, that 〈[νaρ, νbρ]〉 o τ contains an irreducible
tempered subquotient τ ′. First we consider the case −a = b. Using the
cuspidal support considerations, we deduce that τ ′ is a subrepresentation of
δ([ν−bρ, νbρ])k+1 o σ′, for a discrete series σ′ ∈ R(G) such that Jord(σ) =
Jord(σ′). If 2b+ 1 ∈ Jordρ(σ), the induced representation δ([ν−bρ, νbρ])k+1o
σ′ is irreducible, so µ∗(τ ′) contains an irreducible constituent of the form
(νbρ)2k+2 ⊗ π, but it follows from the structural formula, description of τ ,
and Lemma 3.1(3) that µ∗(〈[ν−bρ, νbρ]〉o τ) does not contain an irreducible
constituent of such a form.

If 2b+1 /∈ Jordρ(σ), then µ∗(σ) does not contain an irreducible constituent
of the form νbρ⊗π, and the structural formula implies that µ∗(〈[ν−bρ, νbρ]〉o
τ) does not contain δ([ν−bρ, νbρ])k+1 ⊗ σ′, contradicting the Frobenius reci-
procity.

Let us now consider the case −a 6= b. There is no loss of generality in
assuming that δi ∼= δ([νaρ, ν−aρ]) for i = 1, 2, . . . , l, and δi ∼= δ([ν−bρ, νbρ])
for i = l + 1, l + 2, . . . , k, for some l ∈ {0, 1, . . . , k}.

We consider several possibilities separately.

• −2a+ 1 /∈ Jordρ(σ), 2b+ 1 /∈ Jordρ(σ).

In this case, τ ′ is a subrepresentation of δ1×· · ·× δkoσ′, for a discrete series
σ′ ∈ R(G) such that Jord(σ′) = Jord(σ) ∪ {(2b + 1, ρ), (−2a + 1, ρ)}. This
implies that δ1×· · ·×δkoσ′ is irreducible. Note that µ∗(σ) does not contain
an irreducible constituent of the form νxρ⊗ π for x ∈ {−a, b}.

If µ∗(σ′) contains an irreducible constituent of the form ν−aρ⊗ π, it fol-
lows that µ∗(τ ′) contains an irreducible constituent of the form (ν−aρ)2l+1⊗π,
which is impossible since µ∗(〈[νaρ, νbρ]〉o τ) does not contain an irreducible
constituent of such a form. Thus, µ∗(σ′) does not contain an irreducible
constituent of the form ν−aρ ⊗ π, so there is an irreducible tempered sub-
representation τ ′′ of δ([νa+1ρ, ν−a−1ρ])l × δ([ν−bρ, νbρ])k−l o σ′ such that
µ∗(τ ′) ≥ (ν−aρ)2l ⊗ τ ′′. It follows that there is an irreducible tempered
subrepresentation τ1 of δ([νa+1ρ, ν−a−1ρ])l × δ([ν−bρ, νbρ])k−l o σ such that
〈[ν−aρ, νbρ]〉 o τ1 contains τ ′′. Following the same lines as in the proof of
Lemma 3.4 we deduce that there is an irreducible tempered subrepresenta-
tion τ ′′′ of δ([ν−bρ, νbρ])k−loσ′ and an irreducible tempered subrepresentation
τ2 of δ([ν−bρ, νbρ])k−loσ such that 〈[ν−aρ, νbρ]〉o τ2 contains τ ′′′. Repeating
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the same arguments as before we conclude that 〈[ν−aρ, νbρ]〉oσ contains σ′,
which contradicts [8, Theorem 3.9].

• −2a+ 1 /∈ Jordρ(σ), 2b+ 1 ∈ Jordρ(σ).

In this case, there is a discrete series σ′ ∈ R(G) with the property
Jord(σ′) = Jord(σ) ∪ {(−2a + 1, ρ)} \ {(2b + 1, ρ)} and an irreducible tem-
pered subrepresentation τ ′′ of δ([ν−bρ, νbρ])k−l+1 o σ′ such that τ ′ is isomor-
phic to δ([νaρ, ν−aρ])l o τ ′′. In the same way as in the previously consid-
ered case we obtain that µ∗(σ′) does not contain an irreducible constituent
of the form ν−aρ ⊗ π, and that there is an irreducible tempered subrep-
resentation τ1 of δ([ν−bρ, νbρ])k−l o σ such that 〈[ν−aρ, νbρ]〉 o τ1 contains
τ ′′. Since µ∗(τ ′′) ≥ δ([ν−bρ, νbρ])k−l+1 ⊗ σ′, using the structural formula, to-
gether with Lemma 3.1(3), we deduce that there is an irreducible constituent
δ([ν−b+1ρ, νbρ])⊗σ1 of µ∗(σ) such that 〈[ν−aρ, νb−1ρ]〉oσ1 contains σ′. Since
b ≥ 3

2
, [17, Proposition 7.2] implies that σ1 is a discrete series, contradicting

[8, Theorem 3.9].

14



• −2a+ 1 ∈ Jordρ(σ), 2b+ 1 /∈ Jordρ(σ).

In this case, there is a discrete series σ′ ∈ R(G) with the property
Jord(σ′) = Jord(σ) ∪ {(2b + 1, ρ)} \ {(−2a + 1, ρ)} such that τ ′ is an ir-
reducible subrepresentation of δ([νaρ, ν−aρ])l+1× δ([ν−bρ, νbρ])k−loσ′. Note
that δ([ν−bρ, νbρ])k−l o σ′ is irreducible. Using the Frobenius reciprocity
and the structural formula we deduce that there is an irreducible constituent
δ([νa+1ρ, ν−aρ])⊗σ1 of µ∗(σ) such that 〈[ν−a+1ρ, νbρ]〉oπ1 contains δ([ν−bρ, νbρ])k−lo
σ′ for an irreducible subquotient π1 of δ([ν−bρ, νbρ])k−l o σ1. If a < −1

2
, it

follows from [17, Proposition 7.2] that σ1 is a discrete series. If a = −1
2
, it

can be easily obtained from [8, Lemma 3.6] that σ1 is a discrete series such
that (2, ρ) /∈ Jord(σ1). Consequently, π1 is a tempered subrepresentation of
δ([ν−bρ, νbρ])k−l o σ1. In the same way as in the previously considered cases
we obtain that 〈[ν−a+1ρ, νbρ]〉 o σ1 contains σ′. If a < −1

2
, this contradicts

[8, Theorem 3.9], and if a = −1
2

this contradicts [8, Proposition 3.7].

• −2a+ 1 ∈ Jordρ(σ), 2b+ 1 ∈ Jordρ(σ).

In this case, there is a discrete series σ′ ∈ R(G) with the property Jord(σ′) =
Jord(σ) \ {(−2a + 1, ρ), (2b + 1, ρ)} and an irreducible tempered subrepre-
sentation τ ′′ of δ([ν−bρ, νbρ])k−l+1 o σ′ such that τ ′ is an irreducible subrep-
resentation of δ([νaρ, ν−aρ])l+1 o τ ′′. In the same way as in the previously
considered cases, we first deduce that there is a discrete series σ1 ∈ R(G) such
that µ∗(σ) ≥ δ([νa+1ρ, ν−aρ])⊗σ1 and 〈[ν−a+1ρ, νbρ]〉× δ([ν−bρ, νbρ])k−loσ1
contains τ ′′. Note that 2b + 1 ∈ Jordρ(σ) implies 2b + 1 ∈ Jordρ(σ1), so
δ([ν−bρ, νbρ])k−l o σ1 is irreducible. Also, −2a + 1 /∈ Jordρ(σ1). Using the
same reasoning again, we obtain that there is a discrete series σ2 ∈ R(G)
such that µ∗(σ1) ≥ δ([ν−b+1ρ, νbρ]) ⊗ σ2 and 〈[ν−a+1ρ, νb−1ρ]〉 o σ2 contains
σ′. Again, this contradicts either [8, Theorem 3.9] or [8, Proposition 3.7].

The following lemma enables an inductive procedure for the construction
of irreducible tempered subquotients.

Lemma 3.6. Let τ1, τ2 ∈ R(G) denote irreducible tempered representations
and suppose that there is an irreducible square-integrable δ ∈ R(GL) and a
positive integer m such that τ1 is a subrepresentation of δm o τ2 and that
µ∗(τ2) does not contain an irreducible constituent of the form δ⊗π. Suppose
that for an irreducible cuspidal self-contragredient representation ρ1 ∈ R(GL)
and c, d such that 1

2
≤ c ≤ d, d − c ∈ Z, 2c ∈ Z, the induced representation
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〈[νcρ1, νdρ1]〉o τ2 has a unique irreducible tempered subquotient τ ′, which is
a subrepresentation. Also, suppose that δ o τ ′ reduces if and only if δ o τ2
reduces. If δ /∈ {δ([ν−c+1ρ1, ν

c−1ρ1]), δ([ν
−dρ1, ν

dρ1])}, then 〈[νcρ1, νdρ1]〉oτ1
has a unique irreducible tempered subquotient, which is a subrepresentation.

Proof. Let δ ∼= δ([ν−zρ′, νzρ′]). Let us first prove that δ × 〈[νcρ1, νdρ1]〉 is
irreducible if (z, ρ′) 6= (c− 1, ρ1). Denote by π an irreducible subquotient of
δ × 〈[νcρ1, νdρ1]〉, and let π ∼= L(δ1, δ2, . . . , δn) where δi ∼= δ([νxiρ(i), νyiρ(i)]).
It follows that there is a unique j ∈ {1, 2, . . . , n} such that (xj, ρ

(j)) = (−z, ρ′)
and for i ∈ {1, 2, . . . , j − 1} we have xi > xj. Since e(δi) ≤ e(δj) for i ∈
{1, 2, . . . , j − 1}, we obtain yi < yj for i ∈ {1, 2, . . . , j − 1}. Thus, for
i ∈ {1, 2, . . . , j − 1} we have δi × δj ∼= δj × δi, so π is a subrepresentation of

δj × δ1 × · · · × δj−1 × δj+1 × · · · × δn.

Frobenius reciprocity and transitivity of the Jacquet modules imply that the
Jacquet module of π with respect to the appropriate parabolic subgroup
contains an irreducible representation of the form δj ⊗ π′, such that the
Jacquet module of π′ with respect to the appropriate parabolic subgroup
contains δ1 ⊗ · · · ⊗ δj−1 ⊗ δj+1 ⊗ · · · ⊗ δn.

Note that if the Jacquet module of 〈[νcρ1, νdρ1]〉 with respect to the ap-
propriate parabolic subgroup contains an irreducible representation of the
form δ′ ⊗ π1, with δ′ essentially square-integrable, then δ′ ∼= νcρ1. Since
the Jacquet module of δ × 〈[νcρ1, νdρ1]〉 with respect to the appropriate
parabolic subgroup contains δj ⊗ π′ and (z, ρ′) 6= (c − 1, ρ1), it follows that
δj ∼= δ and π′ ∼= 〈[νcρ1, νdρ1]〉. Consequently, every irreducible subquotient
of δ×〈[νcρ1, νdρ1]〉 is isomorphic to the unique irreducible subrepresentation
of δ×νcρ1×νc+1ρ1×· · ·×νdρ1. It can be easily seen that the Jacquet module
of δ × 〈[νcρ1, νdρ1]〉 contains δ ⊗ νcρ1 ⊗ νc+1ρ1 ⊗ · · · ⊗ νdρ1 with multiplicity
one, so δ × 〈[νcρ1, νdρ1]〉 is irreducible. This leads to

δm o τ ′ ↪→ δm × 〈[νcρ1, νdρ1]〉o τ2 ∼= 〈[νcρ1, νdρ1]〉 × δm o τ2.

If δm o τ ′ is irreducible, then τ1 ∼= δm o τ2 and δm o τ ′ is an irreducible
tempered subrepresentation of 〈[νcρ1, νdρ1]〉o τ1. If we denote an irreducible
tempered subquotient of 〈[νcρ1, νdρ1]〉o τ1 by τ ′′, using the cuspidal support
considerations one can easily obtain that τ ′′ ∼= δm o τ3, for an irreducible
tempered representation τ3 such that µ∗(τ3) does not contain an irreducible
constituent of the form δ⊗π. The structural formula now implies that µ∗(τ ′′)
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contains δm⊗ τ3 with the multiplicity 2m. On the other hand, since (z, ρ′) /∈
{(c − 1, ρ1), (d, ρ1)} it follows that if δm ⊗ τ3 appears in µ∗(〈[νcρ1, νdρ1]〉 o
τ1), then τ3 is an irreducible tempered subquotient of 〈[νcρ1, νdρ1]〉 o τ2, so
τ3 ∼= τ ′. Since µ∗(τ1) contains δm ⊗ τ2 with the multiplicity 2m and τ ′ is a
unique irreducible tempered subquotient of 〈[νcρ1, νdρ1]〉oτ2, we deduce that
µ∗(〈[νcρ1, νdρ1]〉o τ1) contains δm⊗ τ ′ with the multiplicity 2m, so δmo τ ′ is
a unique irreducible tempered subquotient of 〈[νcρ1, νdρ1]〉o τ1.

Let us now assume that δm o τ ′ reduces and let δm o τ ′ = τ (1) + τ (2), for
mutually non-isomorphic irreducible tempered representations τ (1) and τ (2).
By the assumption of the lemma, the induced representation δm o τ2 also
reduces, and let δmoτ2 = τ (3)+τ (4), for mutually non-isomorphic irreducible
tempered representations τ (3) and τ (4). By Lemma 2.3, for i ∈ {1, 2} there
is a j ∈ {3, 4} such that τ (i) is a subrepresentation of 〈[νcρ1, νdρ1]〉o τ (j).

Note that for i ∈ {1, 2} there is an irreducible tempered subrepresentation
τ ′′i of δo τ ′ such that τ (i) ∼= δm−1 o τ ′′i . Since δo τ ′ reduces, µ∗(τ ′′i ) contains
δ⊗ τ ′ with the multiplicity 1, so for i ∈ {1, 2}, µ∗(τ (i)) contains δm⊗ τ ′ with
the multiplicity 2m−1.

Applying the same argument, we deduce that µ∗(τ (j)) contains δm ⊗ τ2
with the multiplicity 2m−1 for j ∈ {3, 4}. Following the same reasoning as
in the previously considered case, we obtain that for each irreducible con-
stituent of the form δm⊗π appearing in µ∗(〈[νcρ1, νdρ1]〉oτ (j)), for j ∈ {3, 4}
and π tempered, we have π ∼= τ ′. Also, for j ∈ {3, 4}, µ∗(〈[νcρ1, νdρ1]〉o τ (j))
contains δm ⊗ τ ′ with the multiplicity 2m−1. Consequently, for every j ∈
{3, 4} there is a unique i ∈ {1, 2} such that τ (i) is a subrepresentation of
〈[νcρ1, νdρ1]〉o τ (j), and 〈[νcρ1, νdρ1]〉o τ1 contains a unique irreducible tem-
pered subquotient, which is a subrepresentation.

Proposition 3.7. Suppose that a ≥ 1, ρ ∼= ρ̃, and that µ∗(τ) does not contain
an irreducible constituent of the form δ([ν−a+1ρ, νa−1ρ]) ⊗ π. Also, suppose
that 2b + 1 /∈ Jordρ(σ). If 〈[νaρ, νbρ]〉 o τ contains an irreducible tempered
subquotient, then the following holds:

(1) x ∈ Jordρ(σ) for all x ∈ {2a−1, 2a+1, . . . , 2b−1}, εσ((x , ρ), (x, ρ)) = −1
for all x ∈ {2a+ 1, 2a+ 3, . . . , 2b− 1},

(2) if µ∗(τ) contains an irreducible constituent of the form δ([ν−bρ, νbρ])⊗π1,
and m stands for the largest positive integer such that µ∗(τ) contains
an irreducible constituent of the form δ([ν−bρ, νbρ])m ⊗ π2, then µ∗(τ)
contains an irreducible constituent of the form (νbρ)2m ⊗ π3.
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Proof. Tempered representation τ can be written as a subrepresentation of an
induced representation of the form δ1×· · ·×δkoτ ′, where δi is an irreducible
square-integrable representation, δi 6∼= δ([ν−bρ, νbρ]) for i = 1, 2, . . . , k, and τ ′

is an irreducible tempered representation such that if µ∗(τ ′) contains an irre-
ducible constituent of the form δ⊗ π for δ irreducible and square-integrable,
then δ ∼= δ([ν−bρ, νbρ]).

By Lemma 3.4, if 〈[νaρ, νbρ]〉 o τ contains an irreducible tempered sub-
quotient, then 〈[νaρ, νbρ]〉o τ ′ contains an irreducible tempered subquotient.
If τ ′ is a discrete series representation, then an irreducible tempered subquo-
tient of 〈[νaρ, νbρ]〉oτ ′ also has to be a discrete series since 2b+1 /∈ Jordρ(σ),
and the claim of the proposition follows from [8, Theorem 3.4]. We note that
nowhere in the proof of [8, Theorem 3.4] is used the fact that a is half-integral,
so the proof also covers the case a ∈ Z.

Suppose that τ ′ is not a discrete series. Since 2b + 1 /∈ Jordρ(σ), τ ′ is
a subrepresentation of δ([ν−bρ, νbρ])m o σ, we have 2a − 1 ∈ Jordρ(σ) and
an irreducible tempered subquotient τ1 of 〈[νaρ, νbρ]〉 o τ ′ is isomorphic to
δ([ν−bρ, νbρ])m o σ′, for a discrete series σ′ such that Jord(σ′) = Jord(σ) \
{(2a− 1, ρ)} ∪ {(2b+ 1, ρ)}.

Let us first consider the case a < b. The structural formula implies
that µ∗(〈[νaρ, νbρ]〉 o τ ′) does not contain an irreducible constituent of the
form (νbρ)2m+1 ⊗ π, so µ∗(σ′) does not contain an irreducible constituent
of the form νbρ ⊗ π. It follows that µ∗(τ1) contains an irreducible con-
stituent of the form (νbρ)2m ⊗ τ2, where τ2 is an irreducible tempered sub-
representation of δ([ν−b+1ρ, νb−1ρ])m o σ′. Thus, τ2 is an irreducible sub-
quotient of 〈[νaρ, νbρ]〉 o τ ′′, for an irreducible tempered subrepresentation
τ ′′ of δ([ν−b+1ρ, νb−1ρ])m o σ. Applying Lemma 3.4 again, we obtain that
〈[νaρ, νbρ]〉 o σ contains σ′, and [8, Theorem 3.4] implies that x ∈ Jordρ(σ)
for x ∈ {2a − 1, 2a + 1, . . . , 2b − 1}, εσ((x , ρ), (x, ρ)) = −1 for all x ∈
{2a+ 1, 2a+ 3, . . . , 2b− 1}.

Note that τ can also be written as a subrepresentation of δ([ν−bρ, νbρ])mo
τ ′′, for an irreducible tempered subrepresentation τ ′′ of δ1 × · · · × δk o σ.
Since 2b + 1 /∈ Jordρ(σ) and δi 6∼= δ([ν−bρ, νbρ]) for i = 1, 2, . . . , k, the
induced representation δ([ν−bρ, νbρ])m o τ ′′ reduces by Theorem 2.2 (3).
Also, a < b implies that 2b − 1 ∈ Jordρ(σ), so δ([ν−b+1ρ, νb−1ρ])m o τ ′′

is irreducible. It is now a direct consequence of the structural formula
that (νbρ)2m ⊗ δ([ν−b+1ρ, νb−1ρ])m o τ ′′ is a unique irreducible constituent
of µ∗(δ([ν−bρ, νbρ])m o τ ′′) of the form (νbρ)2m ⊗ π, and appears there with
multiplicity one. Thus, there is a unique irreducible subrepresentation of
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δ([ν−bρ, νbρ])m o τ ′′ which contains an irreducible constituent of the form
(νbρ)2m ⊗ π in the Jacquet module with respect to an appropriate parabolic
subgroup.

In the same way we conclude that an irreducible tempered subquotient
τ (1) of 〈[νaρ, νbρ]〉oτ is isomorphic to δ([ν−bρ, νbρ])moτ (2), for an irreducible
tempered subrepresentation τ (2) of δ1× · · ·× δkoσ′. Thus, µ∗(τ (1)) contains
an irreducible constituent of the form (νbρ)2m⊗π, so µ∗(〈[νaρ, νbρ]〉oτ) also
contains an irreducible constituent of such a form. Since a < b, we obtain
that µ∗(τ) contains an irreducible constituent of the form (νbρ)2m ⊗ π.

Let us now consider the case a = b. Inspecting the cuspidal support of τ ,
we deduce at once that 2a− 1 ∈ Jordρ(σ). In the same way as in the previ-
ously considered case, we get that an irreducible tempered subquotient τ (1)

of νbρo τ is isomorphic to δ([ν−bρ, νbρ])mo τ (2), for an irreducible tempered
subrepresentation τ (2) of δ1 × · · · × δk o σ′, where σ′ is a discrete series such
that Jord(σ′) = Jord(σ) \ {(2b− 1, ρ)}∪ {(2b+ 1, ρ)}. From [17, Lemma 8.1]
follows that there is an irreducible representation π1 such that σ′ is a sub-
representation of νbρo π1. By the assumption of the proposition, δi × νbρ is
irreducible for i = 1, 2, . . . , k, and the standard commuting argument shows
that τ (2) is a subrepresentation of νbρ × δ1 × · · · × δk o π1. Consequently,
µ∗(τ (1)) contains an irreducible constituent of the form (νbρ)2m+1 ⊗ π, so
µ∗(τ) contains an irreducible constituent of the form (νbρ)2m ⊗ π.

The following result is contained in the proof of [6, Theorem 3.18], but
for the sake of completeness we provide a proof here.

Lemma 3.8. Let σ′ ∈ R(G) denote a discrete series, and let ρ′ ∈ R(GL)
stand for an irreducible cuspidal self-contragredient representation. Suppose
that c is such that Jordρ′(σ

′) contains {2c− 3, 2c− 1, 2c+ 1}, and εσ′((2c−
1, ρ′), (2c+1, ρ′)) = 1. We denote by τ ′ an irreducible tempered representation
such that σ′ is a subrepresentation of νcρ′ o τ ′. Then εσ′((2c − 3, ρ′), (2c −
1, ρ′)) = 1 if and only if µ∗(τ ′) contains an irreducible constituent of the form
νc−1ρ′ × νc−1ρ′ ⊗ π.

Proof. From εσ′((2c− 1, ρ′), (2c+ 1, ρ′)) = 1 follows that τ ′ is an irreducible
subrepresentation of δ([ν−c+1ρ′, νc−1ρ′]) o σ′′, for a discrete series σ′′ such
that Jord(σ′′) = Jord(σ′) \ {(2c− 1, ρ′), (2c+ 1, ρ′)}.

Let us first assume that εσ′((2c − 3, ρ′), (2c − 1, ρ′)) = 1. Using Lemma
2.3, we deduce that there are irreducible representations π1 and π2 in R(G)
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such that

σ′ ↪→ δ([νc−1ρ′, νcρ′]) o π1

and

σ′ ↪→ νc−1ρ′ o π2.

The structural formula implies that µ∗(π1) contains an irreducible constituent
of the form νc−1ρ′ ⊗ π3. Since νc−1ρ′ is cuspidal, using Lemma 2.3 we get
that there is also an irreducible representation π4 such that π1 is a subrepre-
sentation of νc−1ρ′ o π4.

Using σ′ ↪→ δ([νc−1ρ′, νcρ′]) × νc−1ρ′ o π4 and the Frobenius reciprocity,
we conclude that µ∗(νcρ′ o τ ′) contains δ([νc−1ρ′, νcρ′]) × νc−1ρ′ ⊗ π4. It
directly follows that µ∗(τ ′) does not contain an irreducible constituent of
the form νcρ′ ⊗ π5, so µ∗(τ ′) contains an irreducible constituent of the form
νc−1ρ′ × νc−1ρ′ ⊗ π.

Let us now assume that µ∗(τ ′) contains an irreducible constituent of the
form νc−1ρ′ × νc−1ρ′ ⊗ π. By [17, Corollary 4.2], τ ′ embeds into νc−1ρ′ ×
νc−1ρ′ o π. Thus, σ′ embeds into νcρ′ × νc−1ρ′ × νc−1ρ′ o π, and by Lemma
2.3, there is an irreducible subquotient π′ of νcρ′×νc−1ρ′×νc−1ρ′ such that σ′

is a subrepresentation of π′ o π. Since π′ ∈ {L(νc−1ρ′, νc−1ρ′, νcρ′), νc−1ρ′ ×
δ([νc−1ρ′, νcρ′])}, it follows that σ′ embeds into an induced representation
of the form νc−1ρ′ o π′′, and, by the definition of the ε-function, we have
εσ′((2c− 3, ρ′), (2c− 1, ρ′)) = 1.

Proposition 3.9. Suppose that a ≥ 1, ρ ∼= ρ̃, and that µ∗(τ) does not
contain an irreducible constituent of the form δ([ν−a+1ρ, νa−1ρ]) ⊗ π. Also,
suppose that 2b + 1 ∈ Jordρ(σ). If 〈[νaρ, νbρ]〉 o τ contains an irreducible
tempered subquotient then x ∈ Jordρ(σ) for all x ∈ {2a− 1, 2a + 1, . . . , 2b−
1}, εσ((x , ρ), (x, ρ)) = −1 for all x ∈ {2a + 1, 2a + 3, . . . , 2b − 1}, and
εσ((2b− 1, ρ), (2b+ 1, ρ)) = 1.

Proof. In the same way as in the proof of Proposition 3.7, we write τ as a
subrepresentation of an induced representation of the form δ1× · · ·× δko τ ′,
where δi is an irreducible square-integrable representation, δi 6∼= δ([ν−bρ, νbρ])
for i = 1, 2, . . . , k, and τ ′ is an irreducible tempered representation such that
if µ∗(τ ′) contains an irreducible constituent of the form δ⊗π for δ irreducible
and square-integrable, then δ ∼= δ([ν−bρ, νbρ]).
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If 〈[νaρ, νbρ]〉 o τ contains an irreducible tempered subquotient, then
Lemma 3.4 implies that 〈[νaρ, νbρ]〉oτ ′ also contains an irreducible tempered
subquotient. If τ ′ is a discrete series representation, using 2b+ 1 ∈ Jordρ(σ)
we conclude that an irreducible tempered subquotient of 〈[νaρ, νbρ]〉 o τ ′ is
not a discrete series representation, and the claim of the proposition follows
from [8, Theorem 3.12], the proof of which is also valid in the case a ∈ Z.

In the rest of the proof we can assume that τ ′ is a subrepresentation of
δ([ν−bρ, νbρ])m o σ, for a positive integer m, and the cuspidal support con-
siderations enable us to conclude that an irreducible tempered subquotient
τ1 of 〈[νaρ, νbρ]〉 o τ ′ is a subrepresentation of δ([ν−bρ, νbρ])m+1 o σ′, for a
discrete series σ′ such that Jord(σ′) = Jord(σ) \ {(2a − 1, ρ), (2b + 1, ρ)}.
It follows that µ∗(〈[νaρ, νbρ]〉 o τ ′) contains δ([ν−bρ, νbρ])m+1 ⊗ σ′, and an
easy application of the structural formula implies that µ∗(σ) contains an
irreducible constituent of the form δ([ν−b+1ρ, νbρ]) ⊗ σ1 such that σ′ is an
irreducible subquotient of 〈[νaρ, νb−1ρ]〉o σ1. Using [17, Proposition 7.2] we
conclude that 2b − 1 ∈ Jordρ(σ), εσ((2b − 1, ρ), (2b + 1, ρ)) = 1 and σ1 is
a discrete series. This completes the proof in the case a = b. If a < b, [8,
Theorem 3.12] implies x ∈ Jordρ(σ) for x ∈ {2a − 1, 2a + 1, . . . , 2b − 3},
εσ((x , ρ), (x, ρ)) = −1 for all x ∈ {2a+ 1, 2a+ 3, . . . , 2b− 3}.

It remains to prove εσ((2b − 3, ρ), (2b − 1, ρ)) = −1 in the case a <
b. There is an irreducible tempered subrepresentation τ2 of δ([ν−bρ, νbρ]) o
σ′ such that τ1 ∼= δ([ν−bρ, νbρ])m o τ2. Using 2b − 1 ∈ Jordρ(σ), in the
same way as in the proof of [17, Lemma 4.1] we conclude that there is a
unique irreducible subrepresentation of δ([ν−bρ, νbρ]) o σ′ which contains an
irreducible representation of the form νbρ×νbρ⊗π in its Jacquet module with
respect to an appropriate parabolic subgroup. Since a < b, µ∗(〈[νaρ, νbρ]〉o
τ ′) does not contain an irreducible constituent of the form (νbρ)2m+2⊗ π′, so
µ∗(τ2) does not contain an irreducible constituent of the form νbρ× νbρ⊗ π.

From εσ((x , ρ), (x, ρ)) = −1 for all x ∈ {2a + 1, 2a + 3, . . . , 2b − 3},
we deduce that µ∗(σ) does not contain an irreducible constituent of the
form νyρ ⊗ π for y ∈ {a + 1, a + 2, . . . , b − 1}. This implies at once that
µ∗(〈[νaρ, νbρ]〉 o τ ′) also does not contain an irreducible constituent of the
form νyρ ⊗ π for y ∈ {a + 1, a + 2, . . . , b − 1}. Using irreducibility of
δ([ν−bρ, νbρ])× νyρ for y ∈ {a+ 1, a+ 2, . . . , b− 1}, a simple commuting ar-
gument shows that µ∗(σ′) does not contain an irreducible constituent of the
form νyρ⊗π for y ∈ {a+1, a+2, . . . , b−1}, so εσ′((x , ρ), (x, ρ)) = −1 for all
x ∈ {2a+1, 2a+3, . . . , 2b−3}. This also implies that µ∗(τ2) does not contain
an irreducible constituent of the form νyρ⊗π for y ∈ {a+1, a+2, . . . , b−1}.
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Using 2a− 1 /∈ Jordρ(σ
′) and a repeated application of [17, Lemma 8.1],

we obtain that there is a discrete series σ′′ such that σ′ is a subrepresentation
of νaρ × νa+1ρ × · · · × νb−1ρ o σ′′. By Lemma 2.3, there is an irreducible
subquotient of νaρ× νa+1ρ× · · · × νb−1ρ such that σ′ is a subrepresentation
of πoσ′′. From εσ′((x , ρ), (x, ρ)) = −1 for all x ∈ {2a+1, 2a+3, . . . , 2b−3}
follows at once that π ∼= 〈[νaρ, νb−1ρ]〉.

In the same way as in the proof of Lemma 3.6 one can see that δ([ν−bρ, νbρ])×
〈[νaρ, νb−1ρ]〉 is irreducible, so τ2 is a subrepresentation of

δ([ν−bρ, νbρ])× 〈[νaρ, νb−1ρ]〉o σ′′ ∼= 〈[νaρ, νb−1ρ]〉 × δ([ν−bρ, νbρ]) o σ′′,

and there is an irreducible tempered subrepresentation τ3 of δ([ν−bρ, νbρ])oσ′′
such that τ2 is a subrepresentation of 〈[νaρ, νb−1ρ]〉o τ3. Note that 2b− 1 /∈
Jordρ(σ

′′), so [14, Theorem 6.1] implies that νbρ o σ′′ is irreducible. Thus,
we have

τ3 ↪→ δ([ν−bρ, νbρ]) o σ′′ ↪→ δ([ν−b+1ρ, νbρ])× ν−bρo σ′′

∼= δ([ν−b+1ρ, νbρ])× νbρo σ′′ ∼= νbρ× δ([ν−b+1ρ, νbρ]) o σ′′,

so there is an irreducible subquotient σ2 of δ([ν−b+1ρ, νbρ])oσ′′ such that τ3 is
a subrepresentation of νbρoσ2. Embedding τ3 ↪→ νbρ× δ([ν−b+1ρ, νbρ])oσ′′

implies that µ∗(τ3) contains an irreducible constituent of the form νbρ×νbρ⊗
π. Thus, µ∗(σ3) contains an irreducible constituent of the form νbρ⊗π. Since
2b+ 1 /∈ Jordρ(σ

′′) and δ([ν−b+1ρ, νb−1ρ])oσ′′ is a length two representation,
it follows that there are exactly two mutually non-isomorphic constituents
of the form νbρ⊗ π appearing in δ([ν−b+1ρ, νbρ]) o σ′′, and each of them ap-
pears there with multiplicity one. Now, using 2b− 1, 2b+ 1 /∈ Jordρ(σ

′′) and
[13, Theorem 2.1], we obtain that σ2 is a discrete series subrepresentation
of δ([ν−b+1ρ, νbρ]) o σ′′. Thus, there is an irreducible tempered subrepre-
sentation τ4 of δ([ν−b+1ρ, νb−1ρ]) o σ′′ such that σ2 is a subrepresentation of
νbρo τ4.

From embeddings

τ2 ↪→ 〈[νaρ, νb−1ρ]〉o τ3 ↪→ 〈[νaρ, νb−1ρ]〉 × νbρo σ2

and Lemma 2.3, we deduce that there is an irreducible subquotient π1 of
〈[νaρ, νb−1ρ]〉 × νbρ such that τ2 is a subrepresentation of π1 o σ2. It can
be directly seen that every irreducible subquotient of 〈[νaρ, νb−1ρ]〉 × νbρ is
isomorphic either to L(νaρ, νa+1ρ, . . . , νb−2ρ, δ([νb−1ρ, νbρ])) or to 〈[νaρ, νbρ]〉.
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Suppose that π1 ∼= L(νaρ, νa+1ρ, . . . , νb−2ρ, δ([νb−1ρ, νbρ])). Note that it
can be seen in the same way as in the proof of Lemma 3.6 that the induced
representation L(νaρ, νa+1ρ, . . . , νb−2ρ) × νbρ is irreducible. We have the
following embeddings and isomorphisms:

τ2 ↪→ L(νaρ, νa+1ρ, . . . , νb−2ρ, δ([νb−1ρ, νbρ])) o σ2

↪→ L(νaρ, νa+1ρ, . . . , νb−2ρ)× δ([νb−1ρ, νbρ])× νbρo τ4
∼= L(νaρ, νa+1ρ, . . . , νb−2ρ)× νbρ× δ([νb−1ρ, νbρ]) o τ4

↪→ L(νaρ, νa+1ρ, . . . , νb−2ρ)× νbρ× νbρ× νb−1ρo τ4
∼= νbρ× νbρ× L(νaρ, νa+1ρ, . . . , νb−2ρ)× νb−1ρo τ4.

This implies that µ∗(τ2) contains an irreducible constituent of the form νbρ×
νbρ⊗ π, a contradiction. Thus, π1 ∼= 〈[νaρ, νbρ]〉.

Note that Jordρ(σ2) contains {2b−3, 2b−1, 2b+1} and εσ2((2b−1, ρ), (2b+
1, ρ)) = 1. If εσ2((2b− 3, ρ), (2b− 1, ρ)) = 1, there is an irreducible represen-
tation π2 such that σ2 is a subrepresentation of νb−1ρo π2. This yields

τ2 ↪→ 〈[νaρ, νbρ]〉o σ2 ↪→ 〈[νaρ, νbρ]〉 × νb−1ρo π2.

Since a ≤ b− 1, it can be seen in the same way as in the proof of Lemma 3.6
that 〈[νaρ, νbρ]〉 × νb−1ρ is irreducible, so τ2 is a subrepresentation of

νb−1ρ× 〈[νaρ, νbρ]〉o π2,

a contradiction. Thus, we have εσ2((2b− 3, ρ), (2b− 1, ρ)) = −1 and Lemma
3.8 implies that µ∗(τ4) does not contain an irreducible constituent of the form
νb−1ρ× νb−1ρ⊗ π.

Following the same lines as in the proof of Lemma 3.6, we obtain

τ1 ∼= δ([ν−bρ, νbρ])m o τ2 ↪→ δ([ν−bρ, νbρ])m × 〈[νaρ, νbρ]〉o σ2
∼= 〈[νaρ, νbρ]〉 × δ([ν−bρ, νbρ])m o σ2.

Since 2b + 1 ∈ Jordρ(σ2), the induced representation δ([ν−bρ, νbρ])m o σ2 is
irreducible. It follows that there is an irreducible representation π such that
the Jacquet module of δ([ν−bρ, νbρ])m o σ2 with respect to an appropriate
parabolic subgroup contains an irreducible quotient of the form νbρ⊗ · · · ⊗
νbρ ⊗ π, where νbρ appears 2m + 1 times. Using the Frobenius reciprocity,
together with Lemma 2.3, we obtain that there is an irreducible representa-
tion π′ such that δ([ν−bρ, νbρ])moσ2 is a subrepresentation of (νbρ)2m+1oπ′.
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Since µ∗(δ([ν−bρ, νbρ])moσ2) contains (νbρ)2m+1⊗π′ and νbρ⊗τ4 is a unique
irreducible constituent of µ∗(σ2) of the form νbρ⊗ π, an easy application of
the structural formula implies π′ ∼= δ([ν−b+1ρ, νb−1ρ])m o τ4.

Consequently, τ1 is a subrepresentation of

νaρ× · · · × νb−1ρ× νbρ× (νbρ)2m+1 × δ([ν−b+1ρ, νb−1ρ])m o τ4,

and the Jacquet module of τ1 with respect to the appropriate parabolic sub-
group contains

νaρ⊗ · · · ⊗ νb−1ρ⊗ (νbρ)2m+2 ⊗ δ([ν−b+1ρ, νb−1ρ])m o τ4. (1)

On the other hand, since τ1 is an irreducible subquotient of 〈[νaρ, νbρ]〉o τ ′

and τ ′ is a subrepresentation of δ([ν−bρ, νbρ])m o σ, the Jacquet module of
〈[νaρ, νbρ]〉 × δ([ν−bρ, νbρ])m o σ with respect to the appropriate parabolic
subgroup also contains (1).

From εσ((2b − 1, ρ), (2b + 1, ρ)) = 1 follows that there is an irreducible
tempered subrepresentation τ5 of δ([ν−b+1ρ, νb−1ρ])oσ1 such that µ∗(σ) con-
tains νbρ ⊗ τ5, and νbρ ⊗ τ5 is a unique irreducible constituent of the form
νbρ⊗ π of µ∗(σ).

By the transitivity of Jacquet modules, the Jacquet module of 〈[νaρ, νbρ]〉×
δ([ν−bρ, νbρ])m o σ with respect to the appropriate parabolic subgroup con-
tains an irreducible representation of the form νaρ ⊗ · · · ⊗ νb−1ρ ⊗ π1, with
π1 such that

µ∗(π1) ≥ (νbρ)2m+2 ⊗ δ([ν−b+1ρ, νb−1ρ])m o τ4.

Since σ is a discrete series, using Lemma 3.1(3) we conclude

π1 ≤ νbρ× δ([ν−bρ, νbρ])m o σ.

The structural formula implies

δ([ν−b+1ρ, νb−1ρ])m o τ4 ≤ δ([ν−b+1ρ, νb−1ρ])m o τ5.

It directly follows that both induced representations δ([ν−b+1ρ, νb−1ρ])mo τ4
and δ([ν−b+1ρ, νb−1ρ])mo τ5 are irreducible. If µ∗(τ5) contains an irreducible
constituent of the form νb−1ρ× νb−1ρ⊗ π, then µ∗(δ([ν−b+1ρ, νb−1ρ])m o τ5)
contains an irreducible constituent of the form (νb−1ρ)2m+2 ⊗ π, but using
the structural formula, together with the description of µ∗(τ4), we obtain
that µ∗(δ([ν−b+1ρ, νb−1ρ])m o τ4) does not contain an irreducible constituent
of such a form. Lemma 3.8 implies εσ((2b − 3, ρ), (2b − 1, ρ)) = −1 and the
proposition is proved.
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Theorem 3.10. Suppose that a ≥ 1, ρ ∼= ρ̃, and that µ∗(τ) does not con-
tain an irreducible constituent of the form δ([ν−a+1ρ, νa−1ρ]) ⊗ π. Then
〈[νaρ, νbρ]〉 o τ contains an irreducible tempered subquotient if and only if
x ∈ Jordρ(σ) for all x ∈ {2a− 1, 2a + 1, . . . , 2b− 1}, εσ((x , ρ), (x, ρ)) = −1
for all x ∈ {2a+ 1, 2a+ 3, . . . , 2b− 1}, and one of the following holds:

(1) 2b + 1 /∈ Jordρ(σ) and µ∗(τ) does not contain an irreducible constituent
of the form δ([ν−bρ, νbρ])⊗ π,

(2) 2b + 1 /∈ Jordρ(σ), µ∗(τ) contains an irreducible constituent of the form
δ([ν−bρ, νbρ])⊗π1, and if m stands for the largest integer such that µ∗(τ)
contains an irreducible constituent of the form δ([ν−bρ, νbρ])m⊗π2, then
µ∗(τ) contains an irreducible constituent of the form (νbρ)2m ⊗ π3,

(3) 2b+ 1 ∈ Jordρ(σ) and εσ((2b− 1, ρ), (2b+ 1, ρ)) = 1.

Furthermore, if 〈[νaρ, νbρ]〉o τ contains an irreducible tempered subquotient
then it contains an irreducible tempered subrepresentation.

Proof. The necessity part follows from Propositions 3.7 and 3.9. To prove
the sufficiency part, we use an inductive procedure based on Lemma 3.6.
By the classification of tempered representations, there is an ordered n-tuple
(τ1, τ2, . . . , τn) of irreducible tempered representations τ1, τ2, . . . , τn ∈ R(G)
such that τ ∼= τn, τ1 is a discrete series, and for i = 2, 3, . . . , n there is
an irreducible square-integrable representation δi ∈ R(GL) and a positive
integer mi such that τi is a subrepresentation of δmi

i o τi−1, and δj 6∼= δk
for j, k ∈ {2, 3, . . . , n}, j 6= k. If there is an i ∈ {2, 3, . . . , n} such that
δi ∼= δ([ν−bρ, νbρ]), we can take i = n. Note that δi 6∼= δ([ν−a+1ρ, νa−1ρ]) for
all i ∈ {2, 3, . . . , n}, and τ1 ∼= σ.

Suppose that x ∈ Jordρ(σ) for all x ∈ {2a − 1, 2a + 1, . . . , 2b − 1}, and
εσ((x , ρ), (x, ρ)) = −1 for all x ∈ {2a+ 1, 2a+ 3, . . . , 2b− 1}.

Let us first assume that 2b + 1 /∈ Jordρ(σ). By [8, Theorem 3.4], there
is a unique discrete series subrepresentation τ (1) of 〈[νaρ, νbρ]〉 o τ1, and
Jord(τ (1)) = Jord(τ1) \ {(2a − 1, ρ)} ∪ {(2b + 1, ρ)}. Let us assume that
δn 6∼= δ([ν−bρ, νbρ]). It follows that δ2oτ (1) reduces if and only if δ2oτ1 reduces
and Lemma 3.6 implies that 〈[νaρ, νbρ]〉 o τ2 contains a unique irreducible
tempered subquotient τ (2), which is a subrepresentation. Also, if n ≥ 2, since
δ2 /∈ {δ([ν−a+1ρ, νa−1ρ]), δ([ν−bρ, νbρ])}, δ3oτ (2) reduces if and only if δ3oτ2
reduces. Repeating this procedure, we obtain that 〈[νaρ, νbρ]〉 o τ contains
an irreducible tempered subrepresentation.
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If δn ∼= δ([ν−bρ, νbρ]), in the same way as in the previously considered
case we conclude that 〈[νaρ, νbρ]〉 o τn−1 contains an irreducible tempered
subrepresentation τ (n−1). Suppose that µ∗(τ) contains an irreducible con-
stituent of the form (νbρ)2mn ⊗ π. It can be seen in the same way as in
the proof of [17, Lemma 4.1] that τ is a unique irreducible subquotient of
δ([ν−bρ, νbρ])mn o τn−1 which contains an irreducible constituent of the form
(νbρ)2mn⊗π in the Jacquet module with respect to the appropriate parabolic
subgroup.

The induced representation δmn
n o τ (n−1) is an irreducible tempered sub-

representation of 〈[νaρ, νbρ]〉 × δmn
n o τn−1. By Lemma 2.3 there is an irre-

ducible subrepresentation τ ′ of δmn
n oτn−1 such that δmn

n oτ (n−1) embeds into
〈[νaρ, νbρ]〉oτ ′. Let x = 0 is a < b, and x = 1 is a = b. Then µ∗(δmn

n oτ (n−1))
contains an irreducible constituent of the form (νbρ)2mn+x⊗π, and it follows
that µ∗(τ ′) has to contain an irreducible constituent of the form (νbρ)2mn⊗π,
so τ ′ ∼= τ .

Let us now assume that 2b+ 1 ∈ Jordρ(σ). By [8, Theorem 3.12], there is
a unique irreducible tempered subrepresentation τ (1) of 〈[νaρ, νbρ]〉o τ1, and
for δ 6∼= δ([ν−a+1ρ, νa−1ρ]) the induced representation δ o τ (1) reduces if and
only if δ o τ1 reduces. If δn 6∼= δ([ν−bρ, νbρ]), the claim follows in the same
way as in the previously considered case.

It remains to consider the case δn ∼= δ([ν−bρ, νbρ]), and let τ (n−1) stand for
a unique irreducible tempered subrepresentation of 〈[νaρ, νbρ]〉o τn−1. From
2b + 1 ∈ Jordρ(σ) follows that τ ∼= δ([ν−bρ, νbρ])mn o τn−1. The induced
representation δ([ν−bρ, νbρ])mn o τ (n−1) is an irreducible tempered subrepre-
sentation of 〈[νaρ, νbρ]〉 × δ([ν−bρ, νbρ])mn o τn−1, and the claim follows.

In the rest of this section we discuss irreducible tempered subquotients
in the case a = 1

2
.

Proposition 3.11. Suppose that ρ ∼= ρ̃ and 2b+1 /∈ Jordρ(σ). If 〈[ν 1
2ρ, νbρ]〉o

τ contains an irreducible tempered subquotient, then the following holds:

(1) x ∈ Jordρ(σ) for all x ∈ {2, 4, . . . , 2b− 1}, εσ((x , ρ), (x, ρ)) = −1 for all
x ∈ {4, 6, . . . , 2b− 1},

(2) if b > 1
2
, then εσ(2, ρ) = −1,

(3) if µ∗(τ) contains an irreducible constituent of the form δ([ν−bρ, νbρ])⊗π1,
and m stands for the largest integer such that µ∗(τ) contains an irre-
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ducible constituent of the form δ([ν−bρ, νbρ])m ⊗ π2, then µ∗(τ) contains
an irreducible constituent of the form (νbρ)2m ⊗ π3.

Proof. We write τ as an irreducible subrepresentation of δ1 × · · · × δk o τ ′,
for irreducible square-integrable δ1, . . . , δk ∈ R(GL), δi 6∼= δ([ν−bρ, νbρ]) for
i = 1, . . . , k, and an irreducible tempered representation τ ′ ∈ R(G) such that
if µ∗(τ ′) contains an irreducible constituent of the form δ⊗π for δ irreducible
and square-integrable, then δ ∼= δ([ν−bρ, νbρ]).

In the same way as in the proof of Proposition 3.7 we deduce that if
〈[ν 1

2ρ, νbρ]〉oτ contains an irreducible tempered subquotient, then 〈[ν 1
2ρ, νbρ]〉o

τ ′ also contains an irreducible tempered subquotient.
If τ ′ is a discrete series, then the claim of the proposition follows from [8,

Proposition 3.7]. Let us assume that τ ′ is a subrepresentation of δ([ν−bρ, νbρ])mo
σ, for a positive integer m. If b > 1

2
, the rest of the proof follows the same

lines as the one of Proposition 3.7.
Let us discuss the case b = 1

2
. Using the cuspidal support considerations

we get that there is a discrete series σ′ ∈ R(G), Jord(σ′) = Jord(σ)∪{(2, ρ)},
such that an irreducible tempered subquotient τ1 of ν

1
2ρ o τ is isomorphic

to δ([ν−
1
2ρ, ν

1
2ρ])m o τ ′′, for an irreducible tempered subrepresentation τ ′′ of

δ1 × · · · × δk o σ′.
It follows that µ∗(ν

1
2ρ× δ([ν− 1

2ρ, ν
1
2ρ])m o σ) contains δ([ν−

1
2ρ, ν

1
2ρ])m ×

δ1 × · · · × δk ⊗ σ′. Since µ∗(σ) does not contain an irreducible constituent
of the form νxρ ⊗ π for x ∈ {1

2
,−1

2
}, we obtain that σ′ is an irreducible

subquotient of ν
1
2ρ o σ. As in [8, Lemma 3.6(2)], we conclude that σ′ is a

subrepresentation of ν
1
2ρ o σ. Consequently, µ∗(τ ′′) contains an irreducible

constituent of the form ν
1
2ρ⊗π1, so µ∗(τ1) contains an irreducible constituent

of the form (ν
1
2ρ)2m+1 ⊗ π2. This implies that µ∗(τ) contains an irreducible

constituent of the form (ν
1
2ρ)2m ⊗ π3, and the proposition is proved.

The following lemma can be proved in the same way as Lemma 3.8, details
being left to the reader.

Lemma 3.12. Let σ′ ∈ R(G) denote a discrete series, and let ρ′ ∈ R(GL)
stand for an irreducible cuspidal self-contragredient representation. Suppose
that Jordρ′(σ

′) contains {2, 4} and εσ′((2, ρ
′), (4, ρ′)) = 1. Let τ ′ denote

an irreducible tempered representation such that σ′ is a subrepresentation
of ν

3
2ρ′ o τ ′. Then εσ′(2, ρ

′) = 1 if and only if µ∗(τ ′) contains an irreducible

constituent of the form ν
1
2ρ′ × ν

1
2ρ′ ⊗ π or, equivalently, if and only if τ ′

embeds into an induced representation of the form ν
1
2ρ′ × ν 1

2ρ′ o π.
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Proposition 3.13. Suppose that ρ ∼= ρ̃ and 2b+1 ∈ Jordρ(σ). If 〈[ν 1
2ρ, νbρ]〉o

τ contains an irreducible tempered subquotient, then one of the following
holds:

(1) b > 1
2
, x ∈ Jordρ(σ) for x ∈ {2, 4, . . . , 2b− 1}, εσ((x , ρ), (x, ρ)) = −1 for

all x ∈ {4, 6, . . . , 2b−1}, εσ((2b−1, ρ), (2b+1, ρ)) = 1, and εσ(2, ρ) = −1,

(2) b = 1
2

and εσ(2, ρ) = 1.

Proof. Similarly as in the proof of Proposition 3.11, we suppose that 〈[ν 1
2ρ, νbρ]〉o

τ contains an irreducible tempered subquotient and write τ as an irreducible
subrepresentation of δ1×· · ·×δkoτ ′, for irreducible square-integrable δ1, . . . , δk ∈
R(GL), δi 6∼= δ([ν−bρ, νbρ]) for i = 1, . . . , k, and an irreducible tempered
representation τ ′ ∈ R(G) such that if µ∗(τ ′) contains an irreducible con-
stituent of the form δ ⊗ π for δ irreducible and square-integrable, then
δ ∼= δ([ν−bρ, νbρ]).

In the same way as in the proof of Proposition 3.7 we obtain that 〈[ν 1
2ρ, νbρ]〉o

τ ′ contains an irreducible tempered subquotient. If τ ′ is a discrete series, the
claim of the proposition follows from [8, Propositions 3.13, 3.14].

It remains to discuss the case τ ′ ∼= δ([ν−bρ, νbρ])m o σ, for m ≥ 1. If
b > 3

2
, the claim of the proposition can be proved following the same lines as

in the proof of Proposition 3.9, so we consider the case b ≤ 3
2
. Let τ1 denote

an irreducible tempered subquotient of 〈[ν 1
2ρ, νbρ]〉o τ ′.

Let us first assume that b = 1
2
. Then τ ′ is a subrepresentation of δ([ν−

1
2ρ,

ν
1
2ρ])m+1oσ′, for a discrete series σ′. It follows that µ∗(ν

1
2ρ×δ([ν− 1

2ρ, ν
1
2ρ])mo

σ) contains δ([ν−
1
2ρ, ν

1
2ρ])m+1 ⊗ σ′. Since σ is square-integrable, it follows

that µ∗(σ) has to contain an irreducible constituent of the form ν
1
2ρ⊗π. By

[17, Proposition 7.4] we have εσ(2, ρ) = 1.
It remains to consider the case b = 3

2
. Using the cuspidal support con-

siderations, we get that τ1 is a subrepresentation of an induced representa-
tion of the form δ([ν−

3
2ρ, ν

3
2ρ])m+1 o σ1, for a discrete series σ1 such that

Jord(σ1) = Jord(σ) \ {(4, ρ)}. Frobenius reciprocity implies

µ∗(〈[ν
1
2ρ, ν

3
2ρ]〉 × δ([ν−

3
2ρ, ν

3
2ρ])m o σ) ≥ δ([ν−

3
2ρ, ν

3
2ρ])m+1 ⊗ σ1,

and in the same way as in the proof of Proposition 3.9 we deduce that
{2, 4} ⊆ Jordρ(σ), εσ((2, ρ), (4, ρ)) = 1, and σ1 is a subquotient of ν

1
2ρo σ′,

for a discrete series σ′ such that σ is a subrepresentation of δ([ν−
1
2ρ, ν

3
2ρ])oσ′.

28



Then 2, 4 /∈ Jordρ(σ
′), and by [8, Lemma 3.6], σ1 is a subrepresentation of

ν
1
2ρo σ′.

We denote by τ ′′ an irreducible tempered subrepresentation of δ([ν−
1
2ρ,

ν
1
2ρ]) o σ′ such that σ embeds into ν

3
2ρo τ ′′.

There is an irreducible tempered subrepresentation τ2 of δ([ν−
3
2ρ, ν

3
2ρ])o

σ1 such that τ1 is isomorphic to δ([ν−
3
2ρ, ν

3
2ρ])mo τ2. Since µ∗(〈[ν 1

2ρ, ν
3
2ρ]〉o

τ ′) does not contain an irreducible constituent of the form (ν
3
2ρ)2m+2 ⊗ π, it

follows that µ∗(τ2) does not contain an irreducible constituent of the form

ν
3
2ρ× ν 3

2ρ⊗ π.
From

τ2 ↪→ δ([ν−
3
2ρ, ν

3
2ρ])× ν

1
2ρo σ′ ∼= ν

1
2ρ× δ([ν−

3
2ρ, ν

3
2ρ]) o σ′

Lemma 2.3 and Theorem 2.2 (1), we get that there is an irreducible subrep-

resentation τ3 of δ([ν−
3
2ρ, ν

3
2ρ])oσ′ such that τ2 embeds into ν

1
2ρo τ3. Since

µ∗(τ2) does not contain an irreducible constituent of the form ν
3
2ρ×ν 3

2ρ⊗π,
we deduce that τ3 is not a subrepresentation of an induced representation of
the form δ([ν

1
2ρ, ν

3
2ρ]) × δ([ν 1

2ρ, ν
3
2ρ]) o π. Also, from 2 /∈ Jordρ(σ

′) we get

that µ∗(τ3) does not contain an irreducible constituent of the form ν
1
2ρ⊗ π.

By [14, Theorem 6.1], ν
3
2ρo σ′ is irreducible. This leads to:

τ3 ↪→ δ([ν−
1
2ρ, ν

3
2ρ])× ν−

3
2ρo σ′

∼= δ([ν−
1
2ρ, ν

3
2ρ])× ν

3
2ρo σ′ ∼= ν

3
2ρ× δ([ν−

1
2ρ, ν

3
2ρ]) o σ′,

and Lemma 2.3 implies that there is an irreducible subquotient σ2 of δ([ν−
1
2ρ,

ν
3
2ρ]) o σ′ such that τ3 embeds into ν

3
2ρo σ2. Since µ∗(τ3) contains an irre-

ducible constituent of the form ν
3
2ρ×ν 3

2ρ⊗π, it follows that µ∗(σ2) contains

an irreducible constituent of the form ν
3
2ρ ⊗ π. Using [13, Theorem 2.1],

together with Theorem 2.2 (1), we get that σ2 is a discrete series subrepre-

sentation of δ([ν−
1
2ρ, ν

3
2ρ]) o σ′, and let τ4 denote an irreducible tempered

subrepresentation of δ([ν−
1
2ρ, ν

1
2ρ]) o σ′ such that σ2 embeds into ν

3
2ρo τ4.

Let us now prove that µ∗(τ4) does not contain an irreducible constituent

of the form ν
1
2ρ× ν 1

2ρ⊗ π, which is, by [17, Corollary 4.5] equivalent to the

fact that τ4 does not embed into ν
1
2ρ × ν 1

2ρ o σ′. Otherwise, σ2 embeds in
ν

3
2ρ × ν 1

2ρ × ν 1
2ρ o σ′, and Lemma 2.3 implies that there is an irreducible

subquotient π1 of ν
3
2ρ×ν 1

2ρ×ν 1
2ρ such that σ2 embeds into π1oσ′. It is easy

to see, using Lemma 3.1(3), that π1 ∼= ν
1
2ρ× δ([ν 1

2ρ, ν
3
2ρ]). Thus, τ3 embeds
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into ν
3
2ρ× ν 1

2ρ× δ([ν 1
2ρ, ν

3
2ρ])o σ′, so there is an irreducible subquotient π2

of ν
3
2ρ× ν 1

2ρ× δ([ν 1
2ρ, ν

3
2ρ]) such that τ3 embeds into π2 o σ′. Since µ∗(τ3)

does not contain an irreducible constituent of the form ν
1
2ρ ⊗ π, it follows

that τ3 ∼= δ([ν
1
2ρ, ν

3
2ρ])× δ([ν 1

2ρ, ν
3
2ρ]), a contradiction.

From
τ2 ↪→ ν

1
2ρo τ3 ↪→ ν

1
2ρ× ν

3
2ρo σ2,

we see that there is an irreducible subquotient π3 of ν
1
2ρ× ν 3

2ρ such that τ2
embeds into π3 o σ2. If π3 ∼= δ([ν

1
2ρ, ν

3
2ρ]), we obtain

τ2 ↪→ δ([ν
1
2ρ, ν

3
2ρ])oσ2 ↪→ δ([ν

1
2ρ, ν

3
2ρ])× ν

3
2ρo τ4 ↪→ ν

3
2ρ× ν

3
2ρ× ν

1
2ρo τ4,

a contradiction. Thus, τ2 is a subrepresentation of 〈[ν 1
2ρ, ν

3
2ρ]〉 o σ2. This

leads to an embedding

τ1 ↪→ 〈[ν
1
2ρ, ν

3
2ρ]〉 × δ([ν−

3
2ρ, ν

3
2ρ])m o σ2.

In the same way as in the proof of Proposition 3.9 we deduce that τ1 is a
subrepresentation of

ν
1
2ρ× (ν

3
2ρ)2m+2 × δ([ν−

1
2ρ, ν

1
2ρ])m o τ4,

so the Jacquet module of τ1 with respect to the appropriate parabolic sub-
group contains

ν
1
2ρ⊗ (ν

3
2ρ)2m+2 ⊗ δ([ν−

1
2ρ, ν

1
2ρ])m o τ4.

Since τ1 is an irreducible subquotient of 〈[ν 1
2ρ, ν

3
2ρ]〉 × δ([ν− 3

2ρ, ν
3
2ρ])m o σ,

and ν
3
2ρ⊗τ ′′ is a unique irreducible constituent of µ∗(σ) of the form ν

3
2ρ⊗π,

following the same lines as in the proof of Proposition 3.9 we obtain that
τ ′′ ∼= τ4. Thus, µ∗(τ ′′) does not contain an irreducible constituent of the

form ν
1
2ρ× ν 1

2ρ⊗ π, and Lemma 3.12 implies εσ(2, ρ) = −1. This completes
the proof.

Theorem 3.14. Suppose that b− 1
2

is a nonnegative integer and ρ ∼= ρ̃. Then

〈[ν 1
2ρ, νbρ]〉oτ contains an irreducible tempered subquotient if and only if one

of the following holds:

(1) b = 1
2
, 2 /∈ Jordρ(σ), and if µ∗(τ) contains an irreducible constituent of

the form δ([ν−
1
2ρ, ν

1
2ρ]) ⊗ π1, and m stands for the largest integer such

that µ∗(τ) contains an irreducible constituent of the form δ([ν−
1
2ρ, ν

1
2ρ])m⊗

π2, then µ∗(τ) contains an irreducible constituent of the form (ν
1
2ρ)2m⊗

π3,
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(2) b = 1
2
, 2 ∈ Jordρ(σ), and εσ(2, ρ) = 1,

(3) b > 1
2
, 2b + 1 /∈ Jordρ(σ), x ∈ Jordρ(σ) for all x ∈ {2, 4, . . . , 2b − 1},

εσ((x , ρ), (x, ρ)) = −1 for all x ∈ {4, 6, . . . , 2b−1}, εσ(2, ρ) = −1, and if
µ∗(τ) contains an irreducible constituent of the form δ([ν−bρ, νbρ])⊗ π1,
and m stands for the largest integer such that µ∗(τ) contains an irre-
ducible constituent of the form δ([ν−bρ, νbρ])m ⊗ π2, then µ∗(τ) contains
an irreducible constituent of the form (νbρ)2m ⊗ π3,

(4) b > 1
2
, 2b + 1 ∈ Jordρ(σ), x ∈ Jordρ(σ) for all x ∈ {2, 4, . . . , 2b − 1},

εσ((x , ρ), (x, ρ)) = −1 for all x ∈ {4, 6, . . . , 2b− 1}, εσ((2b− 1, ρ), (2b+
1, ρ)) = 1, and εσ(2, ρ) = −1.

Furthermore, if 〈[ν 1
2ρ, νbρ]〉o τ contains an irreducible tempered subquotient

then it contains an irreducible tempered subrepresentation.

Proof. The proof can be obtained following the one of Theorem 3.10, using
Propositions 3.11 and 3.13, together with [8, Theorems 3.8, 3.15, Proposi-
tion 3.13].

4 The case a ≥ 1

Throughout this section, a and b denote real numbers such that b − a is a
non-negative integer, 2a ∈ Z, and a ≥ 1.

We determine when the induced representation 〈[νaρ, νbρ]〉o τ reduces.

Lemma 4.1. Suppose that τ is a subrepresentation of δ([ν−a+1ρ̃, νa−1ρ̃])oτ1,
for an irreducible tempered representation τ1. Then the induced representa-
tion νaρo τ contains L(δ([ν−aρ̃, νa−1ρ̃]); τ1).

Proof. Let us first suppose that δ([ν−a+1ρ̃, νa−1ρ̃]) o τ1 is irreducible. Then
in R(G) we have

L(δ([ν−aρ̃, νa−1ρ̃]); τ1) ≤ δ([ν−a+1ρ̃, νa−1ρ̃])× ν−aρ̃o τ1

= νaρ× δ([ν−a+1ρ̃, νa−1ρ̃]) o τ1 ∼= νaρo τ.

Now we suppose that δ([ν−a+1ρ̃, νa−1ρ̃]) o τ1 reduces. It follows that ρ ∼= ρ̃
and 2a+1 /∈ Jordρ(σ). Using a repeated application of [15, Lemma 2.1] we ob-
tain that there are irreducible square-integrable representations δ1, . . . , δk ∈
R(GL) and an irreducible tempered representation τ2 ∈ R(G) such that

τ ∼= δ1 × · · · × δk o τ2,
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and τ2 is a subrepresentation of an induced representation of the form δk+1×
· · · × δl o σ, for irreducible square-integrable representations δk+1, . . . , δl ∈
R(GL) such that δi 6∼= δj for i, j ∈ {k + 1, . . . , l}, i 6= j, and δi o σ reduces
for i ∈ {k + 1, . . . , l}. Obviously, we can take δk+1

∼= δ([ν−a+1ρ, νa−1ρ]), and
there is an irreducible tempered subrepresentation τ3 of δk+2 × · · · × δl o σ
such that τ2 is a subrepresentation of δ([ν−a+1ρ, νa−1ρ])o τ3. Also, it follows
that τ1 is a subrepresentation of δ1 × · · · × δk o τ3.

It is proved in [15, Lemmas 2.2, 2.3] that L(δ([ν−aρ, νa−1ρ]); τ3) is an
irreducible subquotient of νaρo τ2. In R(G) we have

L(δ([ν−aρ̃, νa−1ρ̃]); τ1) ≤ δ1 × · · · × δk × δ([ν−aρ̃, νa−1ρ̃]) o τ3.

Thus, there is an irreducible subquotient π of δ([ν−aρ̃, νa−1ρ̃])o τ3 such that
L(δ([ν−aρ̃, νa−1ρ̃]); τ1) is contained in δ1 × · · · × δk o π. An easy application
of the structural formula implies that π ∼= L(δ([ν−aρ̃, νa−1ρ̃]); τ3). This leads
to

L(δ([ν−aρ̃, νa−1ρ̃]); τ1) ≤ δ1 × · · · × δk o L(δ([ν−aρ̃, νa−1ρ̃]); τ3)

≤ δ1 × · · · × δk × νaρo τ2

= νaρ× δ1 × · · · × δk o τ2 = νaρo τ.

This ends the proof.

Corollary 4.2. Suppose that there is an irreducible tempered representation
τ1 such that τ is a subrepresentation of δ([ν−a+1ρ̃, νa−1ρ̃]) o τ1. Then the
induced representation 〈[νaρ, νbρ]〉o τ reduces.

Proof. Using the previous lemma, in the same way as in the proof of [7,
Proposition 3.5] we deduce that 〈[νaρ, νbρ]〉 o τ contains both irreducible
representations

L(ν−bρ̃, . . . , ν−aρ̃; τ), L(ν−bρ̃, . . . , ν−a−1ρ̃, δ([ν−aρ̃, νa−1ρ̃]); τ1)

so it reduces.

Proposition 4.3. Suppose that ρ is not a self-contragredient representation.
Then the induced representation 〈[νaρ, νbρ]〉o τ reduces if and only if µ∗(τ)
contains an irreducible constituent of the form δ([ν−a+1ρ̃, νa−1ρ̃])⊗ π.
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Proof. If µ∗(τ) contains an irreducible constituent of the form δ([ν−a+1ρ̃, νa−1ρ̃])⊗
π, the claim follows from Lemma 2.4 and Corollary 4.2. Let us now sup-
pose that µ∗(τ) does not contain an irreducible constituent of the form
δ([ν−a+1ρ̃, νa−1ρ̃]) ⊗ π, and let L(δ1, . . . , δk; τ

′) denote an irreducible non-
tempered subquotient of 〈[νaρ, νbρ]〉 o τ , where δi ∼= δ([νxi ρ̃, νyi ρ̃]) for i =
1, . . . , k.

If xi = yi for all i ∈ {1, 2, . . . , k} it follows from Lemmas 2.6(1) and 3.2
that k = b− a+ i and τ ′ ∼= τ .

Suppose that xk = −yk−1 and xk 6= yk. From Lemma 2.6(2) follows that
k ∈ {1, 2, . . . , b− a+ 1}, and there is an irreducible tempered representation
τ1 ∈ R(G), such that τ is a subrepresentation of

δ([ν−b+kρ̃, νb−kρ̃]) o τ1

and τ ′ is a subquotient of 〈[νaρ, νb−kρ]〉 o τ1. Since µ∗(τ) does not contain
an irreducible constituent of the form δ([ν−a+1ρ̃, νa−1ρ̃])⊗ π, we deduce k <
b− a+ 1, which contradicts Lemma 3.2.

Since by Lemma 3.2 every irreducible subquotient of 〈[νaρ, νbρ]〉 o τ is
non-tempered, we obtain that every irreducible subqotient of 〈[νaρ, νbρ]〉o τ
has to be isomorphic to L(ν−bρ̃, ν−b+1ρ̃, . . . , ν−aρ̃; τ). Using [7, Lemma 3.2]
we get that L(ν−bρ̃, ν−b+1ρ̃, . . . , ν−aρ̃; τ) appears in the composition series of
〈[νaρ, νbρ]〉o τ with multiplicity one, so 〈[νaρ, νbρ]〉o τ is irreducible.

Lemma 4.4. Suppose that c and d are such that 2c, 2d are positive inte-
gers, c ≥ 1, and d − c is a positive integer. Let ρ1 ∈ R(GL) denote an
irreducible self-contragredient representation. Let τ1 ∈ R(G) denote an irre-
ducible tempered subrepresentation of δ1 × · · · × δk o σ1, for discrete series
δ1, . . . , δk ∈ R(GL) and σ1 ∈ R(G). Suppose that δi 6∼= δ([ν−c+1ρ1, ν

c−1ρ1]),
for i = 1, 2, . . . , k, x ∈ Jordρ1(σ1) for all x ∈ {2c − 1, 2c + 1, . . . , 2d − 3},
2d − 1 /∈ Jordρ1(σ1), and εσ1((x − 2, ρ1), (x, ρ1)) = −1 for all x ∈ {2c +
1, . . . , 2d− 3}. Suppose that µ∗(τ1) contains an irreducible constituent of the
form δ([ν−d+1ρ1, ν

d−1ρ1])⊗ π, and let m denote the largest integer such that
µ∗(τ1) contains an irreducible constituent of the form δ([ν−d+1ρ1, ν

d−1ρ1])
m⊗

π. Suppose that µ∗(τ1) does not contain an irreducible constituent of the
form (νd−1ρ1)

2m ⊗ π. Then there is an irreducible tempered representation
τ2 ∈ R(G) such that 〈[νcρ1, νdρ1]〉o τ1 contains L(δ([ν−dρ1, ν

d−1ρ1]); τ2).

Proof. Let τ ′1 denote an irreducible tempered representation such that τ1
embeds into δ([ν−d+1ρ1, ν

d−1ρ1])
m o τ ′1. By Theorem 3.10, there is an irre-

ducible tempered subrepresentation of 〈[νcρ1, νd−1ρ1]〉o τ ′1, which we denote
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by τ ′2. Note that δ([ν−d+1ρ1, ν
d−1ρ1])

lo τ ′2 is irreducible for a positive integer
l, and let τ2 ∼= δ([ν−d+1ρ1, ν

d−1ρ1])
m−1 o τ ′2 (we omit δ([ν−d+1ρ1, ν

d−1ρ1])
m−1

if m = 1).
We have the following embeddings and an isomorphism:

L(δ([ν−dρ1, ν
d−1ρ1]); τ2) ↪→ δ([ν−dρ1, ν

d−1ρ1])× δ([ν−d+1ρ1, ν
d−1ρ1])

m−1 o τ ′2
∼= δ([ν−d+1ρ1, ν

d−1ρ1])
m−1 × δ([ν−dρ1, νd−1ρ1]) o τ ′2

↪→ δ([ν−d+1ρ1, ν
d−1ρ1])

m × ν−dρ1 o τ ′2.

Lemma 2.3 implies that there is an irreducible subquotient π1 of ν−dρ1 o
τ ′2 such that L(δ([ν−dρ1, ν

d−1ρ1]); τ2) is a subrepresentation of δ([ν−d+1ρ1,
νd−1ρ1])

moπ1. Since µ∗(L(δ([ν−dρ1, ν
d−1ρ1]); τ2)) contains δ([ν−dρ1, ν

d−1ρ1])⊗
τ2, τ

′
2 is tempered and µ∗(τ ′2) does not contain an irreducible constituent of

the form δ([ν−d+1ρ1, ν
d−1ρ1])⊗π, it follows that µ∗(π1) contains an irreducible

constituent of the form ν−dρ1 ⊗ π, so π1 ∼= L(ν−dρ1; τ
′
2).

Since µ∗(τ ′1) does not contain an irreducible constituent of the form δ([ν−d+1ρ1,
νd−1ρ1])⊗π, it directly follows that L(ν−dρ1, τ

′
1) is a unique non-tempered ir-

reducible subquotient of νdρ1oτ ′1. Using 2d−1 /∈ Jordρ1(σ1) and the cuspidal
support considerations we conclude that there are no irreducible tempered
subquotients of νdρ1 o τ ′1. Thus, νdρ1 o τ ′1 is irreducible. This leads to

L(ν−dρ1; τ
′
2) ↪→ ν−dρ1 o τ ′2 ↪→ ν−dρ1 × 〈[νcρ1, νd−1ρ1]〉o τ ′1
∼= 〈[νcρ1, νd−1ρ1]〉 × ν−dρ1 o τ ′1

∼= 〈[νcρ1, νd−1ρ1]〉 × νdρ1 o τ ′1.

Using Lemma 2.3 again, we obtain that there is an irreducible subquotient
π2 of 〈[νcρ1, νd−1ρ1]〉 × νdρ1 such that L(ν−dρ1; τ

′
2) is a subrepresentation of

π2 o τ ′1. Since µ∗(L(ν−dρ1; τ
′
2)) ≥ ν−dρ1 ⊗ τ ′2 and τ ′1 is tempered, we deduce

π2 ∼= 〈[νcρ1, νdρ1]〉.
In the proof of Lemma 3.6 we have seen that the induced representation

δ([ν−d+1ρ1, ν
d−1ρ1])× 〈[νcρ1, νdρ1] is irreducible, so we have

L(δ([ν−dρ1, ν
d−1ρ1]); τ2) ↪→ δ([ν−d+1ρ1, ν

d−1ρ1])
m × 〈[νcρ1, νdρ1]〉o τ ′1

∼= 〈[νcρ1, νdρ1]〉 × δ([ν−d+1ρ1, ν
d−1ρ1])

m o τ ′1.

Now there is an irreducible subquotient π3 of δ([ν−d+1ρ1, ν
d−1ρ1])

mo τ ′1 such
that L(δ([ν−dρ1, ν

d−1ρ1]); τ2) is a subrepresentation of 〈[νcρ1, νdρ1]〉o π3.
In R(G) we have δ([ν−d+1ρ1, ν

d−1ρ1])
m o τ ′1 = τ1 + τ−1, where τ−1 is an

irreducible tempered representation which embeds into an induced represen-
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tation of the form (νd−1ρ1)
2m o π4. If π3 ∼= τ−1, we get

L(δ([ν−dρ1, ν
d−1ρ1]); τ2) ↪→ 〈[νcρ1, νdρ1]〉 × (νd−1ρ1)

2m o π4
∼= (νd−1ρ1)

2m × 〈[νcρ1, νdρ1]〉o π4.

Let x = 1 if c = d−1, and let x = 0 otherwise. Frobenius reciprocity implies
that µ∗(L(δ([ν−dρ1, ν

d−1ρ1]); τ2)) contains an irreducible constituent of the
form (νd−1ρ1)

2m+x ⊗ π.
Using τ2 ∼= δ([ν−d+1ρ1, ν

d−1ρ1])
m−1 o τ ′2, together with the structural for-

mula and the definition of τ ′2, we deduce that if µ∗(τ2) contains an irre-
ducible constituent of the form (νd−1ρ1)

l ⊗ π then l ≤ 2m + x − 2. Since
L(δ([ν−dρ1, ν

d−1ρ1]); τ2) is an irreducible subquotient of δ([ν−dρ1, ν
d−1ρ1]) o

τ2, using the structural formula we see at once that if µ∗(L(δ([ν−dρ1, ν
d−1ρ1]); τ2))

contains an irreducible constituent of the form (νd−1ρ1)
l ⊗ π then l ≤ 2m +

x − 1, a contradiction. Thus, π3 ∼= τ1 and L(δ([ν−dρ1, ν
d−1ρ1]); τ2) is a sub-

representation of 〈[νcρ1, νdρ1]〉o τ1.

Theorem 4.5. Suppose that a ≥ 1 and ρ ∼= ρ̃. The induced representation
〈[νaρ, νbρ]〉o τ reduces if and only if one of the following holds:

(1) µ∗(τ) contains an irreducible constituent of the form δ([ν−a+1ρ, νa−1ρ])⊗
π.

(2) We have x ∈ Jordρ(σ) for all x ∈ {2a− 1, 2a+ 1, . . . , 2b+ 1}, εσ((x , ρ),
(x, ρ)) = −1 for all x ∈ {2a − 1, 2a + 1, . . . , 2b − 3}, and εσ((2b − 1, ρ),
(2b+ 1, ρ)) = 1.

(3) We have x ∈ Jordρ(σ) for all x ∈ {2a− 1, 2a+ 1, . . . , 2b− 1}, εσ((x , ρ),
(x, ρ)) = −1 for all x ∈ {2a−1, 2a+1, . . . , 2b−3}, 2b+1 /∈ Jordρ(σ), and
if µ∗(τ) contains an irreducible constituent of the form δ([ν−bρ, νbρ])⊗π1,
and m stands for the largest integer such that µ∗(τ) contains an irre-
ducible constituent of the form δ([ν−bρ, νbρ])m ⊗ π2, then µ∗(τ) contains
an irreducible constituent of the form (νbρ)2m ⊗ π3,

(4) There is a c ∈ {a, a + 1, . . . , b − 1} such that x ∈ Jordρ(σ) for all x ∈
{2a−1, 2a+1, . . . , 2c−1}, εσ((x , ρ), (x, ρ)) = −1 for all x ∈ {2a+1, 2a+
3, . . . , 2c−1}, and if 2c+1 ∈ Jordρ(σ) then εσ((2c−1, ρ), (2c+1, ρ)) = 1.

Proof. If (1) holds, 〈[νaρ, νbρ]〉 o τ reduces by Corollary 4.2. If either (2)
or (3) holds, it follows from Theorem 3.10 that 〈[νaρ, νbρ]〉 o τ contains an
irreducible tempered subquotient, so it reduces.
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Let us now suppose that (4) holds. If 〈[νaρ, νcρ]〉 o τ contains an irre-
ducible tempered subquotient, we denote it by τ1, and it can be seen in the
same way as in the proof of [7, Proposition 3.5] that 〈[νaρ, νbρ]〉o τ contains
L(ν−bρ, . . . , ν−c−1ρ; τ1), so it reduces.

If 〈[νaρ, νcρ]〉o τ does not contain an irreducible tempered subquotient,
using Theorem 3.10 we obtain that 2c + 1 /∈ Jordρ(σ), µ∗(τ) contains an
irreducible constituent of the form δ([ν−cρ, νcρ])⊗π1, and if m stands for the
largest integer such that µ∗(τ) contains an irreducible constituent of the form
δ([ν−cρ, νcρ])m ⊗ π2, then µ∗(τ) does not contain an irreducible constituent
of the form (νcρ)2m⊗π3. Now Lemma 4.4 implies that there is an irreducible
tempered representation τ2 ∈ R(G) such that 〈[νaρ, νc+1ρ]〉 o τ contains
L(δ([ν−c−1ρ, νcρ]); τ2). Using an inductive application of Lemma 2.7, we
deduce that

L(ν−bρ, . . . , ν−c−2ρ, δ([ν−c−1ρ, νcρ]); τ2)

is an irreducible subquotient of 〈[νaρ, νbρ]〉o τ , so 〈[νaρ, νbρ]〉o τ reduces.
Let us now assume that neither of (1), (2), (3), (4) holds. Then 〈[νaρ, νbρ]〉o

τ does not contain an irreducible tempered subquotient. Let L(δ1, . . . , δk; τ
′)

denote an irreducible non-tempered subquotient of 〈[νaρ, νbρ]〉o τ , and δi ∼=
δ([νxiρ, νyiρ]) for i = 1, . . . , k.

If xi = yi for all i ∈ {1, 2, . . . , k}, using Lemma 2.6(1) we get that there
is a c ∈ {a − 1, a, . . . , b − 1} such that τ ′ is an irreducible subquotient of
〈[νaρ, νcρ]〉o τ . Theorem 3.10 implies that c = a− 1 and τ ′ ∼= τ .

Suppose that there is i ∈ {1, 2, . . . , k} such that xi 6= yi. Lemma 2.6
implies i = k and xk = −yk − 1. Since µ∗(τ) does not contain an irreducible
constituent of the form δ([ν−a+1ρ, νa−1ρ]) ⊗ π, in the same way as in the
proof of Proposition 4.3 we deduce that k ≤ b− a and there is an irreducible
tempered representation τ1 ∈ R(G) such that τ is a subrepresentation of

δ([ν−b+kρ, νb−kρ]) o τ1

and τ ′ is an irreducible tempered subquotient of 〈[νaρ, νb−kρ]〉 o τ1. It di-
rectly follows that there are irreducible square-integrable representations
δ′1, . . . , δ

′
l ∈ R(GL) such that τ1 is a subrepresentation of δ′1 × · · · × δ′l o σ.

Using a ≤ b − k and Theorem 3.10, we conclude that x ∈ Jordρ(σ) for
all x ∈ {2a − 1, 2a + 1, . . . , 2b − 2k − 1}, εσ((x , ρ), (x, ρ)) = −1 for all
x ∈ {2a + 1, . . . , 2b − 2k − 1}, and if 2b − 2k + 1 ∈ Jordρ(σ) then εσ((2b −
2k− 1, ρ), (2b− 2k+ 1, ρ)) = 1. Since (4) does not hold, we obtain b− k = b,
which is impossible.
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Thus, every irreducible subquotient of 〈[νaρ, νbρ]〉 o τ is isomorphic to
L(ν−bρ, ν−b+1ρ, . . . , ν−aρ; τ), and in the same way as in the proof of Propo-
sition 4.3 we deduce that 〈[νaρ, νbρ]〉o τ is irreducible.

We emphasize that if we write, as in the part (2) of Theorem 2.2, τ as a
subrepresentation of δ(1)×· · ·×δ(r)oσ, for discrete series δ(1), . . . , δ(r) ∈ R(G),
then µ∗(τ) contains an irreducible constituent of the form δ([ν−a+1ρ, νa−1ρ])⊗
π if and only if we have δ(i) ∼= δ([ν−a+1ρ, νa−1ρ]) for some i ∈ {1, . . . , r}.

Suppose that 2b+ 1 /∈ Jordρ(σ), µ∗(τ) contains an irreducible constituent
of the form δ([ν−bρ, νbρ]) ⊗ π1, and let m denote the largest integer such
that µ∗(τ) contains an irreducible constituent of the form δ([ν−bρ, νbρ])m ⊗
π2. Then τ is a subrepresentation of δ([ν−bρ, νbρ])m o τ ′, for an irreducible
tempered representation τ ′ such that µ∗(τ ′) does not contain an irreducible
constituent of the form δ([ν−bρ, νbρ])⊗ π3. Since 2b+ 1 /∈ Jordρ(σ), the part
(3) of Theorem 2.2 implies that the induced representation δ([ν−bρ, νbρ])moτ ′
reduces, and by the part (4) of Theorem 2.2, it is a direct sum of two mutually
non-isomorphic tempered representations τ1 and τ2, and τ ∈ {τ1, τ2}. By the
part (1) of Lemma 2.5, there is a unique i ∈ {1, 2} such that µ∗(τi) contains
an irreducible constituent of the form (νbρ)2m ⊗ π. Thus, if we additionally
assume that µ∗(τ) does not contain an irreducible constituent of the form
δ([ν−a+1ρ, νa−1ρ])⊗ π, x ∈ Jordρ(σ) for all x ∈ {2a− 1, 2a + 1, . . . , 2b− 1},
and εσ((x , ρ), (x, ρ)) = −1 for all x ∈ {2a − 1, 2a + 1, . . . , 2b − 3}, then
there is a unique i ∈ {1, 2} such that 〈[νaρ, νbρ]〉o τi contains an irreducible
tempered subquotient.

We also provide a rephrasing of the previous theorem:

Corollary 4.6. Suppose that ρ ∼= ρ̃ and a ≥ 1 such that 2a is an integer.
The induced representation 〈[νaρ, νbρ]〉 o τ reduces if and only if one of the
following holds:

(1) The Jacquet module of τ with respect to the appropriate parabolic sub-
group contains an irreducible subquotient of the form δ([ν−a+1ρ, νa−1ρ])⊗
π.

(2) There is a c ∈ {a, a + 1, . . . , b} such that 〈[νaρ, νcρ]〉 o τ contains an
irreducible tempered subquotient.

(3) There is a c ∈ {a, a+1, . . . , b} and an irreducible tempered representation
τ ′ ∈ R(G) such that 〈[νaρ, νcρ]〉o τ contains L(δ([ν−cρ, νc−1ρ]); τ ′).
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5 The case a = 1
2

In this section, b denotes a real number such that b − 1
2

is a non-negative

integer. We determine when the induced representation 〈[ν 1
2ρ, νbρ]〉 o τ re-

duces.

Lemma 5.1. If ρ is not a self-contragredient representation, then the induced
representation 〈[ν 1

2ρ, νbρ]〉o τ is irreducible.

Proof. By Lemma 3.2, 〈[ν 1
2ρ, νbρ]〉o τ does not contain an irreducible tem-

pered subquotient. Let L(δ1, . . . , δk; τ
′) denote an irreducible non-tempered

subquotient of 〈[ν 1
2ρ, νbρ]〉o τ , where δi ∼= δ([νxi ρ̃, νyi ρ̃]) for i = 1, . . . , k.

Suppose that there is an i ∈ {1, 2, . . . , k} such that xi = −yi− 1, xi 6= yi.
From Lemma 2.6(2) follows that xk = −yk − 1, and from xk 6= yk we obtain
xk 6= −1

2
. Lemma 2.6(2) also implies that there is an irreducible tempered

representation τ1 and c ∈ {1
2
, 3
2
, . . . , b − 1} such that τ ′ is an irreducible

subquotient of 〈[ν 1
2ρ, νcρ]〉o τ1, which is impossible by Lemma 3.2.

Consequently, we have xi = yi for all i ∈ {1, 2, . . . , k}. Now the rest of
the proof follows in the same way as the one of Proposition 4.3.

The following lemma can be proved in the same way as Lemma 4.4, using
Theorem 3.14.

Lemma 5.2. Suppose that c − 1
2

is a positive integer and let ρ1 ∈ R(GL)
denote an irreducible self-contragredient representation. Let τ1 ∈ R(G) de-
note an irreducible tempered representation, which is a subrepresentation of
δ1×· · ·×δkoσ1, for discrete series δ1, . . . , δk ∈ R(GL) and σ1 ∈ R(G). Sup-
pose that x ∈ Jordρ1(σ1) for all x ∈ {2, 4, . . . , 2c − 3}, 2c − 1 /∈ Jordρ1(σ1),
εσ1((x− 2, ρ1), (x, ρ1)) = −1 for all x ∈ {4, . . . , 2c− 3} and εσ(2, ρ) = −1 if
c ≥ 5

2
. Suppose that µ∗(τ1) contains an irreducible constituent of the form

δ([ν−c+1ρ1, ν
c−1ρ1])⊗π, and let m denote the largest integer such that µ∗(τ1)

contains an irreducible constituent of the form δ([ν−c+1ρ1, ν
c−1ρ1])

m ⊗ π.
Suppose that µ∗(τ1) does not contain an irreducible constituent of the form
(νc−1ρ1)

2m ⊗ π. Then there is an irreducible tempered representation τ2 ∈
R(G) such that 〈[ν 1

2ρ1, ν
cρ1]〉o τ1 contains L(δ([ν−cρ1, ν

c−1ρ1]); τ2).

Theorem 5.3. Suppose that ρ ∼= ρ̃ and let b be such that b − 1
2

is a non-

negative integer. The induced representation 〈[ν 1
2ρ, νbρ]〉 o τ reduces if and

only if one of the following holds:
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(1) 2 ∈ Jordρ(σ) and εσ(2, ρ) = 1.

(2) 2 /∈ Jordρ(σ) and if µ∗(τ) contains an irreducible constituent of the form

δ([ν−
1
2ρ, ν

1
2ρ])⊗ π1, and m stands for the largest integer such that µ∗(τ)

contains an irreducible constituent of the form δ([ν−
1
2ρ, ν

1
2ρ])m⊗π2, then

µ∗(τ) contains an irreducible constituent of the form (ν
1
2ρ)2m ⊗ π3.

(3) b > 1
2
, x ∈ Jordρ(σ) for all x ∈ {2, 4, . . . , 2b+ 1}, εσ((x , ρ), (x, ρ)) = −1

for all x ∈ {4, 6, . . . , 2b − 3}, εσ(2, ρ) = −1, and εσ((2b − 1, ρ), (2b +
1, ρ)) = 1.

(4) b > 1
2
, x ∈ Jordρ(σ) for all x ∈ {2, 4, . . . , 2b− 1}, εσ((x , ρ), (x, ρ)) = −1

for all x ∈ {4, 6, . . . , 2b − 3}, 2b + 1 /∈ Jordρ(σ), εσ(2, ρ) = −1, and if
µ∗(τ) contains an irreducible constituent of the form δ([ν−bρ, νbρ])⊗ π1,
and m stands for the largest integer such that µ∗(τ) contains an irre-
ducible constituent of the form δ([ν−bρ, νbρ])m ⊗ π2, then µ∗(τ) contains
an irreducible constituent of the form (νbρ)2m ⊗ π3,

(5) b > 1
2
, and there is a c ∈ {3

2
, . . . , b − 1} such that x ∈ Jordρ(σ) for all

x ∈ {2, 4, . . . , 2c−1}, εσ((x , ρ), (x, ρ)) = −1 for all x ∈ {2, 4, . . . , 2c−1},
εσ(2, ρ) = −1, and if 2c+1 ∈ Jordρ(σ) then εσ((2c−1, ρ), (2c+1, ρ)) = 1.

Proof. If b > 1
2
, the theorem can be proved following the same lines as in the

proof of Theorem 4.5, just using Lemma 5.2 instead of Lemma 4.4.
Let us comment the case b = 1

2
. In the same way as in the proof of Lemma

2.6 we deduce that every irreducible non-tempered subquotient of ν
1
2ρo τ is

isomorphic to L(ν−
1
2ρ; τ), and it can be seen at once that L(ν−

1
2ρ; τ) appears

in the composition series of ν
1
2ρ o τ with multiplicity one. Consequently,

ν
1
2ρo τ reduces if and only if contains an irreducible tempered subquotient.

Now Theorem 3.14 can be used to finish the proof.

Suppose that 2 /∈ Jordρ(σ), µ∗(τ) contains an irreducible constituent of

the form δ([ν−
1
2ρ, ν

1
2ρ])⊗ π1, and let m denote the largest integer such that

µ∗(τ) contains an irreducible constituent of the form δ([ν−
1
2ρ, ν

1
2ρ])m ⊗ π2.

Then there is an irreducible tempered representation τ ′ ∈ R(G) such that

τ is a subrepresentation of δ([ν−
1
2ρ, ν

1
2ρ])m o τ ′ and µ∗(τ ′) does not contain

an irreducible constituent of the form δ([ν−
1
2ρ, ν

1
2ρ]) ⊗ π3. By the parts (2)

and (3) of Theorem 2.2, δ([ν−
1
2ρ, ν

1
2ρ])mo τ ′ is a direct sum of two mutually

non-isomorphic tempered representations, which we denote by τ1 and τ2. It
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follows from the part (2) of Lemma 2.5 that there is a unique i ∈ {1, 2}
such that µ∗(τi) contains an irreducible constituent of the form (ν

1
2ρ)2m⊗π4.

Thus, there is a unique i ∈ {1, 2} such that 〈[ν 1
2ρ, νbρ]〉o τi reduces.

We also note that Theorem 5.3 can be rephrased as follows:

Corollary 5.4. Suppose that ρ ∼= ρ̃ and let b be such that b − 1
2

is a non-

negative integer. The induced representation 〈[ν 1
2ρ, νbρ]〉 o τ reduces if and

only if one of the following holds:

(1) There is a c ∈ {1
2
, 3
2
, . . . , b} such that 〈[ν 1

2ρ, νcρ]〉 o τ contains an irre-
ducible tempered subquotient.

(2) There is a c ∈ {3
2
, 5
2
, . . . , b} and an irreducible tempered representation

τ ′ ∈ R(G) such that 〈[ν 1
2ρ, νcρ]〉o τ contains L(δ([ν−cρ, νc−1ρ]); τ ′).

6 The case a < 0, a half-integral

In this section, until said otherwise, a and b denote half-integers such that
a < 0 and −a ≤ b. We first determine when the induced representation
〈[νaρ, νbρ]〉o τ reduces. At the end of the section, we provide a summary of
our main results.

Let us first discuss the case of self-contragredient ρ.

Proposition 6.1. Suppose that a is negative and half-integral, and ρ ∼=
ρ̃. Let L(δ1, . . . , δk; τ

′) stand for an irreducible non-tempered subquotient of
〈[νaρ, νbρ]〉 o τ , and let δi ∼= δ([νxiρi, ν

yiρi]) for i = 1, . . . , k. Then for all
i = 1, . . . , k we have ρi ∼= ρ and xi ∈ {yi, yi − 1,−yi − 1}. Also, there is
at most one i ∈ {1, . . . , k} such that xi /∈ {yi, yi − 1}. If j ∈ {2, 3, . . . , k}
is such that xi ∈ {yi, yi − 1} for all i ∈ {1, 2, . . . , j − 1}, then there are c
and d, a ≤ c ≤ 1

2
, 1

2
≤ d ≤ b, such that L(δj, . . . , δk; τ

′) is a subquotient of
〈[νcρ, νdρ]〉o τ .

Proof. In the same way as in the proof of Lemma 2.6, we deduce that are
i, j such that a− 1 ≤ i ≤ j ≤ b, and an irreducible constituent δ⊗π of µ∗(τ)
such that

δ1 ≤ 〈[ν−bρ, ν−j−1ρ]〉 × 〈[νaρ, νiρ]〉 × δ
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and

L(δ2, . . . , δk; τ
′) ≤ 〈[νi+1ρ, νjρ]〉o π.

It follows at once that ρi ∼= ρ, i ∈ {a − 1, a}, and j ∈ {b − 1, b}. Using the
temperedness criterion, we obtain

δ1 ∈{ν−bρ, νaρ, δ([ν−bρ, ν−b+1ρ]), δ([ν−bρ, νb−1ρ]),

δ([νaρ, ν−a−1ρ]), δ([ν−bρ, νb−2ρ])}.

Furthermore, δ1 ∈ {δ([ν−bρ, ν−b+1ρ]), δ([ν−bρ, νb−2ρ])} implies a = −b + 1.
Also, if

δ1 ∈ {ν−bρ, νaρ, δ([ν−bρ, ν−b+1ρ])},
then π ∼= τ .

Suppose that there is an i ∈ {1, 2, . . . , k} such that yi /∈ {xi, xi + 1},
and let us denote the minimal such i by imin. Then for i < imin we have
yi ∈ {xi, xi + 1} and an inductive application of the first part of the proof
shows that there are c and d such that a ≤ c ≤ 1

2
, 1

2
≤ d ≤ b, and

L(δimin
, . . . , δk; τ

′) ≤ 〈[νcρ, νdρ]〉o τ.

Again, ρimin
∼= ρ. We have already seen that yimin

∈ {−ximin
− 2,−ximin

−
1}. Suppose that yimin

= −ximin
− 2. Since µ∗(〈[νcρ, νdρ]〉 o τ) contains

δimin
⊗ L(δimin+1, . . . , δk; τ

′), it follows that d ≥ 5
2
, ximin

= −d, c = −d + 1,
and there is an irreducible tempered representation τ1 such that µ∗(τ) ≥
δ([ν−d+2ρ, νd−2ρ])⊗ τ1 and

L(δimin+1, . . . , δk; τ
′) ≤ 〈[ν−d+2ρ, νd−1ρ]〉o τ1.

Since −d + 2 < 0, Theorem 3.5 implies imin < k. We directly obtain
e(δimin+1) ≥ −1 and ρimin+1

∼= ρ. If ximin+1 = yimin+1, from e(δimin+1) ≥ −1

follows that δimin+1
∼= ν−

1
2ρ. Thus δimin

× δimin+1
∼= δimin+1 × δimin

, so we de-
duce that µ∗(〈[ν−d+1ρ, νdρ]〉 o τ) contains an irreducible constituent of the

form ν−
1
2ρ ⊗ π, which is impossible since −d + 1 ≤ −3

2
and τ is tempered.

Consequently,

δimin+1 ∈ {δ([ν−d+1ρ, νd−2ρ]), δ([ν−d+2ρ, νd−3ρ]), δ([ν−d+1ρ, νd−3ρ])}

This again gives δimin
× δimin+1

∼= δimin+1 × δimin
, so µ∗(〈[ν−d+1ρ, νdρ]〉 o τ)

contains an irreducible constituent of the form δimin+1 ⊗ π, and it follows
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directly from the structural formula that this is possible only if δimin+1
∼=

δ([ν−d+1ρ, νd−2ρ]). Using

L(δimin
, . . . , δk; τ

′) ↪→ δimin+1 × δimin
o L(δimin+2, . . . , δk; τ

′),

together with the structural formula, we deduce that there is an irreducible
tempered representation τ1 such that µ∗(τ) contains δ([ν−d+2ρ, νd−2ρ]) ⊗ τ1
and µ∗(〈[ν−d+2ρ, νdρ]〉 o τ1) contains δimin

⊗ L(δimin+2, . . . , δk; τ
′). It follows

that µ∗(τ1) contains an irreducible constituent of the form δ([ν−d+1ρ, νxρ])⊗
π, for x ≤ d− 2, which contradicts the temperedness of τ1. Thus, we obtain
yimin

= −ximin
− 1.

Suppose that there is an i > imin such that yi = −xi − 1 and yi > 0.
Since e(δimin

) = e(δi), it follows that e(δi) = e(δj) for j ∈ {imin, . . . , i− 1}, so
δj×δi ∼= δi×δj for j ∈ {imin, . . . , i−1}. This enables us to assume i = imin+1.
It follows that µ∗(〈[νcρ, νdρ]〉oτ) contains δimin

×δimin+1⊗L(δimin+2, . . . , δk; τ
′).

Also, µ∗(〈[νcρ, νdρ]〉oτ) contains irreducible constituents of the form δimin
⊗π

and δimin+1 ⊗ π. Now an easy application of the structural formula shows
that {ximin

, ximin+1} = {−d, c}, c ≤ −3
2
, and there is an irreducible tempered

representation τ1 such that µ∗(τ) ≥ δ([ν−d+1ρ, νd−1ρ])×δ([νc+1ρ, ν−c−1ρ])⊗τ1
and L(δimin+2, . . . , δk; τ

′) is a subquotient of 〈[νc+1ρ, νd−1ρ]〉o τ1.
Theorem 3.5 implies imin + 2 ≤ k, so ximin+2 ∈ {c + 1,−d + 1}. Also,

from e(δximin
) ≤ e(δximin+2

) we obtain that either yimin+2 = ximin+2 = −1
2

or
yimin+2 = −ximin+2 − 1. A standard commuting argument implies

L(δimin
, . . . , δk; τ

′) ↪→ δimin+2 × δimin+1 × δimin
o L(δimin+3, . . . , δk; τ

′),

Thus, µ∗(〈[νcρ, νdρ]〉 o τ) contains an irreducible constituent of the form
δimin+2 ⊗ π, and using ximin+2 ∈ {c+ 1,−d+ 1} we get ximin+2 = c = −d+ 1.
Now it can be seen at once that µ∗(〈[νcρ, νdρ]〉 o τ) does not contain an
irreducible constituent of the form δimin+2 × δj ⊗ π, for j ∈ {imin, imin + 1}
such that xj = c. Consequently, there is a unique i ∈ {1, 2, . . . , k} such that
yi /∈ {xi, xi + 1}.

Lemma 6.2. Suppose that c and d are half-integers such that c ≤ −1
2
,

−c ≤ d, and 5
2
≤ d. Let τ1 ∈ R(G) denote an irreducible tempered represen-

tation, and let ρ1 ∈ R(GL) denote an irreducible cuspidal self-contragredient
representation. Suppose that 〈[νcρ1, νdρ1]〉 o τ1 contains L(δ1, . . . , δk; τ

′),
where δi ∼= δ([νxiρ1, ν

yiρ1]) for i = 1, . . . , k, such that x1 = −y1 − 1 and

y1 ≥ 1
2
. Then c = −1

2
, k = 2, δ2 ∼= ν−

1
2ρ1, and 〈[ν 1

2ρ1, ν
dρ1]〉o τ1 reduces.
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Proof. We first show that k ≥ 2. Suppose, on the contrary, that k = 1. It
can be directly seen that x1 ∈ {−d, c}. If x1 = c, then c ≤ −3

2
, and an

easy application of the structural formula implies that there is an irreducible
tempered representation τ2 such that µ∗(τ) ≥ δ([νc+1ρ1, ν

−c−1ρ1]) ⊗ τ2 and
τ ′ is an irreducible subquotient of 〈[νc+1ρ1, ν

dρ1]〉 o τ2, which contradicts
Theorem 3.5. The case x1 = −d 6= c − 1 can be handled in the same way.
Let us consider the case x1 = −d = c − 1, and write τ1 as a subrepre-
sentation of δ([ν−d+2ρ1, ν

d−2ρ1])
m1 o τ2, where τ2 is a tempered representa-

tion such that µ∗(τ2) does not contain an irreducible constituent of the form
δ([ν−d+2ρ1, ν

d−2ρ1])⊗π. Here we also allow m1 = 0, in which case µ∗(τ1) does
not contain an irreducible constituent of the form δ([ν−d+2ρ1, ν

d−2ρ1]) ⊗ π.
Using the cuspidal support considerations we deduce that τ ′ embeds into an
induced representation of the form δ([ν−d+2ρ1, ν

d−2ρ1])
m1 o τ ′1, where τ ′1 is

a tempered representation such that µ∗(τ ′1) does not contain an irreducible
constituent of the form δ([ν−d+2ρ1, ν

d−2ρ1])⊗ π. Consequently,

L(δ([ν−dρ1, ν
d−1ρ1]); τ

′) ↪→ δ([ν−dρ1, ν
d−1ρ1])× δ([ν−d+2ρ1, ν

d−2ρ1])
m1 o τ ′1

∼= δ([ν−d+2ρ1, ν
d−2ρ1])

m1 × δ([ν−dρ1, νd−1ρ1]) o τ ′1,

and there is an irreducible subquotient π1 of δ([ν−dρ1, ν
d−1ρ1])o τ ′1 such that

L(δ([ν−dρ1, ν
d−1ρ1]); τ

′) embeds into δ([ν−d+2ρ1, ν
d−2ρ1])

m1 o π1. Using

µ∗(L(δ([ν−dρ1, ν
d−1ρ1]); τ

′)) ≥ δ([ν−dρ1, ν
d−1ρ1])⊗ τ ′,

we obtain π1 ∼= L(δ([ν−dρ1, ν
d−1ρ1]); τ

′
1). Thus, µ∗(〈[ν−d+1ρ1, ν

dρ1]〉 o τ1)
contains δ([ν−d+2ρ1, ν

d−2ρ1])
m1 ⊗ L(δ([ν−dρ1, ν

d−1ρ1]); τ
′
1). This implies that

L(δ([ν−dρ1, ν
d−1ρ1]); τ

′
1) is an irreducible subquotient of 〈[ν−d+1ρ1, ν

dρ1]〉oτ2.
Now we write τ2 as a subrepresentation of δ([ν−d+1ρ1, ν

d−1ρ1])
m2 o τ3,

where τ3 is a tempered representation such that µ∗(τ3) does not contain an
irreducible constituent of the form δ([ν−d+1ρ1, ν

d−1ρ1]) ⊗ π. Here we also
allow m2 = 0. Similarly as before, τ ′1 can be written as a subrepresentation
of δ([ν−d+1ρ1, ν

d−1ρ1])
m2 o τ ′2, for an irreducible tempered representation τ ′2

such that µ∗(τ ′2) does not contain an irreducible constituent of the form
δ([ν−d+1ρ1, ν

d−1ρ1]) ⊗ π. Let us denote by δ′1, . . . , δ
′
m3
∈ R(GL), σ1 ∈ R(G)

discrete series representations such that τ3 embeds into δ′1 × · · · × δ′m3
o σ1.

We have

L(δ([ν−dρ1, ν
d−1ρ1]); τ

′
1) ↪→ δ([ν−dρ1, ν

d−1ρ1])× δ([ν−d+1ρ1, ν
d−1ρ1])

m2 o τ ′2
∼= δ([ν−d+1ρ1, ν

d−1ρ1])
m2 × δ([ν−dρ1, νd−1ρ1]) o τ ′2

↪→ δ([ν−d+1ρ1, ν
d−1ρ1])

m2+1 × ν−dρ1 o τ ′2,
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and in the same way as before we conclude that L(δ([ν−dρ1, ν
d−1ρ1]); τ

′
1) is

a subrepresentation of δ([ν−d+1ρ1, ν
d−1ρ1])

m2+1 o L(ν−dρ1; τ
′
2). This leads to

µ∗(〈[ν−d+1ρ1, ν
dρ1]〉o τ2) ≥ δ([ν−d+1ρ1, ν

d−1ρ1])
m2+1 ⊗ L(ν−dρ1; τ

′
2).

From the structural formula and the description of τ2, we get that µ∗(σ1)
contains an irreducible constituent of the form δ([ν−d+2ρ1, ν

d−1ρ1]) ⊗ σ2,
and there is an irreducible subquotient π1 of δ′1 × · · · × δ′m3

o σ2 such that
L(ν−dρ1; τ

′
2) is a subquotient of 〈[ν−d+2ρ1, ν

dρ1]〉 o π1. From [17, Proposi-
tion 7.2] we deduce that σ2 is a discrete series, so π1 is an irreducible tem-
pered representation. Since µ∗(〈[ν−d+2ρ1, ν

dρ1]〉oπ1) ≥ ν−dρ1⊗τ ′2, it follows
at once that τ ′2 is an irreducible subquotient of 〈[ν−d+2ρ1, ν

d−1ρ1]〉oπ1, which
contradicts Theorem 3.5. Thus, k ≥ 2.

Using Proposition 6.1 and e(δ1) = −1
2
, we get that δj ∼= ν−

1
2ρ1 for all

j ∈ {2, . . . , k}. From δ1 × ν−
1
2ρ1 ∼= ν−

1
2ρ1 × δ1 we obtain k = 2 and c = −1

2
.

Using the embedding

L(δ1, δ2; τ
′) ↪→ ν−

1
2ρ1 × δ1 o τ ′

and Lemma 2.3, we easily deduce that L(δ1, δ2; τ
′) is a subrepresentation of

ν−
1
2ρ1oL(δ1; τ

′). Thus, µ∗(〈[ν− 1
2ρ1, ν

dρ1]〉oτ1) contains ν−
1
2ρ1⊗L(δ1; τ

′), so

L(δ1; τ
′) is an irreducible subquotient of 〈[ν 1

2ρ1, ν
dρ1]〉oτ1 and 〈[ν 1

2ρ1, ν
dρ1]〉o

τ1 reduces. This proves the lemma.

Lemma 6.3. Suppose that τ1 ∈ R(G) is an irreducible tempered represen-
tation and let ρ1 ∈ R(GL) denote an irreducible cuspidal self-contragredient

representation. If 〈[ν− 1
2ρ1, ν

3
2ρ1]〉oτ1 contains L(δ([ν−

3
2ρ1, ν

1
2ρ1]), δ2, . . . , δk; τ

′)

then there is a c ∈ {1
2
, 3
2
} such that 〈[ν 1

2ρ1, ν
cρ1]〉o τ1 reduces.

Proof. Let us first assume that k ≥ 2. Since e(δ([ν−
3
2ρ1, ν

1
2ρ1])) = −1

2
,

using Proposition 6.1 we obtain that δi ∼= ν−
1
2ρ1 for i = 2, . . . , k. Since

δ([ν−
3
2ρ1, ν

1
2ρ1])×ν−

1
2ρ1 is irreducible, it easily follows that k = 2. Note that

L(δ([ν−
3
2ρ1, ν

1
2ρ1]), ν

− 1
2ρ1; τ

′) is a subrepresentation of ν−
1
2ρ1 o L(δ([ν−

3
2ρ1,

ν
1
2ρ1]); τ

′), so µ∗(〈[ν− 1
2ρ1, ν

3
2ρ1]〉oτ1) contains ν−

1
2ρ1⊗L(δ([ν−

3
2ρ1, ν

1
2ρ1]); τ

′).

Using the structural formula and temperedness of τ1, we deduce that 〈[ν 1
2ρ1,

ν
3
2ρ1]〉o τ1 contains L(δ([ν−

3
2ρ1, ν

1
2ρ1]); τ

′), so 〈[ν 1
2ρ1, ν

3
2ρ1]〉o τ1 reduces.

Let us now assume that k = 1, and write τ1 as a subrepresentation of
δ([ν−

1
2ρ1, ν

1
2ρ1])

moτ2, where τ2 is a tempered representation such that µ∗(τ2)

does not contain an irreducible constituent of the form δ([ν−
1
2ρ1, ν

1
2ρ1])⊗ π.

Here we also allow m = 0. Let σ1 ∈ R(G) denote a discrete series such that
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τ2 is a subrepresentation of δ′1 × · · · × δ′n o σ1, for discrete series δ′1, . . . , δ
′
n ∈

R(GL).
Using the cuspidal support considerations, we deduce that there is an

irreducible tempered representation τ ′1 ∈ R(G) such that τ ′ is a subrepresen-

tation of δ([ν−
1
2ρ1, ν

1
2ρ1])

m o τ ′1. This yields

L(δ([ν−
3
2ρ1, ν

1
2ρ1]); τ

′) ↪→ δ([ν−
3
2ρ1, ν

1
2ρ1])× δ([ν−

1
2ρ1, ν

1
2ρ1])

m o τ ′1
∼= δ([ν−

1
2ρ1, ν

1
2ρ1])

m × δ([ν−
3
2ρ1, ν

1
2ρ1]) o τ ′1

↪→ δ([ν−
1
2ρ1, ν

1
2ρ1])

m+1 × ν−
3
2ρ1 o τ ′1,

so µ∗(〈[ν− 1
2ρ1, ν

3
2ρ1]〉 o τ1) contains an irreducible constituent of the form

δ([ν−
1
2ρ1, ν

1
2ρ1])

m+1⊗π. The structural formula implies that µ∗(σ1) contains

an irreducible constituent of the form ν
1
2ρ1 ⊗ π, so 2 ∈ Jordρ1(σ) and, by

[17, Proposition 7.4], εσ(2, ρ1) = 1. Now Theorem 5.3 implies that ν
1
2ρ1 o τ1

reduces.

This leads us to the main result of this section.

Theorem 6.4. Suppose that ρ ∼= ρ̃ and let a, b denote half-integers such that
a ≤ −1

2
and −a ≤ b. The induced representation 〈[νaρ, νbρ]〉 o τ reduces if

and only if there is a c ∈ {1
2
, 3
2
, . . . , b} such that 〈[ν 1

2ρ, νcρ]〉o τ reduces.

Proof. Let us first assume that there is a c ∈ {1
2
, 3
2
, . . . , b} such that 〈[ν 1

2ρ, νcρ]〉o
τ reduces. By Corollary 5.4, either there is a d ∈ {1

2
, 3
2
, . . . , c} such that

〈[ν 1
2ρ, νdρ]〉 o τ contains an irreducible tempered subquotient, or there is a

d ∈ {3
2
, 5
2
, . . . , c} and an irreducible tempered representation τ ′ ∈ R(G) such

that 〈[ν 1
2ρ, νdρ]〉o τ contains L(δ([ν−dρ, νd−1ρ]); τ ′).

Suppose that there is a d ∈ {1
2
, 3
2
, . . . , c} such that 〈[ν 1

2ρ, νdρ]〉oτ contains
an irreducible tempered subquotient, which we denote by τ ′. If d ≥ −a, a
repeated application of Lemma 2.7 implies that 〈[νaρ, νbρ]〉o τ contains

L(ν−bρ, ν−b+1ρ, . . . , ν−d−1ρ, νaρ, νa+1ρ, . . . , ν−
1
2ρ; τ ′),

so it reduces. If d < −a, using Lemma 2.7 and Lemma 2.8, we obtain that
〈[νaρ, νbρ]〉o τ contains

L(ν−bρ, . . . , νa−1ρ, νaρ, νaρ, . . . , ν−d−1ρ, ν−d−1ρ, ν−dρ, . . . , ν−
1
2ρ; τ ′),
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so it reduces.
Suppose that there is a d ∈ {3

2
, 5
2
, . . . , c} and an irreducible tempered rep-

resentation τ ′ ∈ R(G) such that 〈[ν 1
2ρ, νdρ]〉oτ contains L(δ([ν−dρ, νd−1ρ]); τ ′).

If d ≥ −a, using Lemma 2.7 we get that 〈[νaρ, νbρ]〉o τ contains

L(ν−bρ, ν−b+1ρ, . . . , ν−d−1ρ, νaρ, νa+1ρ, . . . , ν−
1
2ρ, δ([ν−dρ, νd−1ρ]); τ ′),

so it reduces. If d < −a, using Lemma 2.7 and Lemma 2.8, we obtain that
〈[νaρ, νbρ]〉o τ contains

L(ν−bρ, . . . , νa−1ρ, νaρ, νaρ, . . . , ν−d−1ρ, ν−d−1ρ, ν−dρ, . . . , ν−
1
2ρ, δ([ν−dρ, νd−1ρ]); τ ′),

so it reduces.
Let us now assume that 〈[ν 1

2ρ, νcρ]〉 o τ is irreducible for every c ∈
{1
2
, 3
2
, . . . , b}. By Theorem 3.5, 〈[νaρ, νbρ]〉oτ does not contain an irreducible

tempered subquotient. Let us denote by L(δ1, . . . , δk; τ
′) an irreducible non-

tempered subquotient of 〈[νaρ, νbρ]〉 o τ , where δi ∼= δ([νxiρ, νyiρ]) for i =
1, . . . , k. If xi = yi for all i ∈ {1, 2, . . . , k}, it follows from Proposition 6.1
that there are c and d, a ≤ c ≤ 1

2
, 1

2
≤ d ≤ b such that L(δk; τ

′) is a sub-
quotient of 〈[νcρ, νdρ]〉 o τ . Thus, xk ∈ {c,−d} and if c 6= d then τ ′ is an
irreducible subquotient of 〈[νc′ρ, νd′ρ]〉 o τ , for c′ ≤ d′, which is impossible
since c′ ≤ 1

2
. Thus, if xi = yi for all i ∈ {1, 2, . . . , k}, we have

L(δ1, . . . , δk; τ
′) ∼= L(ν−bρ, . . . , νa−1ρ, νaρ, νaρ, . . . , ν−

1
2ρ, ν−

1
2ρ; τ).

Suppose that for all i ∈ {1, 2, . . . , k} we have xi ∈ {yi, yi − 1} and there is
a j ∈ {1, 2, . . . , k} such that xj = yj − 1. We denote the largest such j by
jmax. From Proposition 6.1 we deduce that there is a d, 3

2
≤ d ≤ b, such

that L(δjmax , . . . , δk; τ
′) is an irreducible subquotient of 〈[ν−d+1ρ, νdρ]〉 o τ ,

and δjmax
∼= δ([ν−dρ, ν−d+1ρ]). If jmax = k, it follows that τ ′ is an irreducible

subquotient of 〈[ν−d+2ρ, νd−1ρ]〉oτ . If−d+2 ≤ −1
2
, this contradicts Theorem

3.5. If −d+ 2 = 1
2
, it follows that 〈[ν 1

2ρ, νd−1ρ]〉o τ reduces, a contradiction.
Thus, jmax < k and L(δjmax+1, . . . , δk; τ

′) is an irreducible subquotient of
〈[ν−d+2ρ, νd−1ρ]〉 o τ . From xjmax+1 = yjmax+1 we deduce that δjmax+1 ∈
{ν−d+2ρ, ν−d+1ρ}. If δjmax+1

∼= ν−d+1ρ, we have

L(δjmax , . . . , δk; τ
′) ↪→ δ([ν−dρ, ν−d+1ρ])× ν−d+1ρo L(δjmax+2, . . . , δk; τ

′)

↪→ ν−d+1ρ× ν−d+1ρ× ν−dρo L(δjmax+2, . . . , δk; τ
′),
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so µ∗(L(δjmax , . . . , δk; τ
′)) contains an irreducible constituent of the form ν−d+1ρ×

ν−d+1ρ ⊗ π, which is impossible since µ∗(〈[ν−d+1ρ, νdρ]〉 o τ) does not con-
tain an irreducible constituent of such a form. Thus, δjmax+1

∼= ν−d+2ρ and
L(δjmax+2, . . . , δk; τ

′) is an irreducible subquotient of 〈[ν−d+3ρ, νd−1ρ]〉 o τ .
Repeating this procedure, we get that there is an x, −d + 3 ≤ x ≤ 1

2
, such

that τ ′ is an irreducible subquotient of 〈[νxρ, νd−1ρ]〉oτ , and we have already
seen that this is impossible.

It remains to consider the case xi = −yi − 1, with yi ≥ 1
2
, for some

i ∈ {1, 2, . . . , k}. It follows from Proposition 6.1 that there are c and d, a ≤
c ≤ 1

2
, 1
2
≤ d ≤ b such that L(δi, . . . , δk; τ

′) is a subquotient of 〈[νcρ, νdρ]〉oτ .

Since 〈[ν 1
2ρ, νdρ]〉o τ is irreducible by our assumption, we obtain c ≤ −1

2
. If

(c, d) 6= (−3
2
, 3
2
), this contradicts either Lemma 6.2 or Lemma 6.3. Suppose

that (c, d) = (−3
2
, 3
2
). Then δi ∼= δ([ν−

3
2ρ, ν

1
2ρ]) and L(δi+1, . . . , δk; τ

′) is

an irreducible subquotient of 〈[ν− 1
2ρ, ν

3
2ρ]〉o τ1, for an irreducible tempered

representation τ1 such that µ∗(τ) contains δ([ν−
1
2ρ, ν

1
2ρ])⊗τ1. From Theorem

3.5 we get i + 1 ≤ k. Using e(δi) ≤ e(δi+1) we easily obtain δi+1
∼= ν−

1
2ρ,

so δi × δi+1
∼= δi+1 × δi, and µ∗(〈[ν− 3

2ρ, ν
3
2ρ]〉 o τ) contains an irreducible

constituent of the form ν−
1
2ρ⊗ π, which is impossible.

Consequently, every irreducible subquotient of 〈[νaρ, νbρ]〉o τ is isomor-
phic to

L(ν−bρ, . . . , νa−1ρ, νaρ, νaρ, . . . , ν−
1
2ρ, ν−

1
2ρ; τ).

It is an easy consequence of the structural formula that

ν−bρ⊗ · · · ⊗ νa−1ρ⊗ νaρ× νaρ⊗ · · · ⊗ ν−
1
2ρ× ν−

1
2ρ⊗ τ

appears with the multiplicity one in the Jacquet module of 〈[νaρ, νbρ]〉 o τ
with respect to the appropriate parabolic subgroup. Thus, 〈[νaρ, νbρ]〉o τ is
irreducible.

Let us now discuss the remaining case.

Proposition 6.5. Suppose that ρ 6∼= ρ̃ and let a, b denote half-integers such
that a ≤ −1

2
and −a ≤ b. Then the induced representation 〈[νaρ, νbρ]〉o τ is

irreducible.

Proof. Again, we denote by L(δ1, . . . , δk; τ
′) an irreducible non-tempered sub-

quotient of 〈[νaρ, νbρ]〉 o τ , where δi ∼= δ([νxiρi, ν
yiρi]) for i = 1, . . . , k. It

is enough to prove that xi = yi for all i ∈ {1, . . . , k}, the rest of the proof
follows in the same way as the one of Theorem 6.4.
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In the same way as in the proof of Proposition 6.1 we deduce that for
i = 1, . . . , k we have ρi ∈ {ρ, ρ̃} and xi ∈ {yi,−yi− 1}. Suppose that there is
an i ∈ {1, . . . , k} such that xi = −yi − 1, yi ≥ 1

2
and that for j < i we have

xj = yj. In the same way as in the proof of Proposition 6.1 we see that there
are c and d, a ≤ c ≤ 1

2
, 1

2
≤ d ≤ b, such that L(δi, . . . , δk; τ

′) is a subquotient

of 〈[νcρ, νdρ]〉 o τ . If c = 1
2
, it follows that 〈[ν 1

2ρ, νdρ]〉 o τ reduces, which
contradicts Lemma 5.1. Thus, c ≤ −1

2
. We get (xi, ρi) ∈ {(c, ρ), (−d, ρ̃)},

and there is an irreducible tempered representation τ1 such that µ∗(τ) ≥
δ([ν−yiρi, ν

yiρi]) ⊗ τ1, and L(δi+1, . . . , δk; τ
′) is an irreducible subquotient of

〈[νc′ρ, νd′ρ]〉o τ1, for some c′ ∈ {c, c+ 1} and d′ ∈ {d, d− 1}. It follows that
i + 1 ≤ k. Now, following the same lines as in the proof of Lemma 6.2, we
obtain that this is possible only if c = −1

2
and 〈[ν 1

2ρ, νdρ]〉oτ reduces, which
contradicts Lemma 5.1.

We close this section with a detailed summary of our main results.

Theorem 6.6. Let ρ ∈ R(GL) stand for an irreducible cuspidal represen-
tation, and let τ ∈ R(G) denote an irreducible tempered representation.
We denote by σ ∈ R(G) a discrete series such that τ is a subrepresenta-
tion of δ(1) × · · · × δ(r) o σ, for discrete series δ(1), . . . , δ(r) ∈ R(GL). Let
(Jord(σ), σcusp, εσ) stand for the admissible triple corresponding to σ by the
Mœglin-Tadić classification. Let a, b denote real numbers such that b − a is
a non-negative integer and a+ b ≥ 0.

If 2a /∈ Z, then the induced representation 〈[νaρ, νbρ]〉o τ is irreducible.
If 2a is a positive integer and ρ 6∼= ρ̃, then 〈[νaρ, νbρ]〉 o τ reduces if

and only if a ≥ 1 and µ∗(τ) contains an irreducible constituent of the form
δ([ν−a+1ρ̃, νa−1ρ̃])⊗ π.

If 2a is a positive integer, a ≥ 1, and ρ ∼= ρ̃, then 〈[νaρ, νbρ]〉o τ reduces
if and only if one of the following holds:

(1) µ∗(τ) contains an irreducible constituent of the form δ([ν−a+1ρ, νa−1ρ])⊗
π.

(2) We have x ∈ Jordρ(σ) for all x ∈ {2a− 1, 2a+ 1, . . . , 2b+ 1}, εσ((x , ρ),
(x, ρ)) = −1 for all x ∈ {2a − 1, 2a + 1, . . . , 2b − 3}, and εσ((2b − 1, ρ),
(2b+ 1, ρ)) = 1.

(3) We have x ∈ Jordρ(σ) for all x ∈ {2a− 1, 2a+ 1, . . . , 2b− 1}, εσ((x , ρ),
(x, ρ)) = −1 for all x ∈ {2a−1, 2a+1, . . . , 2b−3}, 2b+1 /∈ Jordρ(σ), and
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if µ∗(τ) contains an irreducible constituent of the form δ([ν−bρ, νbρ])⊗π1,
and m stands for the largest integer such that µ∗(τ) contains an irre-
ducible constituent of the form δ([ν−bρ, νbρ])m ⊗ π2, then µ∗(τ) contains
an irreducible constituent of the form (νbρ)2m ⊗ π3,

(4) There is a c ∈ {a, a + 1, . . . , b − 1} such that x ∈ Jordρ(σ) for all x ∈
{2a−1, 2a+1, . . . , 2c−1}, εσ((x , ρ), (x, ρ)) = −1 for all x ∈ {2a+1, 2a+
3, . . . , 2c−1}, and if 2c+1 ∈ Jordρ(σ) then εσ((2c−1, ρ), (2c+1, ρ)) = 1.

If b− 1
2

is a non-negative integer and ρ ∼= ρ̃, then 〈[ν 1
2ρ, νbρ]〉o τ reduces if

and only if one of the following holds:

(1) 2 ∈ Jordρ(σ) and εσ(2, ρ) = 1.

(2) 2 /∈ Jordρ(σ) and if µ∗(τ) contains an irreducible constituent of the form

δ([ν−
1
2ρ, ν

1
2ρ])⊗ π1, and m stands for the largest integer such that µ∗(τ)

contains an irreducible constituent of the form δ([ν−
1
2ρ, ν

1
2ρ])m⊗π2, then

µ∗(τ) contains an irreducible constituent of the form (ν
1
2ρ)2m ⊗ π3.

(3) b > 1
2
, x ∈ Jordρ(σ) for all x ∈ {2, 4, . . . , 2b+ 1}, εσ((x , ρ), (x, ρ)) = −1

for all x ∈ {4, 6, . . . , 2b − 3}, εσ(2, ρ) = −1, and εσ((2b − 1, ρ), (2b +
1, ρ)) = 1.

(4) b > 1
2
, x ∈ Jordρ(σ) for all x ∈ {2, 4, . . . , 2b− 1}, εσ((x , ρ), (x, ρ)) = −1

for all x ∈ {4, 6, . . . , 2b − 3}, 2b + 1 /∈ Jordρ(σ), εσ(2, ρ) = −1, and if
µ∗(τ) contains an irreducible constituent of the form δ([ν−bρ, νbρ])⊗ π1,
and m stands for the largest integer such that µ∗(τ) contains an irre-
ducible constituent of the form δ([ν−bρ, νbρ])m ⊗ π2, then µ∗(τ) contains
an irreducible constituent of the form (νbρ)2m ⊗ π3,

(5) b > 1
2
, and there is a c ∈ {3

2
, . . . , b − 1} such that x ∈ Jordρ(σ) for all

x ∈ {2, 4, . . . , 2c−1}, εσ((x , ρ), (x, ρ)) = −1 for all x ∈ {2, 4, . . . , 2c−1},
εσ(2, ρ) = −1, and if 2c+1 ∈ Jordρ(σ) then εσ((2c−1, ρ), (2c+1, ρ)) = 1.

If a < 0, 2a ∈ Z, a /∈ Z, and ρ ∼= ρ̃, then 〈[νaρ, νbρ]〉o τ reduces if and only

if there is a c ∈ {1
2
, 3
2
, . . . , b} such that 〈[ν 1

2ρ, νcρ]〉o τ reduces.
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due; leur paramètre de Langlands, in Automorphic forms and related
geometry: assessing the legacy of I. I. Piatetski-Shapiro, vol. 614 of
Contemp. Math., Amer. Math. Soc., Providence, RI, 2014, pp. 295–336.
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