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Guarding 1.5D Terrains with Demands

Khaled Elbassioni∗ Domagoj Matijević† Domagoj Ševerdija‡

Abstract

We consider the 1.5D terrain guarding problem in
which every point on the terrain that is to be covered
has an integer demand associated with it. The goal is
to find a minimum cardinality set of guards such that
each point is guarded by a number of guards satisfy-
ing its demand. We present an algorithm that yields
a 6.7-approximation in the case where the minimum
demand dmin < 5, and a 3-approximation otherwise.
To the best of our knowledge, this is the first constant
factor approximation algorithm for this problem.

As in our previous result [6] we use a fractional
solution to the linear programming relaxation of the
corresponding covering problem to decide, for each
point, the amount of demand that has to be satisfied
from the left and right sides of the point.

1 Introduction

In the 1.5D terrain guarding problem we are given a
polygonal region in the plane determined by an x-
monotone polygonal chain, and the objective is to
find the minimum number of guards to place on the
chain such that every point in the polygonal region
is guarded. This kind of guarding problems and its
generalizations to 3-dimensions are motivated by op-
timal placement of antennas for communication net-
works (see [3, 1] and the references therein for more
details).

The problem considered in this paper is general-
ization of the 1.5D terrain guarding problem. In the
1.5D terrain guarding problem with demands we are
given an x-monotone polygonal chain T in the plane,
a set G ⊂ T of guards and a set N ⊂ T of points with
the associated demand function dp : N → Z+. The
goal is to find a minimum cardinality set of guards
such that each point p ∈ N is guarded by at least dp
different guards form this set.

One motivation for studying this version of the
problem is that it allows for more robust guarding.
Namely, none of the points should stay unguarded
even if some of the guards collapse.
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Previous Work Chen et al. [3] claimed that the
1.5D-terrain guarding problem is NP-hard but they
did not give a complete proof of the claim (see [5]).
They also gave a linear time algorithm for the left-
guarding problem, that is, the problem of placing
the minimum number of guards on the chain such
that each point of the chain is guarded from its left.
Based on purely geometric arguments, Ben-Moshe
et al. [1] gave the first constant-factor approxima-
tion algorithm for the 1.5D-terrain guarding problem,
though they did not state the value of the approxima-
tion factor explicitly (it was claimed to be at least 6
in [8]). Clarkson and Varadarajan [4] gave constant
factor approximation algorithms for a more general
class of problems using ε-nets and showed that their
technique can be used to get a constant approximation
for the 1.5D-terrain guarding problem. King gave an-
other geometric algorithm1 with approximation factor
5.

Elbassioni et al. [6] presented a 4-approximation al-
gorithm for the problem. Unlike most of the previous
techniques, their method was based on rounding the
linear programming relaxation of the corresponding
covering problem. Besides the simplicity of the analy-
sis, which mainly relies on decomposing the constraint
matrix of the LP into totally balanced matrices, their
algorithm generalizes to the weighted and partial ver-
sions of the problem.

Most recently, King and Krohn [11] resolved the
question about the hardness of the problem and
showed that problem is indeed NP-hard. Gibson
et al. [7] obtained a PTAS for the standard 1.5D
terrain guarding problem using a local search tech-
nique. Their analysis relied on a result by Mustafa
and Ray [13].

Clarkson et al. [2] considered a number of geometric
set covering problems with demands and gave, among
other results, an LP-based algorithm that yields an
approximation factor of O(log z∗) for set systems with
bounded VC-dimension, where z∗ is the value of the
optimal solution of the standard covering LP relax-
ation. By a recent result of King [10], the set system
arising in 1.5D-guarding has VC-dimension 4, imply-
ing an O(log z∗)-approximation for the 1.5D-guarding
problem with demands.

1King claimed that the the problem can be approximated
within a factor of 4 in [9]; however, his analysis turned out to
have an error that increases the approximation factor to 5.
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Our Contribution We present an algorithm that
yields a 6.7-approximation in the case where the min-
imum demand dmin < 5, and a 3-approximation oth-
erwise. The main idea of our approach is to compute
the fractional solution of the corresponding LP and,
based on this solution, to decide, for each point, the
portion of demands which has to be met from the left
side and that which has to be met from the right side.
As a result, we end up with left and right guarding
problems with demands, such that satisfying the por-
tions of demands on the left and the right, we meet
the original demand for each point.

The system matrix for the left and the right prob-
lems was shown in [6] to have a special structure;
namely, the matrix is totally balanced. For that rea-
son, it can be shown that the corresponding left and
right guarding problems have integral optimal solu-
tions as described in the book chapter by Kolen and
Tamir [12], even in the case with demands. How-
ever, in order to get more insight into the problem we
provide an alternative proof by constructing a very
simple and easy to understand procedure that finds
the optimal solution for the left and the right guard-
ing problem. We show how to combine the left and
right solutions to arrive at the claimed approximation
guarantee.

2 Preliminaries

A terrain T is an x-monotone polygonal chain. Let V
denote set of vertices of T , and |V | is complexity of
the terrain T . For two points p, q ∈ T we say that p
sees q and denote p ∼ q if the line segment connecting
p and q does not go strictly below T . We say that p is
seen from S ⊂ T if there exists some g ∈ S such that
p ∼ g. Let N ⊂ T , |N | = n, be some set of points
with the demand function dp : N → Z+ defined. Let
G ⊂ T , |G| = m, be some set of guards.

In the 1.5D terrain guarding problem with demands
the task is to find minimum set of guards A ⊆ G
such that every point p in N is guarded by at least dp
guards from A.

We write p < q if point p is on the strict left of q. All
approximation algorithms mentioned in the Previous
Work part are based on the following order claim:

Lemma 1 Let a < b < c < d be four points on T . If
a ∼ c and b ∼ d, then a ∼ d.

For any point p ∈ N we define S(p) to be the set
of guards from G that see p, SL(p) to be the set of
guards from G that see point p strictly from the left
and SR(p) the set of guards from G that see p strictly
from the right.

3 Terrain guarding with demands

Consider the following integer LP formulation for the
problem:

minimize
∑
g∈G

xg (LP1)

subject to∑
g∈S(p)

xg ≥ dp ∀p ∈ N (1)

xg ∈ {0, 1} ∀g ∈ G
Variable xg indicates whether g ∈ G is chosen as

a guard and constraint (1) demands that every point
p ∈ N is guarded with at least dp guards from G.

Let x∗ denote the optimal solution to the LP relax-
ation.

Rounding large values. We fix some parame-
ter α ∈ (0, 1/2) that will be defined later. We let
G0 = {g ∈ G : x∗g ≥ α}, which we take into our
final solution. Then we get a reduced problem by
redefining d′p = dp − |S(p) ∩ G0| for all p ∈ N ,
N ′ = {p ∈ N : d′p ≥ 1}, and dmin = min{d′p : p ∈ N ′}.
Define further G′ = G \ G0, S′(p) = S(p) ∩ G′ and
similarly S′L(p) and S′R(p). Let

NL =
{
p ∈ N ′ |

∑
g∈S′

L(p)

x∗g ≥
1

2
(
∑

g∈S′(p)

x∗g − x∗p)
}

NR =
{
p ∈ N ′ |

∑
g∈S′

R(p)

x∗g ≥
1

2
(
∑

g∈S′(p)

x∗g − x∗p)
}
,

where we assume that x∗p = 0 if p 6∈ G′.
For each p ∈ N ′, we define

dp,L = d
∑
g∈S′

L(p) x
∗
ge,∀p ∈ NL

dp,L = b
∑
g∈S′

L(p) x
∗
g + x∗pc,∀p ∈ NR

dp,R = d
∑
g∈S′

R(p) x
∗
ge,∀p ∈ NR

dp,R = b
∑
g∈S′

R(p) x
∗
g + x∗pc,∀p ∈ NL

as the demand of point p that has to be satisfied from
the guards that are to the left and right of p, respec-
tively. Note that every point p ∈ N ′ must be either
in NL or NR.

Consider the LP formulation for the left-guarding
problem:

minimize
∑
g∈G′

xg (LP2)

subject to∑
g∈S′

L(p)

xg ≥ dp,L ∀p ∈ N ′

0 ≤ xg ≤ 1 ∀g ∈ G′
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and the corresponding dual:

minimize
∑
p∈N ′

dp,Lyp −
∑
g∈G′

zg (LP3)

subject to∑
p : g∈S′

L(p)

yp − zg ≤ 1 ∀g ∈ G′

yp ≥ 0 ∀p ∈ N ′

zg ≥ 0 ∀g ∈ G′

The right-guarding LP can be formulated symmet-
rically. Let z∗, z∗L, z

∗
R be the optima for the original,

left and the right guarding problem, respectively.
The following important claim was shown by Kolen

and Tamir [12] from the property that constraint ma-
trix for the left-guarding problem is totally balanced
(see Elbassioni et al. [6]). In contrast to their ap-
proach, we give a simple procedure that, in O(nm)
time, returns an optimal set of guards for the left-
guarding problem.

Lemma 2 Let GL and GR be the optimum sets of
guards for the left and right guarding problem, re-
spectively. Then |GL| = z∗L and |GR| = z∗R.

Our combinatorial proof of Lemma 2. For simplic-
ity of notation, we will just assume for this subsection
that G0 = ∅, and hence G′ = G. We first give a com-
binatorial algorithm for the problem of guarding a set
of points N from the left.

Algorithm 1 left-guarding(T,N,G)

1. A(p)← ∅, ∀p ∈ N
2. for p ∈ N processed from left to right do
3. while the number of guards in A = ∪p∈NA(p)

that see p is less than dp,L do
4. A(p) = A(p) ∪ {L(p)}
5. return A

In the algorithm, with A(p) we denote the set of
guards activated to satisfy the demand of the point
p, and with L(p) we denote the leftmost guard in the
set SL(p)\A.

For the purpose of the analysis, we distribute the
dual updates as follows:

Algorithm 2 Dual-updates({A(p)}, T )

1. yp = 0, ∀p ∈ N , zg = 0, ∀g ∈ G

2. xg =

{
1, g ∈ A = ∪p∈NA(p)
0, otherwise

3. for p ∈ N processed from right to left do
4. if A(p) has a non-marked guard then
5. mark all guards in SL(p)
6. yp = 1
7. zg =

∑
p|g∈SL(p) yp − 1, ∀g ∈ A

We assume that all the guards are initially un-
marked. We will first argue that the primal and the
dual solutions constructed above are both feasible.
Primal feasibility. Follows from line (3) of the
Algorithm 1.
Dual feasibility. It is enough to show that∑
p|g∈SL(p) yp ≥ 1, ∀g ∈ A, and

∑
p|g∈SL(p) yp ≤ 1,

∀g ∈ G\A. For the first claim, suppose that g ∈ A(p)
and yp = 0. Then there should exist some p′ > p such
that p′ marked g and hence yp′ = 1 and g ∈ SL(p′).
For the second claim, consider some guard ḡ 6∈ A and
suppose that there are two points p < p′ such that
ḡ ∈ SL(p) ∩ SL(p′) and yp = yp′ = 1. Since yp = 1
there exists a guard g < ḡ such that g ∈ A(p) and
g was unmarked when Algorithm 2 was processing p.
By the order claim it follows that g must also see p′

and, therefore, cannot be unmarked.
We have found an integer feasible solution of the

primal and an integer feasible solution of the dual
problem. All that is left to prove that these solu-
tions are optimal is to show that the complementary-
slackness conditions hold.
Primal complementary-slackness. We need to
show that

yp = 1 ⇒
∑

g∈SL(p)

xg = dp,L

zg > 0 ⇒ xg = 1.

If zg > 0 then g is in A and hence xg = 1. Sup-
pose that yp = 1. Then we want to claim that∑
g∈SL(p) xg = dp. Since yp = 1, there exists a

guard g ∈ A(p) that was unmarked when p was
being processed in the Algorithm 2. Suppose that∑
g∈SL(p) xg > dp. Then there is a g′ > g such that

g′ ∼ p and g′ ∈ A(p′) for some p′ > p. Suppose that
guard g′ is marked. But then the point that marked
g′ must also mark g by the order claim. On the other
hand, if g′ is not marked, then the point p′ that is to
the right of p (and, therefore, processed before point
p), would have marked it since g′ ∈ A(p′) and is not
marked, together with g.
Dual complementary-slackness We need to show
that xg = 1 ⇒

∑
p|g∈SL(p) yp − zg = 1. This follows

from step 7 of Algorithm 2. �

We conclude with the final theorem.

Theorem 3 There is a 6.7-approximation for the
1.5D guarding problem with demands.

Proof. Note first that G0 ∪ GL ∪ GR is a feasible
solution, since each point p is seen by at least dp
guards from this set. Indeed, if p 6∈ N ′ then p is
already covered by G0. If p ∈ N ′, then

∑
g∈S′

L(p) x
∗
g+∑

g∈S′
R(p) x

∗
g+x∗p ≥ dp−

∑
g∈S(p)∩G0

x∗g ≥ dp−|S(p)∩
G0| = d′p, from which follows dp,L+dp,R+|S(p)∩G0| ≥
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dp, implying feasibility for point p, by the feasibility
of GL and GR for the left and right subproblems, re-
spectively.

Now we bound the approximation ratio. Note first
by the definition of G0 that |G0| ≤ 1

α

∑
g∈G0

x∗g. We
will show next that the restriction of (1 + β)x∗ on
G′ is feasible for LP2, for some positive constant β.
This will imply that z∗L ≤ (1 + β)

∑
g∈G′ x∗g. By a

similar argument, we can also show that z∗R ≤ (1 +
β)
∑
g∈G′ x∗g.

Namely, note that ∀p ∈ NL it holds that∑
g∈S′

L(p) x
∗
g ≥ 1

2 (dmin − α), and thus∑
g∈S′

L(p)

(1 + β)x∗g =
∑

g∈S′
L(p)

x∗g + β ·
∑

g∈S′
L(p)

x∗g

≥
∑

g∈S′
L(p)

x∗g + β · 1

2
(dmin − α)

≥
∑

g∈S′
L(p)

x∗g + 1,

where the last inequality follows for β ≥ 2/(dmin−α).
Moreover, ∀p ∈ NR by the fact that

dp,L = b
∑

g∈S′
L(p)

x∗g + x∗pc ≤
∑

g∈S′
L(p)

x∗g + α,

it is enough to show the following∑
g∈S′

L(p)

(1 + β)x∗g ≥
∑

g∈S′
L(p)

x∗g + α (2)

Using
∑
g∈S′

L(p) x
∗
g ≥ 1−α (since otherwise, dp,L = 0),

inequality (2) is satisfied if β · (1− α) ≥ α.
Finally note that for all g ∈ G′ the inequality (1 +

β)x∗g ≤ 1 will be satisfied if β ≤ 1
α − 1.

Hence, the cost of the returned solution is

|G0|+ |GL|+ |GR| = |G0|+ z∗L + z∗R

≤ 1

α

∑
g∈G0

x∗g + 2 · (1 + β)
∑
g∈G′

x∗g

≤ max{ 1

α
, 2 · (1 + β)}z∗

≤ max{ 1

α
, 2 · (1 + β)}OPT

where OPT denotes the optimal integer solution to
the original problem.

The above constraints on β imply that the approx-
imation factor is bounded by

γ = min
α∈(0,α′)

max{ 1

α
,

4

dmin − α
+ 2,

2α

1− α
+ 2} (3)

where α′ = min{ 12 ,
3+dmin−

√
(3+dmin)2−4dmin

2 }. Note
that for dmin ≥ 3, α′ = 1

2 .
One can easily verify that for dmin = 1, the maxi-

mum value in (3) will be for α = 0.149 that balances
the terms 1

α and 4
1−α+2. This leads to γ = 6.7, which

concludes the proof of the theorem. �

Remark. With a more careful analysis of (3), one
can express the approximation factor in terms of dmin,
for dmin < 5. Moreover, for dmin ≥ 5 and α = 1/3,
the approximation factor will reduce to γ = 3.
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