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Abstract

The purpose of this paper is to determine Jacquet modules of dis-
crete series which are obtained by adding a pair of consecutive ele-
ments on which the ϵ-function equals one to a Jordan block of an irre-
ducible strongly positive representation. Such representations present
the first inductive step in the realization of discrete series starting from
the strongly positive ones. We are interested in determining Jacquet
modules with respect to the maximal parabolic subgroups, with an
irreducible essentially square-integrable representation on the general
linear part.

1 Introduction

Discrete series representations present one of the most extensively studied
parts of the unitary duals of reductive p-adic groups, with numerous appli-
cations in harmonic analysis and theory of automorphic forms. In the case
of p-adic classical groups, this prominent class of representations has been
classified in the work of Mœglin and Tadić ([9, 11]), under a natural hypoth-
esis which now follows from the work of Arthur ([1]), some further details on
the completion of this classification can be seen in [10]. According to this
classification, discrete series are in bijective correspondence with so-called
admissible triples consisting of Jordan block, ϵ-function and partial cuspidal
support. Furthermore, each discrete series can be obtained as a result of an
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inductive procedure consisting of repeated adding of new consecutive pairs
to Jordan block, starting from the strongly positive discrete series.

Thus, the strongly positive discrete series serve as a cornerstone in such
construction of discrete series. An algebraic classification of such representa-
tions is given in [5] and, based on that classification, a complete description
of Jacquet modules of strongly positive discrete series has been obtained in
[7]. The results obtained there show that, if we denote by π⊗σ an irreducible
representation contained in Jacquet module of strongly positive representa-
tion with respect to the maximal parabolic subgroup, then σ is also a strongly
positive discrete series, while π is a ladder representation of particular type.
We note that such representations of general linear groups have lately been
studied in detail in [3] and [4].

On the other hand, it is evident that on the classical group parts of
Jacquet modules of non-strongly positive discrete series appear representa-
tions belonging to different classes, ranging from discrete series to the non-
tempered ones. It is natural to initially extend the investigation of Jacquet
modules of discrete series started in [7] to discrete series obtained by adding
a pair of consecutive elements on which the ϵ-function equals one to a Jor-
dan block of strongly positive discrete series. This class of representations
already shows substantial differences from the strongly positive case and has
played a fundamental role in determination of the first occurrence indices of
discrete series of metaplectic groups in [6]. In this paper, we are interested in
deriving Jacquet modules of representations of mentioned type with respect
to maximal parabolic subgroups whose general linear part consists of an ir-
reducible essentially square-integrable representation. Even in this case, we
obtain a variety of different representations appearing in Jacquet modules,
which are then considered separately.

We note that recently the main properties defining the ϵ-function attached
to a discrete series representation have been rewritten in terms of Jacquet
modules in [17] and these results are mainly expressed using Jacquet modules
of the type analogous to one which we study in the paper.

In our determination of Jacquet modules we use elementary but non-
standard methods which are essentially different from the ones used in [7].
First, starting from certain embeddings of discrete series, we apply the struc-
tural formula of Tadić ([15]), combined with results of [7], to obtain all (not
necessarily irreducible) elements appearing in Jacquet modules of induced
representations containing our discrete series. Then, using a description of
composition series of certain generalized principle series, obtained in [12]
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and enhanced by Proposition 3.2 of [8], we derive all possible candidates for
Jacquet modules of investigated discrete series, together with their multi-
plicity. To deduce whether obtained irreducible constituent π⊗σ appears in
Jacquet module of the observed discrete series or not, using a case-by-case
consideration we derive certain element π′ ⊗ σ′ appearing in Jacquet module
of σ and, by means of transitivity of Jacquet modules, turn our attention
to representations of general linear groups having π ⊗ π′ in their Jacquet
modules. This puts us in position to deduce further information carried in
obtained irreducible representation π⊗σ and, consequently, [17] can be used
to determine whether such representation belongs to Jacquet module of the
observed discrete series or not.

Our results, besides being interesting by themselves, might have an ap-
plication in the theory of automorphic forms, where both discrete series and
their Jacquet modules have an important role. Also, our results can be used
to identify discrete series subquotients of generalized principal series (as has
been done in [8]), which have an application in the determination of the
unitary duals of classical p-adic groups.

We now describe the content of the paper in more detail. In the second
section we recall required notations and preliminaries. In the third section
we begin our study of Jacuet modules, in certain elementary cases which are
used afterwards in the paper. In the fourth section we provide a description
of Jacquet modules in the most complicated case, which we divide in several
subcases. An exceptional case is handled in Section 5.

The author would like to thank Marko Tadić for useful conversations on
Jacquet modules of representations of general linear groups and to Goran
Muić for his active interest in the publication of this paper.

2 Notation and preliminaries

Let F denote a non-archimedean local field of characteristic different than
two. We consider usual towers of symplectic and orthogonal groups Gn =
G(Vn), that are the groups of isometries of F -spaces (Vn, ( , )), n ≥ 0. Here
the form ( , ) is non-degenerate and it is skew-symmetric if the tower is
symplectic and symmetric otherwise. The set of standard parabolic sub-
groups will be fixed in a usual way, i.e., in the usual matrix realization of
the classical group Gn we fix a minimal F -parabolic subgroup consisting
of upper-triangular matrices. Then the Levi factors of standard parabolic

3



subgroups have the form M ≃ GL(n1, F ) × · · · × GL(nk, F ) × Gn′ , where
GL(m,F ) denotes a general linear group of rank m over F . For represen-
tations δi of GL(ni, F ), i = 1, 2, . . . , k, and a representation τ of Gn′ , the
normalized parabolically induced representation IndGn

M (δ1⊗ · · ·⊗ δk ⊗ τ) will
be denoted by δ1 × · · · × δk o τ .

The set of all irreducible admissible representations of Gn will be denoted
by Irr(Gn). Let R(Gn) denote a Grothendieck group of admissible represen-
tations of finite length of Gn and set R(G) = ⊕n≥0R(Gn). In a similar way
we define R(GL) = ⊕n≥0R(GL(n, F )). For σ ∈ Irr(Gn) and 1 ≤ k ≤ n we
denote by r(k)(σ) the normalized Jacquet module of σ with respect to the
parabolic subgroup P(k) having Levi factor equal to GL(k, F )×Gn−k. Then
r(k)(σ) can be interpreted as an element of R(GL)⊗R(G). For σ ∈ Irr(Gn)
we introduce µ∗(σ) ∈ R(GL)⊗R(G) by

µ∗(σ) =
n∑

k=0

s.s.(r(k)(σ))

(s.s. denotes the semisimplification) and extend µ∗ linearly to the whole of
R(G).

Using Jacquet modules for the maximal parabolic subgroups of GL(n, F )
we can also define m∗(π) =

∑n
k=0 s.s.(rk(π)) ∈ R(GL) ⊗ R(GL), for an

irreducible representation π of GL(n, F ), and then extend m∗ linearly to
the whole of R(GL). Here rk(π) denotes the normalized Jacquet module
of π with respect to the parabolic subgroup having Levi factor equal to
GL(k, F )×GL(n− k, F ).

The results of [18] show that an irreducible essentially square-integrable
representation δ of GL(n, F ) is attached to the segment and we set δ =
δ([νaρ, νbρ]), where a, b ∈ R such that b−a is a nonnegative integer and ρ is an
irreducible unitary representation of GL(nρ, F ) (this defines nρ). We recall
that δ([νaρ, νbρ]) is a unique irreducible subrepresentation of the induced
representation νbρ× νb−1ρ× · · · × νaρ.

We will also frequently use the following equation:

m∗(δ([νaρ, νbρ])) =
b∑

i=a−1

δ([νi+1ρ, νbρ])⊗ δ([νaρ, νiρ]).
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Note that multiplicativity of m∗ implies

m∗(
n∏

j=1

δ([νajρj, ν
bjρj])) =

=
n∏

j=1

(

bj∑
ij=aj−1

δ([νij+1ρj, ν
bjρj])⊗ δ([νajρj, ν

ijρj])).

We take a moment to state the result, derived in [15], which presents
a crucial structural formula for our calculations with Jacquet modules of
representations of classical groups.

Lemma 2.1. Let ρ be an irreducible cuspidal representation of GL(m,F )
and k, l ∈ R such that k + l ∈ Z≥0. Let σ be an admissible representation of
finite length of Gn. Write µ∗(σ) =

∑
τ,σ′ τ ⊗ σ′. Then the following holds:

µ∗(δ([ν−kρ, νlρ])o σ) =
l∑

i=−k−1

l∑
j=i

∑
τ,σ′

δ([ν−iρ̃, νkρ̃])× δ([νj+1ρ, ν lρ])× τ

⊗ δ([νi+1ρ, νjρ])o σ′.

We omit δ([νxρ, νyρ]) if x > y.

We briefly recall the Langlands classification for general linear groups.
As in [2], we favor the subrepresentation version of this classification over
the quotient one. Main advantage of this version is that it enables us to
recover some useful representations from the certain members of their Jacquet
modules.

For every irreducible essentially square-integrable representation δ ofGL(n,
F ), there exists an e(δ) ∈ R such that ν−e(δ)δ is unitarizable. Suppose that
δ1, δ2, . . . , δk are irreducible, essentially square-integrable representations of
GL(n1, F ), GL(n2, F ), . . ., GL(nk, F ) with e(δ1) ≤ e(δ2) ≤ . . . ≤ e(δk). Then
the induced representation δ1 × δ2 × · · · × δk has a unique irreducible sub-
representation, which we denote by L(δ1 × δ2 × · · · × δk). This irreducible
subrepresentation is called the Langlands subrepresentation, and it appears
with the multiplicity one in δ1×δ2×· · ·×δk. Every irreducible representation
π of GL(n, F ) is isomorphic to some L(δ1 × δ2 × · · · × δk). For given π, the
representations δ1, δ2, . . . , δk are unique up to a permutation.

Similarly, throughout the paper we use a subrepresentation version of
Langlands classification for classical groups, which also happens to be more
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appropriate for our Jacquet module considerations. Thus, we realize a non-
tempered irreducible representation π of Gn as a unique irreducible (Lang-
lands) subrepresentation of the induced representation of the form δ1 ×
δ2 × · · · × δk o τ , where τ is a tempered representation of Gt (this de-
fines t), δi is an irreducible essentially square integrable representation of
GL(nδi , F ) attached to the segment [νaiρi, ν

biρi] for i = 1, 2, . . . , k, and
a1 + b1 ≤ a2 + b2 ≤ · · · ≤ ak + bk < 0 (note that e(δ([νaiρi, ν

biρi])) = ai + bi).
In this case, we write π = L(δ1 × δ2 × · · · × δk o τ).

We will now recall the Mœglin-Tadić classification of discrete series for
classical groups, which presents a framework for our study. We fix a certain
tower of classical groups (symplectic or orthogonal). Every discrete series
representation of such group is uniquely described by its three invariants: a
partial cuspidal support, Jordan block and ϵ-function.

A partial cuspidal support of a discrete series σ ∈ Irr(Gn) is an irre-
ducible cuspidal representation σcusp of some Gm with the property that
there is an irreducible admissible representation π of GL(nπ, F ) such that σ
is a subrepresenation of π o σcusp.

Jordan block of σ, which we denote by Jord(σ), is a set of all pairs (c, ρ)
where ρ ≃ ρ̃ is an irreducible cuspidal representation of some GL(nρ, F ) and
c > 0 is an integer such that the following two conditions are satisfied:

1. c is even if and only if L(s, ρ, r) has a pole at s = 0. The local L-
function L(s, ρ, r) is the one defined by Shahidi (see for instance [13],
[14]), where r =

∧2 Cnρ is the exterior square representation of the
standard representation on Cnρ of GL(nρ,C) if Gn is a symplectic or
even-orthogonal group and r = Sym2Cnρ is the symmetric-square rep-
resentation of the standard representation on Cnρ of GL(nρ,C) if Gn

is an odd-orthogonal group.

2. The induced representation

δ([ν−(c−1)/2ρ, ν(c−1)/2ρ])o σ

is irreducible.

To explain the notion of the ϵ-function, we first define Jordan triples.
This are the triples of the form (Jord, σ′, ϵ) where

• σ′ is an irreducible cuspidal representation of some Gn.
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• Jord is a finite set (possibly empty) of pairs (c, ρ) (ρ ≃ ρ̃ is an irre-
ducible cuspidal representation of GL(nρ, F ), c > 0 an integer) such
that c is even if and only if L(s, ρ, r) has a pole at s = 0 (as above).
For an irreducible cuspidal representation ρ ≃ ρ̃ of GL(nρ, F ) we write
Jordρ = {c : (c, ρ) ∈ Jord}. If Jordρ ̸= ∅ and c ∈ Jordρ, we put c =
max{d ∈ Jordρ : d < c}, if it exists.

• ϵ is a function defined on a subset of Jord∪ (Jord× Jord) and attains
values 1 and -1. If (c, ρ) ∈ Jord, then ϵ(c, ρ) is not defined if and only
if c is odd and (c′, ρ) ∈ Jord(σ′) for some positive integer c′. Further, ϵ
is defined on a pair (c, ρ), (c′, ρ′) ∈ Jord if and only if ρ ≃ ρ′ and c ̸= c′.

The following compatibility conditions must hold for different c, c′, c′′ ∈
Jordρ:

1. If ϵ(c, ρ) is defined (hence ϵ(c′, ρ) is also defined), then ϵ((c, ρ), (c′, ρ)) =
ϵ(c, ρ) · ϵ(c′, ρ)−1.

2. ϵ((c, ρ), (c′′, ρ)) = ϵ((c, ρ), (c′, ρ)) · ϵ((c′, ρ), (c′′, ρ)).

3. ϵ((c, ρ), (c′, ρ)) = ϵ((c′, ρ), (c, ρ)).

Listed properties show that it is enough to know the value of ϵ on the
consecutive pairs (c , ρ), (c, ρ) to define ϵ on all pairs.

Suppose that, for Jordan triple (Jord, σ′, ϵ), there is (c, ρ) ∈ Jord such
that ϵ((c , ρ), (c, ρ)) = 1. If we put Jord′ = Jord\{(c , ρ), (c, ρ)} and consider
the restriction ϵ′ of ϵ to Jord′ ∪ (Jord′ × Jord′), we obtain a new Jordan
triple (Jord′, σ′, ϵ′), and we say that such Jordan triple is subordinated to
(Jord, σ′, ϵ).

We say that Jordan triple (Jord, σ′, ϵ) is a triple of alternated type if
ϵ((c , ρ), (c, ρ)) = −1 holds whenever c is defined and there is an increasing
bijection ϕρ : Jordρ → Jord′ρ(σ

′), where

Jord′ρ(σ
′) =

{
Jordρ(σ

′) ∪ {0} if a is even and ϵ(min Jordρ, ρ) = 1;
Jord′ρ(σ

′) otherwise.

Jordan triple (Jord, σ′, ϵ) dominates the Jordan triple (Jord′, σ′, ϵ′) is
there is a sequence of Jordan triples (Jordi, σ

′, ϵi), 0 ≤ i ≤ k, such that
(Jord0, σ

′, ϵ0) = (Jord, σ′, ϵ), (Jordk, σ
′, ϵk) = (Jord′, σ′, ϵ′) and (Jordi, σ

′, ϵi)
is subordinated to (Jordi−1, σ

′, ϵi−1) for i ∈ {1, 2, . . . , k}. Jordan triple
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(Jord, σ′, ϵ) is called the admissible triple if it dominates a triple of alter-
nated type.

The classification given in [9] and [11] states that there is one-to-one
correspondence between the set of all discrete series in Irr(G) and the
set of all admissible triples (Jord, σ′, ϵ) given by σ = σ(Jord,σ′,ϵ), such that
σcusp = σ′ and Jord(σ) = Jord. Further, if (c, ρ) ∈ Jord is such that
ϵ((c , ρ), (c, ρ)) = 1, we set Jord′ = Jord\{(c , ρ), (c, ρ)} and consider the re-
striction ϵ′ of ϵ to Jord′∪(Jord′×Jord′). Then (Jord′, σ′, ϵ′) is an admissible
triple and σ is a subrepresentation of δ([ν−(c −1)/2ρ, ν(c−1)/2ρ]) o σ(Jord′,σ′,ϵ′).
Such induced representation has exactly two discrete series subrepresenta-
tions, which are mutually non-isomorphic. Moreover, the induced repre-
sentation δ([ν−(c −1)/2ρ, ν(c −1)/2ρ]) o σ(Jord′,σ′,ϵ′) is a direct sum of two non-
isomorphic tempered representations τ+ and τ− and there is the unique
τ ∈ {τ+, τ−} such that σ is a subrepresentation of δ([ν(c +1)/2ρ, ν(c−1)/2ρ])oτ .

We shall also say that discrete series σ and its corresponding admissible
triple (Jord, σ′, ϵ) are attached to each other.

Further, if Jordρ ̸= ∅ consists of even numbers, then ϵ(c, ρ) is also defined
for all c ∈ Jordρ. Let us denote by cmin,ρ minimum of the set Jordρ. Then
it is enough to define ϵ(cmin,ρ, ρ), and it equals 1 if and only if there exists
an irreducible representation π ∈ R(G) such that

σ ↪→ δ([ν
1
2ρ, ν(cmin,ρ−1)/2ρ])o π.

Also, if Jordρ ̸= ∅ consists of odd numbers and ρ o σ′ reduces (equiv-
alently, Jordρ(σ

′) = ∅), then ϵ(c, ρ) is also defined for all c ∈ Jordρ. The
induced representation ρ o σ′ reduces into two non-isomorphic irreducible

tempered representations, which we denote by τ
(σ′,ρ)
1 and τ

(σ′,ρ)
−1 . We also

denote the maximum of the set Jordρ by cmax,ρ. It is enough to define
ϵ(cmax,ρ, ρ), and it equals 1 if and only if there exists an irreducible represen-
tation π′ ∈ R(GL) such that

σ ↪→ π′ × δ([νρ, ν(cmax,ρ−1)/2ρ])o τ
(σ′,ρ)
1 .

It is proved in [9, 11] that triples of alternated type correspond to strongly
positive discrete series and definition of such triples shows that the strongly
positive discrete series are completely determined by their partial cuspidal
support and Jordan block. Since all strongly positive discrete series which
appear in this paper share a common partial cuspidal support we will define
only Jordan block when introducing them. This procedure is also summa-
rized in Proposition 1.2 of [12].
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3 Some elementary cases

In this section, we begin our determination of Jacquet modules of discrete
series representation σ with respect to maximal parabolic subgroups by ex-
amining several elementary cases. Here and subsequently, we denote an ad-
missible triple corresponding to σ by (Jord, σcusp, ϵ).

Throughout the paper we assume that σ is a discrete series representation
of Gn and there are d , d ∈ Jordρ′ such that

σ ↪→ δ([ν−(d −1)/2ρ′, ν(d−1)/2ρ′])o σsp (1)

for strongly positive representation σsp such that [d , d]∩Jordρ′(σsp) = ∅. Let
us denote a discrete series subrepresentation of δ([ν−(d −1)/2ρ′, ν(d−1)/2ρ′]) o
σsp different than σ by σ′ and an admissible triple corresponding to σ′ by
(Jord, σcusp, ϵ

′).
We are interested in determining all irreducible constituents of µ∗(σ) of

the form δ⊗π, where δ stands for an irreducible essentially square-integrable
representation. We write δ in the form δ([νaρ, νbρ]). It is well-know ([11])
that this forces 2b + 1 ∈ Jordρ. To keep the notation uniform, for (c, ρ) ∈
Jord we denote by µ∗(σ)(c,ρ) the sum of all irreducible constituents of µ∗(σ)
of the form

δ([νaρ, ν(c−1)/2ρ])⊗ π.

Let ρ denote an irreducible self-contragredient admissible representation
of GL(nρ, F ) (this defines nρ) such that there is some c ∈ R such that
ν(c−1)/2ρ ⊗ π is an irreducible constituent of µ∗(σ) for some irreducible rep-
resentation π. Further, let us denote the minimal element of Jordρ(σ) by
cmin(ρ).

In the following sequence of propositions we determine µ∗(σ)(c,ρ) in some
elementary cases. First we recall the following result (Theorem 8.2 of [17]).

Lemma 3.1. If c ̸= cmin(ρ) and a ≥ (c + 3)/2, there is a unique discrete
series representation π(a,ρ) such that σ is a subrepresentation of the induced
representation

δ([νaρ, ν(c−1)/2ρ])o π(a,ρ).

Using this result, we obtain a description of certain Jacquet modules of
σ.
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Proposition 3.2. If an irreducible representation δ([νaρ, ν(c−1)/2ρ])⊗ π, for
c ̸= cmin(ρ) and a ≥ (c + 3)/2, appears in Jacquet module of σ with re-
spect to an appropriate parabolic subgroup, then π is a unique discrete series
representation such that σ is a subrepresentation of δ([νaρ, ν(c−1)/2ρ]) o π,
i.e., π ≃ π(a,ρ). Further, such irreducible constituent appears in µ∗(σ) with
multiplicity one. In particular, for c ̸= cmin(ρ) and ϵ((c , ρ), (c, ρ)) = −1, we
have

µ∗(σ)(c,ρ) =

(c−1)/2∑
a=(c +3)/2

δ([νaρ, ν(c−1)/2ρ])⊗ π(a,ρ).

Proof. Using previous lemma we obtain µ∗(σ) ≥ δ([νaρ, ν(c−1)/2ρ])⊗π(a,ρ) for
a ≥ (c + 3)/2. Using the same result we get there is also a discrete series π′

such that µ∗(σ′) ≥ δ([νaρ, ν(c−1)/2ρ])⊗ π′.
Let us prove that if an irreducible constituent of the form δ([νaρ, νbρ])⊗π′′

appears in µ∗(σ), then π′′ ≃ π(a,ρ). Applying the structural formula for µ∗

to the right hand side of (1) we obtain that there are −(d + 1)/2 ≤ i ≤ j ≤
(d− 1)/2 and an irreducible constituent δ ⊗ τ of µ∗(σsp) such that

δ([νaρ, ν(c−1)/2ρ]) ≤ δ([ν−iρ′, ν(d −1)/2ρ′])× δ([νj+1ρ′, ν(d−1)/2ρ′])× δ

and
π′′ ≤ δ([νi+1ρ′, νjρ′])o τ.

If ((c−1)/2, ρ) = ((d−1)/2, ρ1), since a > (d −1)/2 we obtain i = −(d +1)/2
and τ ≃ σsp. Similarly, if ((c − 1)/2, ρ) = ((d − 1)/2, ρ′), we obtain j =
(d−1)/2 and again τ ≃ σsp. Finally, if ((c−1)/2, ρ) ̸∈ {((d−1)/2, ρ′), ((d −
1)/2, ρ′)} then, using Theorem 4.6 of [7] we deduce i = −(d + 1)/2, j =
(d − 1)/2 and τ is a strongly positive discrete series such that Jord(τ) =
Jord(σsp) \ {(c, ρ)} ∪ {(2a − 1, ρ)}. In any case, by [12], Theorem 2.1 we
obtain that δ([νi+1ρ′, νjρ′]) o τ is a length three representation and in an
appropriate Grothendieck group we have

δ([νi+1ρ′, νjρ′])o τ = π + π′ + L(δ([ν−jρ′, ν−i−1ρ′])o τ).

It follows that both δ([νaρ, ν(c−1)/2ρ])⊗ π and δ([νaρ, ν(c−1)/2ρ])⊗ π′ ap-
pear with multiplicity one in µ∗(δ([ν−(c −1)/2ρ′, ν(c−1)/2ρ′])oσsp). Thus, since
δ([νaρ, ν(c−1)/2ρ])⊗ π′ appears in µ∗(σ′), it does not appear in µ∗(σ).

Let us now assume that δ([νaρ, ν(c−1)/2ρ]) ⊗ L(δ([ν−jρ′, ν−i−1ρ′]) o τ)
appears in µ∗(σ). Then the transitivity of Jacquet modules implies that
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δ([νaρ, ν(c−1)/2ρ])⊗ δ([ν−jρ′, ν−i−1ρ′])⊗ τ is contained in Jacquet module of
σ with respect to an appropriate parabolic subgroup and it is now easy to
obtain a contradiction with the square-integrability of σ. Thus, we obtain
π′′ ≃ π and δ([νaρ, ν(c−1)/2ρ])⊗ π appears in µ∗(σ) with multiplicity one.

If we assume that an irreducible constituent of the form δ([νaρ, ν(c−1)/2ρ])⊗
L(δ([ν−a+1ρ, ν(c −1)/2ρ])oσsp) appears in µ∗(σ), transitivity of Jacquet mod-
ules immediately provides a contradiction with the square-integrability of σ.
This ends the proof.

In a similar way we handle the case of the minimal element of Jordρ. In
what follows, for a real number q we denote by ⌈q⌉ the smallest integer which
is not smaller than q. Similarly to Theorem 8.2 of [17], we obtain:

Lemma 3.3. Let x′ stand for (cmin(ρ)−1)/2−⌈(cmin(ρ)−1)/2⌉+1. If cmin(ρ)
is even and ϵ(cmin(ρ), ρ) = −1 set x = x′+1, otherwise set x = x′. If there is
some irreducible representation π such that µ∗(σ) ≥ ν(cmin(ρ)−1)/2ρ⊗ π, then
for a ≥ x there exists a unique discrete series representation π(a,ρ) such that
σ is a subrepresentation of the induced representation

δ([νaρ, ν(cmin(ρ)−1)/2ρ])o π(a,ρ).

Proof. Let us first assume that σ is a subrepresentation of the induced rep-
resentation of the same form as in the right-hand side of (1) with (d , ρ′) ̸=
(cmin(ρ), ρ). Using [7], we see that there is an embedding

σsp ↪→ δ([νaρ, ν(cmin(ρ)−1)/2ρ])o σ′
sp,

for an appropriate strongly positive discrete series σ′
sp. Thus, we obtain

σ ↪→ δ([ν−(d −1)/2ρ′, ν(d−1)/2ρ′])× δ([νaρ, ν(cmin(ρ)−1)/2ρ])o σ′
sp

≃ δ([νaρ, ν(cmin(ρ)−1)/2ρ])× δ([ν−(d −1)/2ρ′, ν(d−1)/2ρ′])o σ′
sp.

In consequence, there is some irreducible representation π(a,ρ) such that σ is
a subrepresentation of δ([νaρ, ν(cmin(ρ)−1)/2ρ]) o π(a,ρ). Frobenius reciprocity
shows µ∗(σ) ≥ δ([νaρ, ν(cmin(ρ)−1)/2ρ])⊗ π(a,ρ). Lemma 2.1 implies that there
are −(d + 1)/2 ≤ i ≤ j ≤ (d− 1)/2 and an irreducible constituent δ ⊗ τ of
µ∗(σsp) such that

δ([νaρ, ν(cmin(ρ)−1)/2ρ]) ≤ δ([ν−iρ′, ν(d −1)/2ρ′])× δ([νj+1ρ′, ν(d−1)/2ρ′])× δ
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and
π(a,ρ) ≤ δ([νi+1ρ′, νjρ′])o τ.

It directly follows that δ ≃ δ([νaρ, ν(cmin(ρ)−1)/2ρ]) and π(a,ρ) is an irreducible
subquotient of δ([ν−(d −1)/2ρ′, ν(d−1)/2ρ′])oτ , for strongly positive representa-
tion such that [d , d] ∩ Jordρ′(τ) = ∅. Using the square-integrability of σ we
deduce π(a,ρ) ̸= L(δ([ν−(d−1)/2ρ′, ν(d −1)/2ρ′])o τ). Thus, Theorem 2.1 of [12]
implies that π(a,ρ) is a discrete series representation and the observed irre-
ducible constituent appears with multiplicity one. Since the same discussion
can be made for σ′, uniqueness of π(a,ρ) follows.

Let us now assume that σ is a subrepresentation of

δ([ν−(cmin(ρ)−1)/2ρ, ν(d−1)/2ρ])o σsp,

where [cmin(ρ), d] ∩ Jordρ(σsp) = ∅ and the ϵ-function of σ equals −1 on all
pairs different than ((cmin(ρ), ρ), (d, ρ)) and ((d, ρ), (cmin(ρ), ρ)). For a > 1

2
,

using Proposition 3.1 of [12], we get

σ ↪→ δ([ν−a+1ρ, ν(d−1)/2ρ])× δ([ν−(cmin(ρ)−1)/2ρ, ν−aρ])o σsp

≃ δ([ν−a+1ρ, ν(d−1)/2ρ])× δ([νaρ, ν(cmin(ρ)−1)/2ρ])o σsp

≃ δ([νaρ, ν(cmin(ρ)−1)/2ρ])× δ([ν−a+1ρ, ν(d−1)/2ρ])o σsp.

In the same way as before we conclude that there is a unique discrete series
π(a,ρ) such that σ is a subrepresentation of δ([νaρ, ν(cmin(ρ)−1)/2ρ])o π(a,ρ).

It remains to consider the case a = 1
2
and ϵ(cmin(ρ), ρ) = 1. By definition,

there is some irreducible representation π(1/2,ρ) such that σ is a subrepre-
sentation of δ([ν1/2ρ, ν(cmin(ρ)−1)/2ρ]) o π(1/2,ρ). Again, Frobenius reciprocity
implies µ∗(σ) ≥ δ([ν1/2ρ, ν(cmin(ρ)−1)/2ρ]) ⊗ π(1/2,ρ) and using Lemma 2.1 we
deduce that π(1/2,ρ) is an irreducible subquotient of δ([ν1/2ρ, ν(d−1)/2ρ])oσsp.
Square-integrability of σ shows π(1/2,ρ) ̸= L(δ([ν−(d−1)/2ρ, ν−1/2ρ])o σsp) and
by Theorem 5.1 of [12] it is a uniquely defined discrete series. This proves
the lemma.

Analogously to Proposition 3.2 we have:

Proposition 3.4. Let x′ stand for (cmin(ρ)−1)/2−⌈(cmin(ρ)−1)/2⌉+1. If
cmin(ρ) is even and ϵ(cmin(ρ), ρ) = −1 set x = x′+1, otherwise set x = x′. If
there is some irreducible representation π such that µ∗(σ) ≥ ν(cmin(ρ)−1)/2ρ⊗π,
then the following equality holds in R(GL)⊗R(G):

µ∗(σ)(cmin(ρ),ρ) =

(cmin(ρ)−1)/2∑
a=x

δ([νaρ, ν(cmin(ρ)−1)/2ρ])⊗ π(a,ρ).
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In the rest of the paper we deal with µ∗(σ)(c,ρ) for c ̸= cmin(ρ) and
ϵ((c , ρ), (c, ρ)) = 1. Thus, to keep things simple, we assume c = d and
ρ ≃ ρ′, so σ can be given as an irreducible subrepresentation of the induced
representation of the form

σ ↪→ δ([ν−(c −1)/2ρ, ν(c−1)/2ρ])o σsp (2)

for strongly positive representation σsp such that [c , c]∩Jordρ(σsp) = ∅. Let
us denote by σind the induced representation δ([ν−(c −1)/2ρ, ν(c−1)/2ρ]) o σsp

and by σ′ a discrete series subrepresentation of σind different than σ. We
note that σind is a length three representation, by [12], Theorem 2.1.

Also, applying the structural formula on the right hand side of (2) we see
at once that if an irreducible constituent of the form δ([νaρ, ν(c−1)/2ρ]) ⊗ π
appears in µ∗(σ), then a ≥ (c − 1)/2.

Two possible cases shall be examined in separate sections.

4 Case Jordρ(σsp) ̸= ∅ or c even.

Since in case that we consider in this section the classical-group part π of an
irreducible constituent δ([νaρ, ν(c−1)/2ρ]) ⊗ π appearing in µ∗(σ)(c,ρ) heavily
depends on the left limit of the segment [νaρ, ν(c−1)/2ρ], several cases will be
treated separately. For simplicity of the notation, we write µ∗(σ)(a,c,ρ) (resp.,
µ∗(σind)(a,c,ρ)) for the formal sum of all irreducible constituents of µ∗(σ)(c,ρ)
(resp., µ∗(σind)) of the form δ([νaρ, ν(c−1)/2ρ])⊗ π.

Results obtained in the previous section enable us to assume a ≤ (c +
1)/2, since in the same way as in the proof of Proposition 3.2 it can be seen
that µ∗(σ)(ρ,c,a) = δ([νaρ, ν(c−1)/2ρ])⊗ π(a,ρ) for a ≥ (c + 3)/2.

Also, it follows from [9, 11] that there is a unique irreducible tempered
subrepresentation τ of δ([ν−(c −1)/2ρ, ν(c −1)/2ρ])o σsp such that

µ∗(σ)((c +1)/2,c,ρ) = δ([ν(c +1)/2ρ, ν(c−1)/2ρ])⊗ τ.

We begin our determination of µ∗(σ)(a,c,ρ) with two elementary but useful
technical result.

Lemma 4.1. Suppose that δ([νaρ, ν(c−1)/2ρ])⊗π is an irreducible constituent
of µ∗(σind), with a ≤ (c − 1)/2. Then δ([νaρ, ν(c−1)/2ρ])⊗ π does not appear
in µ∗(L(δ([ν−(c−1)/2ρ, ν(c −1)/2ρ])o σsp)).
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Proof. Suppose, on the contrary, that δ([νaρ, ν(c−1)/2ρ])⊗ π is an irreducible
constituent of µ∗(L(δ([ν−(c−1)/2ρ, ν(c −1)/2ρ]) o σsp)), for a ≤ (c − 1)/2.
Then transitivity of Jacquet modules forces δ([ν(c +1)/2ρ, ν(c−1)/2ρ]) ⊗ π′ ≤
µ∗(L(δ([ν−(c−1)/2ρ, ν(c −1)/2ρ])o σsp)), for some irreducible representation π′.
But it is well-known ([11]) that there are only two irreducible constituents of
the form δ([ν(c +1)/2ρ, ν(c−1)/2ρ])⊗ π′ appearing in µ∗(σind) and each of them
is contained either in µ∗(σ) or in µ∗(σ′), a contradiction.

Proposition 4.2. For −(c + 1)/2 ≤ a ≤ (c − 1)/2, δ([νaρ, ν(c−1)/2ρ]) ⊗
L(δ([ν−(c −1)/2ρ, νa−1ρ])o σsp) appears in µ∗(σ)(a,c,ρ) with multiplicity one.

Proof. From (2) we get

σ ↪→ δ([νaρ, ν(c−1)/2ρ])× δ([ν−(c −1)/2ρ, νa−1ρ])o σsp

and Frobenius reciprocity shows that the irreducible representation

δ([νaρ, ν(c−1)/2ρ])⊗ δ([ν−(c −1)/2ρ, νa−1ρ])⊗ σsp

appears in Jacquet module of σ with respect to an appropriate parabolic
subgroup. By transitivity of Jacquet modules, there is some irreducible rep-
resentation π such that µ∗(σ)(a,c,ρ) contains δ([ν

aρ, ν(c−1)/2ρ])⊗π and µ∗(π) ≥
δ([ν−(c −1)/2ρ, νa−1ρ])⊗σsp. We determine π calculating µ∗ of the right-hand
side of (2). By Lemma 2.1, there are −(c + 1)/2 ≤ i ≤ j ≤ (c − 1)/2 and
an irreducible constituent δ ⊗ π′ of µ∗(σsp) such that

δ([νaρ, ν(c−1)/2ρ]) ≤ δ([ν−iρ, ν(c −1)/2ρ])× δ([νj+1ρ, ν(c−1)/2ρ])× δ

and
π ≤ δ([νi+1ρ, νjρ])o π′.

Firstly, if −i = a or j + 1 = a, using Theorem 4.6 of [7] and the fact
[c , c] ∩ Jordρ(σsp) = ∅, we obtain π ≤ δ([ν−(c −1)/2ρ, νa−1ρ])o σsp.

Now we calculate the multiplicity of δ([ν−(c −1)/2ρ, νa−1ρ])⊗ σsp in
µ∗(δ([ν−(c −1)/2ρ, νa−1ρ])o σsp).

Again, there are −(c + 1)/2 ≤ i1 ≤ j1 ≤ a − 1 and an irreducible
constituent δ1 ⊗ π1 ≤ µ∗(σsp) such that

δ([ν−(c −1)/2ρ, νa−1ρ]) ≤ δ([ν−i1ρ, ν(c −1)/2ρ])× δ([νj1+1ρ, νa−1ρ])× δ1

and
σsp ≤ δ([νi1+1ρ, νj1ρ])o π1.
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Since a−1 < (c −1)/2, we get i1 = −(c +1)/2. Further, the strong positiv-
ity of σsp forces j1 = −(c +1)/2, so π1 = σsp. Thus, δ([ν

−(c −1)/2ρ, νa−1ρ])⊗
σsp appears with the multiplicity one in µ∗(δ([ν−(c −1)/2ρ, νa−1ρ]) o σsp).
Since it, clearly, appears in µ∗(L(δ([ν−(c −1)/2ρ, νa−1ρ]) o σsp)) it follows
that L(δ([ν−(c −1)/2ρ, νa−1ρ]) o σsp) is a unique irreducible subquotient of
δ([ν−(c −1)/2ρ, νa−1ρ])oσsp which contains δ([ν−(c −1)/2ρ, νa−1ρ])⊗σsp in Jacquet
module with respect to an appropriate parabolic subgroup.

Secondly, if −i > a and j+1 > a, it follows that δ = δ([νaρ, νbρ]) for some
a ≤ b ≤ (c−1)/2. This further gives δ([ν−iρ, ν(c −1)/2ρ])×δ([νj+1ρ, ν(c−1)/2ρ]) ≃
δ([νb+1ρ, ν(c−1)/2ρ]) and it directly follows π ≤ δ([νb+1ρ, ν(c −1)/2ρ]) o π′,
where, by Theorem 4.6 of [7], π′ is a strongly positive discrete series such
that Jord(π′) = Jord(σsp) \ {(2b+ 1, ρ)} ∪ {(2a− 1, ρ)}.

Since b ≥ a and π′ is strongly positive, it can be seen directly from
the structural formula for µ∗ that each irreducible constituent of the form
δ([ν−(c −1)/2ρ, νdρ]) ⊗ π′′ appearing in µ∗(δ([νb+1ρ, ν(c −1)/2ρ]) o π′) satisfies
d > a.

Consequently, µ∗(σ)(a,c,ρ) ≥ δ([νaρ, ν(c−1)/2ρ])⊗L(δ([ν−(c −1)/2ρ, νa−1ρ])o
σsp). We have already seen that such irreducible constituent appears in
µ∗(σind) with multiplicity two and it can be proved in completely analogous
manner that it also appears in µ∗(σ′). Thus, it appears in µ∗(σ)(a,c,ρ) with
multiplicity one.

4.1 Case a ≤ 0.

Let us first consider the case a ≤ 0. Applying the structural formula for
µ∗ to the induced representation (2), in the following lemma we obtain all
candidates for irreducible constituents of µ∗(σ)(a,c,ρ).

Lemma 4.3. Suppose a ≤ 0. If c > min(Jordρ(σ)) and a ≤ ((c ) − 1)/2
then the following equality holds in R(GL)⊗R:

µ∗(σind)(a,c,ρ) = 2 δ([νaρ, ν(c−1)/2ρ])⊗ L(δ([ν−(c −1)/2ρ, νa−1ρ])o σsp) +

2 δ([νaρ, ν(c−1)/2ρ])⊗ L(δ([ν−((c ) −1)/2ρ, νa−1ρ])o σ′
sp),

where σ′
sp stands for strongly positive discrete series such that Jord(σ′

sp) =
Jord(σsp) \ {((c ) , ρ)} ∪ {(c , ρ)}. Otherwise, in R(GL)⊗R we have

µ∗(σind)(a,c,ρ) = 2 δ([νaρ, ν(c−1)/2ρ])⊗ L(δ([ν−(c −1)/2ρ, νa−1ρ])o σsp).
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Proof. Let us comment only the c > min(Jordρ(σ)) and a ≤ ((c ) − 1)/2
case. In other cases µ∗(σind)(a,c,ρ) can be obtained in the same way but more
easily. Using Lemma 2.1, we deduce that there are −(c + 1)/2 ≤ i ≤ j ≤
(c− 1)/2 and an irreducible constituent δ ⊗ π′ of µ∗(σsp) such that

δ([νaρ, ν(c−1)/2ρ]) ≤ δ([ν−iρ, ν(c −1)/2ρ])× δ([νj+1ρ, ν(c−1)/2ρ])× δ

and
π ≤ δ([νi+1ρ, νjρ])o π′.

Since a ≤ 0, the strong positivity of σsp forces either −i = a or j + 1 = a.
Also, π′ ≃ σsp. If −i = a, it directly follows j = (c − 1)/2 and if j + 1 = a
we have i = −(c + 1)/2. Now Proposition 3.1.(i) of [12] shows that in an
appropriate Grothendieck group holds

δ([νi+1ρ, νjρ])o σsp = L(δ([ν−(c −1)/2ρ, νa−1ρ])o σsp) +

L(δ([ν−((c ) −1)/2ρ, νa−1ρ])o σ′
sp),

and the lemma is proved.

We are now ready to provide a description of µ∗(σ)(a,c,ρ) for a ≤ 0.

Theorem 4.4. Suppose a ≤ 0. If c > min(Jordρ(σ)), a ≤ ((c ) −1)/2 and
ϵ(((c ) , ρ), (c , ρ)) = 1 then in R(GL)⊗R we have:

µ∗(σ)(a,c,ρ) = δ([νaρ, ν(c−1)/2ρ])⊗ L(δ([ν−(c −1)/2ρ, νa−1ρ])o σsp) +

2 δ([νaρ, ν(c−1)/2ρ])⊗ L(δ([ν−((c ) −1)/2ρ, νa−1ρ])o σ′
sp),

where σ′
sp stands for strongly positive discrete series such that Jord(σ′

sp) =
Jord(σsp) \ {((c ) , ρ)} ∪ {(c , ρ)}. Otherwise, in R(GL)⊗R we have

µ∗(σ)(a,c,ρ) = δ([νaρ, ν(c−1)/2ρ])⊗ L(δ([ν−(c −1)/2ρ, νa−1ρ])o σsp).

Proof. We have already seen that δ([νaρ, ν(c−1)/2ρ])⊗L(δ([ν−(c −1)/2ρ, νa−1ρ])o
σsp) appears in µ∗(σ)(a,c,ρ) with multiplicity one. Previous lemma enables
us to assume c > min(Jordρ(σ)) and a ≤ ((c ) − 1)/2. By Lemma 4.1,
δ([νaρ, ν(c−1)/2ρ])⊗L(δ([ν−((c ) −1)/2ρ, νa−1ρ])oσ′

sp) can appear only in µ∗(σ)
or in µ∗(σ′).

It is not hard to see that there is a strongly positive representation π such
that σ′

sp is a subrepresentation of the induced representation

δ([ν((c ) +1)/2ρ, ν(c −1)/2ρ])o π.
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This provides an embedding

L(δ([ν−((c ) −1)/2ρ, νa−1ρ])o σ′
sp) ↪→ δ([ν−((c ) −1)/2ρ, νa−1ρ])×

δ([ν((c ) +1)/2ρ, ν(c −1)/2ρ])o π.

Since a ≤ 0, we have δ([ν−((c ) −1)/2ρ, νa−1ρ]) × δ([ν((c ) +1)/2ρ, ν(c −1)/2ρ]) ≃
δ([ν((c ) +1)/2ρ, ν(c −1)/2ρ])× δ([ν−((c ) −1)/2ρ, νa−1ρ]) and by Lemma 3.2 of [11]
there is an irreducible representation π′ such that L(δ([ν−((c ) −1)/2ρ, νa−1ρ])o
σ′
sp) is a subrepresentation of δ([ν((c ) +1)/2ρ, ν(c −1)/2ρ])o π′. Frobenius reci-

procity and transitivity of Jacquet modules show that if δ([νaρ, ν(c−1)/2ρ])⊗
L(δ([ν−((c ) −1)/2ρ, νa−1ρ])o σ′

sp) appears in µ∗(σ), then the Jacquet module
of σ with respect to an appropriate parabolic subgroup contains

δ([νaρ, ν(c−1)/2ρ])⊗ δ([ν((c ) +1)/2ρ, ν(c −1)/2ρ])⊗ π′.

Using transitivity of Jacquet modules again, we deduce that there is some
irreducible constituent δ ⊗ π′ of µ∗(σ) such that Jacquet module of δ with
respect to an appropriate parabolic subgroup contains δ([νaρ, ν(c−1)/2ρ]) ⊗
δ([ν((c ) +1)/2ρ, ν(c −1)/2ρ]). Since σ is an irreducible subrepresentation of σind,
we will determine δ from µ∗(σind).

By Lemma 2.1, there are −(c + 1)/2 ≤ i ≤ j ≤ (c − 1)/2 and an
irreducible constituent δ′ ⊗ π′′ of µ∗(σsp) such that

δ ≤ δ([ν−iρ, ν(c −1)/2ρ])× δ([νj+1ρ, ν(c−1)/2ρ])× δ′.

Since a ≤ 0, from cuspidal support of δ we see that there are two possibilities
to consider:

• j + 1 = a. Using Theorem 4.6 from [7] we deduce −i = ((c ) + 1)/2.
Consequently, δ is an irreducible subquotient of the induced represen-
tation δ([ν((c ) +1)/2ρ, ν(c −1)/2ρ])×δ([νaρ, ν(c−1)/2ρ]) which is irreducible
([18]). Thus, in this case

δ ≃ δ([ν((c ) +1)/2ρ, ν(c −1)/2ρ])× δ([νaρ, ν(c−1)/2ρ]).

• −i = a. In the same way as in the previously considered case we get j+
1 = ((c ) + 1)/2. Thus, δ is, in this case, an irreducible subquotient of
the induced representation δ([νaρ, ν(c −1)/2ρ])×δ([ν((c ) +1)/2ρ, ν(c−1)/2ρ]),
which is, by [18], length two representation which contains δ([ν((c ) +1)/2ρ,
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ν(c −1)/2ρ])×δ([νaρ, ν(c−1)/2ρ]) as an irreducible subquotient. Let us de-
termine the multiplicity of δ([νaρ, ν(c−1)/2ρ])⊗δ([ν((c ) +1)/2ρ, ν(c −1)/2ρ])
in m∗(δ([νaρ, ν(c −1)/2ρ])× δ([ν((c ) +1)/2ρ, ν(c−1)/2ρ])).

There are a − 1 ≤ i1 ≤ (c − 1)/2 and ((c ) − 1)/2 ≤ j1 ≤ (c − 1)/2
such that

δ([νaρ, ν(c−1)/2ρ]) ≤ δ([νi1+1ρ, ν(c −1)/2ρ])× δ([νj1+1ρ, ν(c−1)/2ρ])

and

δ([ν((c ) +1)/2ρ, ν(c −1)/2ρ]) ≤ δ([νaρ, νi1ρ])× δ([ν((c ) +1)/2ρ, νj1ρ]).

Since a < ((c ) +1)/2, from the first inequality we obtain i1 = a−1 and
j1 = (c −1)/2. Therefore, δ([νaρ, ν(c−1)/2ρ])⊗δ([ν((c ) +1)/2ρ, ν(c −1)/2ρ])
appears with the multiplicity one inm∗(δ([νaρ, ν(c −1)/2ρ])×δ([ν((c ) +1)/2ρ,
ν(c−1)/2ρ])) and it obviously appears in m∗(δ([ν((c ) +1)/2ρ, ν(c −1)/2ρ])×
δ([νaρ, ν(c−1)/2ρ])). Again, we conclude δ ≃ δ([ν((c ) +1)/2ρ, ν(c −1)/2ρ])×
δ([νaρ, ν(c−1)/2ρ]).

This enables us to conclude that Jacquet module of σ with respect to an
appropriate parabolic subgroup contains

δ([ν((c ) +1)/2ρ, ν(c −1)/2ρ])⊗ δ([νaρ, ν(c−1)/2ρ])⊗ π′

and Proposition 7.2 of [17] shows ϵ(((c ) , ρ), (c , ρ)) = 1.
On the other hand, since discrete series σ and σ′ are not isomorphic,

definition of σ yields

ϵ(((c ) , ρ), (c , ρ)) · ϵ′(((c ) , ρ), (c , ρ)) = −1.

Consequently, if δ([νaρ, ν(c−1)/2ρ])⊗L(δ([ν−((c ) −1)/2ρ, νa−1ρ])oσ′
sp) appears

in µ∗(σ) then it is not an irreducible constituent of µ∗(σ′) and the theorem
is proved.

4.2 Case a ≥ 1.

We shall now consider the case a ≥ 1. Let us begin with a technical lemma.
From now on, x stands for the minimum of the set {d ∈ Jordρ : a ≤ (d −
1)/2}.
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Lemma 4.5. Suppose a ≥ 1. If x = c or a = (x + 1)/2 then for an
irreducible constituent δ([νaρ, ν(c−1)/2ρ])⊗ π of µ∗(σind) we have

π ≤ δ([ν−a+1ρ, ν(c −1)/2ρ])o σsp,

Otherwise,

π ≤ δ([ν−a+1ρ, ν(c −1)/2ρ])o σsp ⊕ δ([ν−(x−1)/2ρ, ν(c −1)/2ρ])o σ′
sp,

where σ′
sp denotes a strongly positive discrete series such that Jord(σ′

sp) =
Jord(σsp) \ {(x, ρ)} ∪ {(2a− 1, ρ)}.

Proof. In a similar way as in the previously considered case, we see that there
are −(c + 1)/2 ≤ i ≤ j ≤ (c− 1)/2 and an irreducible constituent δ ⊗ π′ of
µ∗(σsp) such that

δ([νaρ, ν(c−1)/2ρ]) ≤ δ([ν−iρ, ν(c −1)/2ρ])× δ([νj+1ρ, ν(c−1)/2ρ])× δ

and
π ≤ δ([νi+1ρ, νjρ])o π′.

If −i = a or j+1 = a, we deduce π ≤ δ([ν−a+1ρ, ν(c −1)/2ρ])oσsp. Otherwise,
Theorem 4.6 of [7] implies that a ̸= (x + 1)/2 and x < c. This further gives
x < c , δ ≃ δ([νaρ, ν(x−1)/2ρ]) and π′ ≃ σ′

sp. Consequently,

δ([ν(x+1)/2ρ, ν(c−1)/2ρ]) ≤ δ([ν−iρ, ν(c −1)/2ρ])× δ([νj+1ρ, ν(c−1)/2ρ])

and in the same way as before we conclude π ≤ δ([ν−(x−1)/2ρ, ν(c −1)/2ρ]) o
σ′
sp.

In the following sequence of propositions we provide a complete descrip-
tion of µ∗(σ)(a,c,ρ) for a ≥ 1, using a case-by-case consideration.

Proposition 4.6. If a ≥ 1, x = c and a ̸= (x +1)/2, then there is a unique
discrete series subrepresentation π of δ([ν−a+1ρ, ν(c −1)/2ρ])oσsp such that in
R(GL)⊗R we have:

µ∗(σ)(a,c,ρ) = δ([νaρ, ν(c−1)/2ρ])⊗ L(δ([ν−(c −1)/2ρ, νa−1ρ])o σsp) +

2 δ([νaρ, ν(c−1)/2ρ])⊗ π.
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Proof. We have already seen that µ∗(σ)(a,c,ρ) contains δ([νaρ, ν(c−1)/2ρ]) ⊗
L(δ([ν−(c −1)/2ρ, νa−1ρ])o σsp). Further, the following equality holds in
R(GL)⊗R:

µ∗(σind)(a,c,ρ) = 2 δ([νaρ, ν(c−1)/2ρ])⊗ L(δ([ν−(c −1)/2ρ, νa−1ρ])o σsp) +

2 δ([νaρ, ν(c−1)/2ρ])⊗ σ1 + 2 δ([νaρ, ν(c−1)/2ρ])⊗ σ2,

where σ1 and σ2 are mutually non-isomorphic discrete series subrepresenta-
tions of the induced representations δ([ν−a+1ρ, ν(c −1)/2ρ])o σsp.

Since Jordρ(σsp) is non-empty, let us first assume that there is y ∈ Jordρ
such that y = c.

Let us denote by σ1 a discrete series subrepresentation of the induced
representation δ([ν−a+1ρ, ν(c −1)/2ρ]) o σsp which is also a subrepresentation
of δ([ν−(c −1)/2ρ, νyρ])oσ′

sp, for strongly positive representation σ′
sp such that

Jord(σ′
sp) = Jord(σsp)\{(y, ρ)}∪{(2a−1, ρ)}. If an irreducible subquotient

π′ of σind contains δ([ν
aρ, ν(c−1)/2ρ])⊗σ1 in µ∗(π′), then transitivity of Jacquet

modules shows that the Jacquet module of π′ with respect to an appropriate
parabolic subgroup contains δ([νaρ, ν(c−1)/2ρ]) ⊗ δ([ν−(c −1)/2ρ, ν(y−1)/2ρ]) ⊗
σ′
sp. Thus, there is some irreducible representation δ such that µ∗(π′) ≥ δ⊗σ′

sp

and m∗(δ) ≥ δ([νaρ, ν(c−1)/2ρ]) ⊗ δ([ν−(c −1)/2ρ, ν(y−1)/2ρ]). Since π′ ≤ σind

there are −(c + 1)/2 ≤ i ≤ j ≤ (c − 1)/2 and an irreducible constituent
δ′ ⊗ π′′ of µ∗(σsp) such that

δ ≤ δ([ν−iρ, ν(c −1)/2ρ])× δ([νj+1ρ, ν(c−1)/2ρ])× δ′.

It directly follows that either −i = −(c − 1)/2 or j + 1 = −(c − 1)/2. If
j + 1 = −(c − 1)/2, then i = −(c + 1)/2 and δ′ ≃ δ([νaρ, ν(y−1)/2ρ]), which
implies

δ ≃ δ([ν−(c −1)/2ρ, ν(c−1)/2ρ])× δ([νaρ, ν(y−1)/2ρ]).

If −i = −(c −1)/2, we get j+1 = (c +1)/2 and again δ′ ≃ δ([νaρ, ν(y−1)/2ρ]).
Thus, in this case δ is an irreducible subquotient of

δ([ν−(c −1)/2ρ, ν(c −1)/2ρ])× δ([ν(c +1)/2ρ, ν(c−1)/2ρ])× δ([νaρ, ν(y−1)/2ρ]). (3)

Since δ([ν−(c −1)/2ρ, ν(c−1)/2ρ]) × δ([νaρ, ν(y−1)/2ρ]) is an irreducible subquo-
tient of the induced representation (3) and it can be easily deduced that
δ([νaρ, ν(c−1)/2ρ])⊗ δ([ν−(c −1)/2ρ, ν(y−1)/2ρ]) appears with multiplicity one in
both m∗(δ([ν−(c −1)/2ρ, ν(c−1)/2ρ])× δ([νaρ, ν(y−1)/2ρ])) and m∗(δ([ν−(c −1)/2ρ,
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ν(c −1)/2ρ]) × δ([ν(c +1)/2ρ, ν(c−1)/2ρ]) × δ([νaρ, ν(y−1)/2ρ])) we again get δ ≃
δ([ν−(c −1)/2ρ, ν(c−1)/2ρ])× δ([νaρ, ν(y−1)/2ρ]).

Lemma 4.1 shows π′ ∈ {σ, σ′}. Further, by Proposition 7.2 of [17] π′ ≃ σ
forces ϵ((c, ρ), (y, ρ)) = 1. If ϵ((c, ρ), (y, ρ)) = 1 then the definition of σ′

shows ϵ′((c, ρ), (y, ρ)) = −1 and, consequently, 2 δ([νaρ, ν(c−1)/2ρ]) ⊗ σ1 ≤
µ∗(σ)(a,c,ρ). Otherwise, in the same way we conclude 2 δ([νaρ, ν(c−1)/2ρ]) ⊗
σ1 ≤ µ∗(σ′)(a,c,ρ).

We also denote by σ2 a discrete series subrepresentation of the induced
representation δ([ν−a+1ρ, ν(c −1)/2ρ]) o σsp different than σ1. Using Lemma
2.1 we see that δ([νaρ, ν(c−1)/2ρ]) ⊗ σ2 does not appear as an irreducible
constituent of µ∗(δ([ν−(c−1)/2ρ, ν(y−1)/2ρ]) o σ′′

sp) for strongly positive repre-
sentation σ′′

sp such that Jord(σ′
sp) = Jord(σsp) \ {(y, ρ)} ∪ {(c , ρ)}. Thus, if

ϵ((c, ρ), (y, ρ)) = 1, µ∗(σ)(a,c,ρ) does not contain δ([νaρ, ν(c−1)/2ρ])⊗ σ2, since
σ is a subrepresentation of δ([ν−(c−1)/2ρ, ν(y−1)/2ρ]) o σ′′

sp. Analogously, if

ϵ′((c, ρ), (y, ρ)) = 1 then µ∗(σ′)(a,c,ρ) does not contain δ([νaρ, ν(c−1)/2ρ]) ⊗ σ2

so Lemma 4.1 implies 2 δ([νaρ, ν(c−1)/2ρ])⊗ σ2 ≤ µ∗(σ)(a,c,ρ).
Now we assume c = max (Jordρ) and denote by z an element in Jordρ

such that (c ) = z.
Similarly as in the previously considered case, let us denote by σ3 a dis-

crete series subrepresentation of δ([ν−a+1ρ, ν(c −1)/2ρ]) o σsp which is also a
subrepresentation of δ([ν−(z−1)/2ρ, νa−1ρ]) o σ′

sp, for strongly positive repre-
sentation σ′

sp such that Jord(σ′
sp) = Jord(σsp)\{(z, ρ)}∪{(2a−1, ρ)}. Also,

we denote by σ4 a discrete series subrepresentation of δ([ν−a+1ρ, ν(c −1)/2ρ])o
σsp different than σ3. If we let π

′ stand for an irreducible subquotient of σind

such that δ([νaρ, ν(c−1)/2ρ])⊗σ3 appears in µ∗(π′), then it follows that Jacquet
module of π′ with respect to an appropriate parabolic subgroup contains

δ([νaρ, ν(c−1)/2ρ])⊗ δ([ν−(z−1)/2ρ, νa−1ρ])⊗ δ([ν(z+1)/2ρ, ν(c −1)/2ρ])⊗ τ,

for some irreducible representation τ . Consequently, there is an irreducible
constituent δ′ ⊗ τ appearing in µ∗(π′) such that Jacquet module of δ with
respect to an appropriate parabolic subgroup contains δ([νaρ, ν(c−1)/2ρ]) ⊗
δ([ν−(z−1)/2ρ, νa−1ρ])⊗δ([ν(z+1)/2ρ, ν(c −1)/2ρ]). Again, there are−(c +1)/2 ≤
i ≤ j ≤ (c− 1)/2 and an irreducible constituent δ′ ⊗ π′′ of µ∗(σsp) such that

δ ≤ δ([ν−iρ, ν(c −1)/2ρ])× δ([νj+1ρ, ν(c−1)/2ρ])× δ′.

From cuspidal support of δ we obtain −(z − 1)/2 ∈ {−i, j + 1} and δ′ ≃
δ([ν(z+1)/2ρ, ν(c −1)/2ρ]). In the same manner as in the previously considered
case we get δ ≃ δ([ν−(z−1)/2ρ, ν(c−1)/2ρ])× δ([ν(z+1)/2ρ, ν(c −1)/2ρ]).
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This allows us to conclude that ϵ((z, ρ), (c , ρ)) = 1 implies µ∗(σ)(a,c,ρ) ≥
2 δ([νaρ, ν(c−1)/2ρ])⊗ σ3 and µ∗(σ′)(a,c,ρ) ≥ 2 δ([νaρ, ν(c−1)/2ρ])⊗ σ4. On the
other hand, ϵ((z, ρ), (c , ρ)) = −1 leads to µ∗(σ)(a,c,ρ) ≥ 2 δ([νaρ, ν(c−1)/2ρ])⊗
σ4 and µ∗(σ′)(a,c,ρ) ≥ 2 δ([νaρ, ν(c−1)/2ρ]) ⊗ σ3. This proves the proposition.

Proposition 4.7. Suppose a ≥ 1, x = c and a = (x +1)/2. If ϵ((x , ρ),(c , ρ)) =
1 then in R(GL)⊗R we have:

µ∗(σ)(a,c,ρ) = δ([νaρ, ν(c−1)/2ρ])⊗ L(δ([ν−(c −1)/2ρ, νa−1ρ])o σsp) +

2 δ([νaρ, ν(c−1)/2ρ])⊗ τtemp,

where τtemp stands for a unique irreducible tempered subquotient of δ([ν−a+1ρ,
ν(c −1)/2ρ])o σsp.
If ϵ((x , ρ), (c , ρ)) = −1 then in R(GL)⊗R we have:

µ∗(σ)(a,c,ρ) = δ([νaρ, ν(c−1)/2ρ])⊗ L(δ([ν−(c −1)/2ρ, νa−1ρ])o σsp).

Proof. In R(GL)⊗R we have

µ∗(σind)(a,c,ρ) = 2 δ([νaρ, ν(c−1)/2ρ])⊗ L(δ([ν−(c −1)/2ρ, νa−1ρ])o σsp) +

2 δ([νaρ, ν(c−1)/2ρ])⊗ τtemp,

so it is enough to consider δ([νaρ, ν(c−1)/2ρ])⊗τtemp. Since τtemp is a subrepre-
sentation of δ([ν−a+1ρ, ν(c −1)/2ρ])o σsp, using Frobenius reciprocity we con-
clude that an irreducible subquotient π of σind such that δ([νaρ, ν(c−1)/2ρ])⊗
τtemp ≤ µ∗(π) also contains δ([νaρ, ν(c−1)/2ρ]) ⊗ δ([ν−a+1ρ, ν(c −1)/2ρ]) ⊗ σsp

in the Jacquet module with respect to an appropriate parabolic subgroup.
Therefore, there is an irreducible constituent δ⊗σsp of µ

∗(π) such that m∗(δ)
contains δ([νaρ, ν(c−1)/2ρ])⊗ δ([ν−a+1ρ, ν(c −1)/2ρ]).

Using the same procedure as in the proof of previous proposition, we get
δ ≤ δ([νaρ, ν(c−1)/2ρ])× δ([ν−a+1ρ, ν(c −1)/2ρ]).

Since δ([νaρ, ν(c −1)/2ρ]) × δ([ν−a+1ρ, ν(c−1)/2ρ]) is an irreducible subquo-
tient of δ([νaρ, ν(c−1)/2ρ])× δ([ν−a+1ρ, ν(c −1)/2ρ]) and multiplicity of δ([νaρ,
ν(c−1)/2ρ])⊗δ([ν−a+1ρ, ν(c −1)/2ρ]) equals two in both m∗(δ([νaρ, ν(c −1)/2ρ])×
δ([ν−a+1ρ, ν(c−1)/2ρ])) and m∗(δ([νaρ, ν(c−1)/2ρ])× δ([ν−a+1ρ, ν(c −1)/2ρ])), we
conclude

δ ≃ δ([νaρ, ν(c −1)/2ρ])× δ([ν−a+1ρ, ν(c−1)/2ρ]).
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Using Proposition 7.2 of [17] and ϵ((x , ρ), (c , ρ)) · ϵ′((x , ρ), (c , ρ)) =
−1, we deduce that µ∗(σ) contains δ([νaρ, ν(c−1)/2ρ]) ⊗ τtemp if and only if
ϵ((x , ρ), (c , ρ)) = 1 and it directly follows that µ∗(σ) contains either both
or zero copies of δ([νaρ, ν(c−1)/2ρ])⊗ τtemp. This ends the proof.

Proposition 4.8. Suppose a ≥ 1, x ̸= c and a = (x + 1)/2. If ϵ(((c ) , ρ),
(c , ρ)) = 1 then in R(GL)⊗R we have:

µ∗(σ)(a,c,ρ) = δ([νaρ, ν(c−1)/2ρ])⊗ L(δ([ν−(c −1)/2ρ, νa−1ρ])o σsp) +

2 δ([νaρ, ν(c−1)/2ρ])⊗ L(δ([ν−((c ) −1)/2ρ, νa−1ρ])o σ′
sp),

where σ′
sp denotes a strongly positive discrete series such that Jord(σ′

sp) =
Jord(σsp) \ {((c ) , ρ)} ∪ {(c , ρ)}.
If ϵ(((c ) , ρ), (c , ρ)) = −1 then in R(GL)⊗R we have:

µ∗(σ)(a,c,ρ) = δ([νaρ, ν(c−1)/2ρ])⊗ L(δ([ν−(c −1)/2ρ, νa−1ρ])o σsp).

Proof. Since the following equality holds in R(GL)⊗R:

µ∗(σind)(a,c,ρ) = 2 δ([νaρ, ν(c−1)/2ρ])⊗ L(δ([ν−(c −1)/2ρ, νa−1ρ])o σsp) +

2 δ([νaρ, ν(c−1)/2ρ])⊗ L(δ([ν−((c ) −1)/2ρ, νa−1ρ])o σ′
sp),

we discuss only the irreducible constituent δ([νaρ, ν(c−1)/2ρ])⊗L(δ([ν−((c ) −1)/2ρ,
νa−1ρ])o σ′

sp). First, we note the following embeddings and isomorphism:

L(δ([ν−((c ) −1)/2ρ, νa−1ρ])o σ′
sp) ↪→ δ([ν−((c ) −1)/2ρ, νa−1ρ])o σ′

sp

↪→ δ([ν−((c ) −1)/2ρ, νa−1ρ])× δ([ν((c ) +1)/2ρ, ν(c −1)/2ρ])o σsp

≃ δ([ν((c ) +1)/2ρ, ν(c −1)/2ρ])× δ([ν−((c ) −1)/2ρ, νa−1ρ])o σsp.

In consequence, if π is an irreducible subquotient of σind such that µ∗(π) con-
tains δ([νaρ, ν(c−1)/2ρ])⊗L(δ([ν−((c ) −1)/2ρ, νa−1ρ])oσ′

sp), then there is some

irreducible representation π′ such that δ([νaρ, ν(c−1)/2ρ]) ⊗ δ([ν((c ) +1)/2ρ,
ν(c −1)/2ρ]) ⊗ π′ is contained in Jacquet module of π with respect to an ap-
propriate parabolic subgroup. Using the structural formula for µ∗(σind) we
conclude that such representation π contains the irreducible representation

δ([νaρ, ν(c−1)/2ρ])× δ([ν((c ) +1)/2ρ, ν(c −1)/2ρ])⊗ π′

in its Jacquet module with respect to an appropriate maximal parabolic
subgroup. Now the rest of the proof runs as before.
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Proposition 4.9. Suppose a ≥ 1, x ̸= c and a ̸= (x + 1)/2. We denote
(c ) by y and suppose x = y. If ϵ((x, ρ), (c , ρ)) = 1 then the following
equality holds in R(GL)⊗R:

µ∗(σ)(a,c,ρ) = δ([νaρ, ν(c−1)/2ρ])⊗ L(δ([ν−(c −1)/2ρ, νa−1ρ])o σsp) +

2 δ([νaρ, ν(c−1)/2ρ])⊗ L(δ([ν−(c −1)/2ρ, ν(x−1)/2ρ])o σ(1)
sp ) +

2 δ([νaρ, ν(c−1)/2ρ])⊗ L(δ([ν−(x−1)/2ρ, νa−1ρ])o σ(2)
sp ) +

4 δ([νaρ, ν(c−1)/2ρ])⊗ σ1 + δ([νaρ, ν(c −1)/2ρ])⊗ σ2,

where σ
(1)
sp denotes a strongly positive discrete series such that Jord(σ

(1)
sp ) =

Jord(σsp) \ {(x, ρ)} ∪ {(2a − 1, ρ)}, σ
(2)
sp denotes a strongly positive dis-

crete series such that Jord(σ
(2)
sp ) = Jord(σsp) \ {(x, ρ)} ∪ {(c , ρ)}, while

σ1 and σ2 are mutually non-isomorphic discrete series subrepresentations of
δ([ν−(x−1)/2ρ, ν(c −1)/2ρ])oσ

(1)
sp and σ1 is also a subrepresentation of δ([ν−a+1ρ,

ν(x−1)/2ρ])o σ
(2)
sp .

If ϵ((x, ρ), (c , ρ)) = −1 then the following equality holds in R(GL)⊗R:

µ∗(σ)(a,c,ρ) = δ([νaρ, ν(c−1)/2ρ])⊗ L(δ([ν−(c −1)/2ρ, νa−1ρ])o σsp) +

2 δ([νaρ, ν(c−1)/2ρ])⊗ L(δ([ν−(c −1)/2ρ, ν(x−1)/2ρ])o σ(1)
sp ) +

δ([νaρ, ν(c −1)/2ρ])⊗ σ2,

for σ
(1)
sp and σ2 as above.

Proof. First, inR(GL)⊗R we have (we note that here is also used Proposition
3.2 of [8])

µ∗(σind)(a,c,ρ) = 2 δ([νaρ, ν(c−1)/2ρ])⊗ L(δ([ν−(c −1)/2ρ, νa−1ρ])o σsp) +

4 δ([νaρ, ν(c−1)/2ρ])⊗ L(δ([ν−(c −1)/2ρ, ν(x−1)/2ρ])o σ(1)
sp ) +

2 δ([νaρ, ν(c−1)/2ρ])⊗ L(δ([ν−(x−1)/2ρ, νa−1ρ])o σ(2)
sp ) +

4 δ([νaρ, ν(c−1)/2ρ])⊗ σ1 + 2 δ([νaρ, ν(c −1)/2ρ])⊗ σ2.

Again, we have already seen that δ([νaρ, ν(c−1)/2ρ])⊗L(δ([ν−(c −1)/2ρ, νa−1ρ])o
σsp) appears in both µ∗(σ) and µ∗(σ′) with multiplicity one.

It directly follows that both σ and σ′ are irreducible subrepresentations
of the induced representation δ([ν−(c −1)/2ρ, ν(c−1)/2ρ])× δ([νaρ, ν(x−1)/2ρ])o
σ
(1)
sp . It can be easily seen that δ([νaρ, ν(c−1)/2ρ]) ⊗ δ([ν−(c −1)/2ρ, ν(x−1)/2ρ])
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appears in m∗(δ([ν−(c −1)/2ρ, ν(c−1)/2ρ])×δ([νaρ, ν(x−1)/2ρ])) with multiplicity
two. Now transitivity of Jacquet modules shows that there is some irreducible
constituent δ([νaρ, ν(c−1)/2ρ]) ⊗ π′ appearing in both µ∗(σ) and µ∗(σ′) such

that µ∗(π′) ≥ δ([ν−(c −1)/2ρ, ν(x−1)/2ρ])⊗ σ
(1)
sp .

Description of µ∗(σind)(a,c,ρ) forces π
′ ≃ L(δ([ν−(c −1)/2ρ, ν(x−1)/2ρ])oσ

(1)
sp )

and, since µ∗(L(δ([ν−(c −1)/2ρ, ν(x−1)/2ρ])oσ
(1)
sp )) contains δ([ν−(c −1)/2ρ, ν(x−1)/2ρ])

⊗σ
(1)
sp with multiplicity one, δ([νaρ, ν(c−1)/2ρ])⊗L(δ([ν−(c −1)/2ρ, ν(x−1)/2ρ])o

σ
(1)
sp ) appears in both µ∗(σ) and µ∗(σ′) with multiplicity two.

On the other hand, L(δ([ν−(x−1)/2ρ, νa−1ρ])o σ
(2)
sp ) is a subrepresentation

of
δ([ν−(x−1)/2ρ, νa−1ρ])× δ([ν(x+1)/2ρ, ν(c −1)/2ρ])o σ(1)

sp .

Since a−1 < (x−1)/2, Frobenius reciprocity implies that µ∗(L(δ([ν−(x−1)/2ρ,

νa−1ρ]) o σ
(2)
sp )) contains δ([ν−(x−1)/2ρ, νa−1ρ]) × δ([ν(x+1)/2ρ, ν(c −1)/2ρ]) ⊗

σ
(1)
sp . Consequently, if π is an irreducible subquotient of σind such that

δ([νaρ, ν(c−1)/2ρ])⊗L(δ([ν−(x−1)/2ρ, νa−1ρ])oσ
(2)
sp ) is contained in µ∗(π), then

Jacquet module of π with respect to an appropriate parabolic subgroup
contains δ([νaρ, ν(c−1)/2ρ])⊗δ([ν−(x−1)/2ρ, νa−1ρ])×δ([ν(x+1)/2ρ, ν(c −1)/2ρ])⊗
σ
(1)
sp . Therefore, there is some irreducible constituent δ ⊗ σ

(1)
sp of µ∗(π) such

that m∗(δ) contains δ([νaρ, ν(c−1)/2ρ]) ⊗ δ([ν−(x−1)/2ρ, νa−1ρ]) × δ([ν(x+1)/2ρ,
ν(c −1)/2ρ]). From µ∗(σind) we obtain that δ is an irreducible subquotient of
δ([ν−(x−1)/2ρ, ν(c −1)/2ρ])× δ([ν(x+1)/2ρ, ν(c−1)/2ρ]) and, in a standard way, we
conclude

δ ≃ δ([ν−(x−1)/2ρ, ν(c−1)/2ρ])× δ([ν(x+1)/2ρ, ν(c −1)/2ρ]).

Proposition 7.2 of [17] and definition of representations σ and σ′ show that

µ∗(σ) contains δ([νaρ, ν(c−1)/2ρ])⊗L(δ([ν−(x−1)/2ρ, νa−1ρ])oσ
(2)
sp ) if and only

if ϵ((x, ρ), (c , ρ)) = 1.
Now we consider irreducible constituent δ([νaρ, ν(c−1)/2ρ]) ⊗ σ1. From

Proposition 3.2 of [8] we obtain the following embeddings and isomorphism:

σ1 ↪→ δ([ν−a+1ρ, ν(c −1)/2ρ])o σ(2)
sp

↪→ δ([ν−a+1ρ, ν(c −1)/2ρ])× δ([νaρ, ν(x−1)/2ρ])o σ(1)
sp

≃ δ([νaρ, ν(x−1)/2ρ])× δ([ν−a+1ρ, ν(c −1)/2ρ])o σ(1)
sp

↪→ δ([νaρ, ν(x−1)/2ρ])× δ([νaρ, ν(c −1)/2ρ])× δ([ν−a+1ρ, νa−1ρ])o σ(1)
sp .
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Since the representation δ([νaρ, ν(x−1)/2ρ])× δ([νaρ, ν(c −1)/2ρ]) is irreducible,
by Lemma 3.2 of [11], there is an irreducible representation τ such that σ1 is a
subrepresentation of δ([νaρ, ν(x−1)/2ρ])×δ([νaρ, ν(c −1)/2ρ])oτ and Frobenius
reciprocity yields µ∗(σ1) ≥ δ([νaρ, ν(x−1)/2ρ]) × δ([νaρ, ν(c −1)/2ρ]) ⊗ τ . In
consequence, for an irreducible subquotient π of σind such that µ∗(π) ≥
δ([νaρ, ν(c−1)/2ρ])⊗σ1 there is some irreducible constituent δ⊗τ of µ∗(π) such
that Jacquet module of δ with respect to an appropriate parabolic subgroup
contains δ([νaρ, ν(c−1)/2ρ])⊗ δ([νaρ, ν(x−1)/2ρ])× δ([νaρ, ν(c −1)/2ρ]).

It follows at once from the cuspidal support of δ and structural formula
for µ∗(σind) that δ is isomorphic to δ([νaρ, ν(c−1)/2ρ]) × δ([νaρ, ν(x−1)/2ρ]) ×
δ([νaρ, ν(c −1)/2ρ]). In the same way as before we conclude that µ∗(σ) contains
δ([νaρ, ν(c−1)/2ρ])⊗ σ1 if and only if ϵ((x, ρ), (c , ρ)) = 1.

What is left is to show that δ([νaρ, ν(c−1)/2ρ])⊗ σ2 appears in both µ∗(σ)
and µ∗(σ′).

In the previous subsection we have seen that δ([ν−(x−1)/2ρ, ν(c−1)/2ρ]) ⊗
L(δ([ν−(c −1)/2ρ, ν−(x+1)/2ρ]) o σsp) appears in both µ∗(σ) and µ∗(σ′). Fur-
ther, we have the following embeddings and isomorphisms (note that the

representation δ([ν−(c −1)/2ρ, ν−(x+1)/2ρ])oσ
(1)
sp is irreducible by the results of

[12]):

L(δ([ν−(c −1)/2ρ, ν−(x+1)/2ρ])o σsp) ↪→ δ([ν−(c −1)/2ρ, ν−(x+1)/2ρ])o σsp

↪→ δ([ν−(c −1)/2ρ, ν−(x+1)/2ρ])× δ([νaρ, ν(x−1)/2ρ])o σ(1)
sp

≃ δ([νaρ, ν(x−1)/2ρ])× δ([ν−(c −1)/2ρ, ν−(x+1)/2ρ])o σ(1)
sp

≃ δ([νaρ, ν(x−1)/2ρ])× δ([ν(x+1)/2ρ, ν(c −1)/2ρ])o σ(1)
sp .

Further, from description of the composition series of induced representation
δ([ν−(c −1)/2ρ, ν−(x+1)/2ρ]) o σsp given in Proposition 3.1 of [12], we deduce
that there is no irreducible constituent of the form δ([ν(x+1)/2ρ, ν(c −1)/2ρ])⊗π
appearing in µ∗(L(δ([ν−(c −1)/2ρ, ν−(x+1)/2ρ])o σsp)). Thus, L(δ([ν

−(c −1)/2ρ,
ν−(x+1)/2ρ])o σsp) is contained in the kernel of an intertwining operator

δ([νaρ, ν(x−1)/2ρ])× δ([ν(x+1)/2ρ, ν(c −1)/2ρ])o σ(1)
sp →

δ([ν(x+1)/2ρ, ν(c −1)/2ρ])× δ([νaρ, ν(x−1)/2ρ])o σ(1)
sp ,

which is, according to [18], isomorphic to

L(δ([νaρ, ν(x−1)/2ρ])× δ([ν(x+1)/2ρ, ν(c −1)/2ρ]))o σ(1)
sp .
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In this way we conclude that both representations σ and σ′ contain irreducible
representation

δ([ν−(x−1)/2ρ, ν(c−1)/2ρ])⊗L(δ([νaρ, ν(x−1)/2ρ])×δ([ν(x+1)/2ρ, ν(c −1)/2ρ]))⊗σ(1)
sp

in Jacquet module with respect to an appropriate parabolic subgroup.
If δ⊗σ

(1)
sp is an irreducible constituent of µ∗(σ) or µ∗(σ′) such that m∗(δ)

contains δ([ν−(x−1)/2ρ, ν(c−1)/2ρ])⊗L(δ([νaρ, ν(x−1)/2ρ])×δ([ν(x+1)/2ρ, ν(c −1)/2ρ])),
in the same fashion as before we get that δ is an irreducible subquotient of

δ([ν−(x−1)/2ρ, ν(c −1)/2ρ])× δ([ν(c +1)/2ρ, ν(c−1)/2ρ])×

δ([νaρ, ν(x−1)/2ρ])× δ([ν(x+1)/2ρ, ν(c −1)/2ρ]).

It is not hard to see that the unique irreducible subquotient of this induced
representation which contains δ([ν−(x−1)/2ρ, ν(c−1)/2ρ])⊗L(δ([νaρ, ν(x−1)/2ρ])×
δ([ν(x+1)/2ρ, ν(c −1)/2ρ])) in Jacquet module with respect to an appropriate
parabolic subgroup is isomorphic to

δ([ν−(x−1)/2ρ, ν(c−1)/2ρ])× L(δ([νaρ, ν(x−1)/2ρ])× δ([ν(x+1)/2ρ, ν(c −1)/2ρ]))

(which is irreducible by Lemma 1.3.3 of [2]). Thus, δ([ν−(x−1)/2ρ, ν(c−1)/2ρ])×
L(δ([νaρ, ν(x−1)/2ρ]) × δ([ν(x+1)/2ρ, ν(c −1)/2ρ])) ⊗ σ

(1)
sp appears in both µ∗(σ)

and µ∗(σ′). By the structural formula, such irreducible constituent appears
with multiplicity two in µ∗(σind), so it appears with multiplicity one in both
µ∗(σ) and µ∗(σ′).

Using [18] and Lemma 1.3.3 of [2], we can assert that in an appropriate
Grothendieck group holds

δ([ν−(x−1)/2ρ, ν(c−1)/2ρ])× δ([νaρ, ν(x−1)/2ρ])× δ([ν(x+1)/2ρ, ν(c −1)/2ρ]) =

δ([ν−(x−1)/2ρ, ν(c−1)/2ρ])× δ([νaρ, ν(c −1)/2ρ])+

δ([ν−(x−1)/2ρ, ν(c−1)/2ρ])× L(δ([νaρ, ν(x−1)/2ρ])× δ([ν(x+1)/2ρ, ν(c −1)/2ρ])).

Since δ([νaρ, ν(c−1)/2ρ])⊗δ([ν−(x−1)/2ρ, ν(c −1)/2ρ]) appears with multiplic-
ity three in m∗(δ([ν−(x−1)/2ρ, ν(c−1)/2ρ]) × δ([νaρ, ν(x−1)/2ρ]) × δ([ν(x+1)/2ρ,
ν(c −1)/2ρ])) and with multiplicity two in m∗(δ([ν−(x−1)/2ρ, ν(c−1)/2ρ])×δ([νaρ,
ν(c −1)/2ρ])) it follows that δ([νaρ, ν(c−1)/2ρ]) ⊗ δ([ν−(x−1)/2ρ, ν(c −1)/2ρ]) ap-
pears with multiplicity one in

m∗(δ([ν−(x−1)/2ρ, ν(c−1)/2ρ])×L(δ([νaρ, ν(x−1)/2ρ])×δ([ν(x+1)/2ρ, ν(c −1)/2ρ]))).
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Using the structural formula we also obtain that if δ ⊗ σ
(1)
sp is an ir-

reducible constituent of µ∗(σind) such that m∗(δ) ≥ δ([νaρ, ν(c−1)/2ρ]) ⊗
δ([ν−(x−1)/2ρ, ν(c −1)/2ρ]), then δ is either isomorphic to δ([ν−(x−1)/2ρ, ν(c−1)/2ρ])
×δ([νaρ, ν(c −1)/2ρ]) or to δ([ν−(x−1)/2ρ, ν(c−1)/2ρ]) × L(δ([νaρ, ν(x−1)/2ρ])×
δ([ν(x+1)/2ρ, ν(c −1)/2ρ])).

Transitivity of Jacquet modules shows that for π ∈ {σ, σ′} there is an
irreducible constituent δ([νaρ, ν(c−1)/2ρ])⊗ π′ of µ∗(π) such that µ∗(π′) con-

tains δ([ν−(x−1)/2ρ, ν(c −1)/2ρ]) ⊗ σ
(1)
sp . Description of µ∗(σind)(a,c,ρ) given in

the beginning of the proof leads to π′ ∈ {σ1, σ2}.
Let us denote by τ an element of the set {σ, σ′} which is not an irre-

ducible subrepresentation of δ([ν−(x−1)/2ρ, ν(c −1)/2ρ]) o σ′
sp, where σ′

sp de-
notes a strongly positive discrete series such that Jord(σ′

sp) = Jord(σsp) \
{(x, ρ)} ∪ {(c, ρ)}. Then, as we have already proved, δ([νaρ, ν(c−1)/2ρ]) ⊗
σ1 does not appear in µ∗(τ), and hence δ([νaρ, ν(c−1)/2ρ]) ⊗ σ2 ≤ µ∗(τ).
Also, such irreducible constituent appears in µ∗(τ) with multiplicity one,

since otherwise δ([νaρ, ν(c−1)/2ρ])⊗ δ([ν−(x−1)/2ρ, ν(c −1)/2ρ])⊗ σ
(1)
sp would ap-

pear in Jacquet module of τ with respect to an appropriate parabolic sub-
group with multiplicity two and, consequently, δ([ν−(x−1)/2ρ, ν(c−1)/2ρ]) ×
L(δ([νaρ, ν(x−1)/2ρ]) × δ([ν(x+1)/2ρ, ν(c −1)/2ρ])) ⊗ σ

(1)
sp would appear in µ∗(τ)

with multiplicity two, which is impossible.
Therefore, δ([νaρ, ν(c−1)/2ρ])⊗ σ2 appears in both µ∗(σ) and µ∗(σ′) with

multiplicity one and the proposition is proved.

Proposition 4.10. Suppose a ≥ 1, x ̸= c and a ̸= (x + 1)/2. We denote
(c ) by y and suppose x = y . If ϵ((y, ρ), (c , ρ)) = 1 then the following
equality holds in R(GL)⊗R:

µ∗(σ)(a,c,ρ) = δ([νaρ, ν(c−1)/2ρ])⊗ L(δ([ν−(c −1)/2ρ, νa−1ρ])o σsp) +

2 δ([νaρ, ν(c−1)/2ρ])⊗ L(δ([ν−(c −1)/2ρ, ν(x−1)/2ρ])o σ(1)
sp ) +

2 δ([νaρ, ν(c−1)/2ρ])⊗ L(δ([ν−(y−1)/2ρ, νa−1ρ])o σ(2)
sp ) +

4 δ([νaρ, ν(c−1)/2ρ])⊗ L(δ([ν−(y−1)/2ρ, ν(x−1)/2ρ])o σ(3)
sp ) +

δ([νaρ, ν(c−1)/2ρ])⊗ L(δ([ν−(c −1)/2ρ, ν(y−1)/2ρ])o σ(4)
sp ) +

2 δ([νaρ, ν(c−1)/2ρ])⊗ σ1,

where σ
(1)
sp denotes a strongly positive discrete series such that Jord(σ

(1)
sp ) =

Jord(σsp) \ {(x, ρ)} ∪ {(2a − 1, ρ)}, σ
(2)
sp denotes a strongly positive dis-
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crete series such that Jord(σ
(2)
sp ) = Jord(σsp) \ {(y, ρ)} ∪ {(c , ρ)}, σ(3)

sp de-

notes a strongly positive discrete series such that Jord(σ
(3)
sp ) = Jord(σ

(2)
sp ) \

{(x, ρ)} ∪ {(2a − 1, ρ)}, σ(4)
sp denotes a strongly positive discrete series such

that Jord(σ
(4)
sp ) = Jord(σsp)\{(y, ρ)}∪{(2a−1, ρ)}, while σ1 denotes unique

discrete series subrepresentation of δ([ν−(x−1)/2ρ, ν(c −1)/2ρ])o σ
(1)
sp .

If ϵ((y, ρ), (c , ρ)) = −1 then the following equality holds in R(GL)⊗R:

µ∗(σ)(a,c,ρ) = δ([νaρ, ν(c−1)/2ρ])⊗ L(δ([ν−(c −1)/2ρ, νa−1ρ])o σsp) +

2 δ([νaρ, ν(c−1)/2ρ])⊗ L(δ([ν−(c −1)/2ρ, ν(x−1)/2ρ])o σ(1)
sp ) +

δ([νaρ, ν(c−1)/2ρ])⊗ L(δ([ν−(c −1)/2ρ, ν(y−1)/2ρ])o σ(4)
sp ),

for σ
(1)
sp and σ

(4)
sp as above.

Proof. We start with the following equality (again, Proposition 3.2 of [8] is
used to obtained σ1):

µ∗(σind)(a,c,ρ) = 4 δ([νaρ, ν(c−1)/2ρ])⊗ L(δ([ν−(c −1)/2ρ, νa−1ρ])o σsp) +

4 δ([νaρ, ν(c−1)/2ρ])⊗ L(δ([ν−(c −1)/2ρ, ν(x−1)/2ρ])o σ(1)
sp ) +

2 δ([νaρ, ν(c−1)/2ρ])⊗ L(δ([ν−(y−1)/2ρ, νa−1ρ])o σ(2)
sp ) +

2 δ([νaρ, ν(c−1)/2ρ])⊗ L(δ([ν−(y−1)/2ρ, ν(x−1)/2ρ])o σ(3)
sp ) +

2 δ([νaρ, ν(c−1)/2ρ])⊗ L(δ([ν−(c −1)/2ρ, ν(y−1)/2ρ])o σ(4)
sp ) +

2 δ([νaρ, ν(c−1)/2ρ])⊗ σ1.

In Proposition 4.2 we have seen that δ([νaρ, ν(c−1)/2ρ])⊗L(δ([ν−(c −1)/2ρ,
νa−1ρ])o σsp) appears in both µ∗(σ) and µ∗(σ′) with multiplicity one.

For π ∈ {L(δ([ν−(y−1)/2ρ, νa−1ρ])oσ
(2)
sp ), L(δ([ν−(y−1)/2ρ, ν(x−1)/2ρ])oσ

(3)
sp ),

σ1} it can be directly seen that µ∗(π) contains an irreducible constituent of
the form δ([ν(y+1)/2ρ, ν(c −1)/2ρ])⊗ π′, for some irreducible representation π′.
Thus, if δ([νaρ, ν(c−1)/2ρ])⊗π appears in µ∗(τ) for π ∈ {L(δ([ν−(y−1)/2ρ, νa−1ρ])o
σ
(2)
sp ), L(δ([ν−(y−1)/2ρ, ν(x−1)/2ρ])oσ

(3)
sp ), σ1} and an irreducible subquotient τ

of σind, it follows that there is an irreducible constituent δ⊗ π′ of µ∗(τ) such
that m∗(δ) contains δ([νaρ, ν(c−1)/2ρ])⊗ δ([ν(y+1)/2ρ, ν(c −1)/2ρ]). From struc-
tural formula for µ∗(σind) we obtain that δ is an irreducible subquotient of
some of the following representations:

δ([νaρ, ν(c−1)/2ρ])× δ([ν(y+1)/2ρ, ν(c −1)/2ρ]),
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δ([νaρ, ν(c −1)/2ρ])× δ([ν(c −1)/2ρ, ν(c−1)/2ρ])× δ([ν(y+1)/2ρ, ν(c −1)/2ρ]),

δ([νaρ, ν(x−1)/2ρ])× δ([ν(x+1)/2ρ, ν(c−1)/2ρ])× δ([ν(y+1)/2ρ, ν(c −1)/2ρ]),

δ([νaρ, ν(x−1)/2ρ])× δ([ν(x+1)/2ρ, ν(c −1)/2ρ])× δ([ν(y+1)/2ρ, ν(c−1)/2ρ]).

Since the first of these representation is an irreducible subquotient of other
three and δ([νaρ, ν(c−1)/2ρ])⊗ δ([ν(y+1)/2ρ, ν(c −1)/2ρ]) appears with multiplic-
ity one in Jacquet module with respect to an appropriate parabolic subgroup
of each of these four representations, we deduce

δ ≃ δ([νaρ, ν(c−1)/2ρ])× δ([ν(y+1)/2ρ, ν(c −1)/2ρ]).

Thus, in the same way as before we may conclude that δ([νaρ, ν(c−1)/2ρ])⊗π

appears in µ∗(σ) for π ∈ {L(δ([ν−(y−1)/2ρ, νa−1ρ]) o σ
(2)
sp ), L(δ([ν−(y−1)/2ρ,

ν(x−1)/2ρ])o σ
(3)
sp ), σ1} if and only if ϵ((y, ρ), (c , ρ)) = 1.

One the other hand, both discrete series representations σ and σ′ are
subrepresentations of

δ([ν−(c −1)/2ρ, ν(c−1)/2ρ])× δ([νaρ, ν(x−1)/2ρ])o σ(1)
sp .

Irreducibility of δ([ν−(c −1)/2ρ, ν(c−1)/2ρ]) × δ([νaρ, ν(x−1)/2ρ]) and Frobenius
reciprocity yield that Jacquet module of σ with respect to an appropriate
parabolic subgroup contains δ([ν−(c −1)/2ρ, ν(c−1)/2ρ]) × δ([νaρ, ν(x−1)/2ρ]) ⊗
σ
(1)
sp .
Sincem∗(δ([ν−(c −1)/2ρ, ν(c−1)/2ρ])×δ([νaρ, ν(x−1)/2ρ])) contains irreducible

constituent δ([νaρ, ν(c−1)/2ρ]) ⊗ δ([ν−(c −1)/2ρ, ν(x−1)/2ρ]) (with multiplicity
two), transitivity of Jacquet modules shows that there is some irreducible
constituent δ([νaρ, ν(c−1)/2ρ])⊗π of µ∗(σ) such that µ∗(π) contains δ([ν−(c −1)/2ρ,

ν(x−1)/2ρ])⊗ σ
(1)
sp .

Directly from description of µ∗(σind) given in the beginning of the proof,

we conclude that π has to be isomorphic to L(δ([ν−(c −1)/2ρ, ν(x−1)/2ρ])oσ
(1)
sp ).

Further, it can be easily verified that µ∗(L(δ([ν−(c −1)/2ρ, ν(x−1)/2ρ]) o σ
(1)
sp ))

contains δ([ν−(c −1)/2ρ, ν(x−1)/2ρ])⊗σ
(1)
sp with multiplicity one. In consequence,

δ([νaρ, ν(c−1)/2ρ])⊗L(δ([ν−(c −1)/2ρ, ν(x−1)/2ρ])o σ
(1)
sp ) appears in µ∗(σ) with

multiplicity at least two.
In an analogous manner we deduce that δ([νaρ, ν(c−1)/2ρ])⊗L(δ([ν−(c −1)/2ρ,

ν(x−1)/2ρ]) o σ
(1)
sp ) also appears in µ∗(σ′) with multiplicity at least two, so

δ([νaρ, ν(c−1)/2ρ])⊗L(δ([ν−(c −1)/2ρ, ν(x−1)/2ρ])o σ
(1)
sp ) appears in both µ∗(σ)

and µ∗(σ′) with the multiplicity two.
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In similar way it can be seen that δ([νaρ, ν(c−1)/2ρ]) ⊗ L(δ([ν−(c −1)/2ρ,

ν(y−1)/2ρ]) o σ
(4)
sp ) appears in both µ∗(σ) and µ∗(σ′) with the multiplicity

one.

Proposition 4.11. Suppose a ≥ 1, x ̸= c and a ̸= (x + 1)/2. We denote
(c ) by y and suppose x < y . If ϵ((y, ρ), (c , ρ)) = 1 then the following
equality holds in R(GL)⊗R:

µ∗(σ)(a,c,ρ) = δ([νaρ, ν(c−1)/2ρ])⊗ L(δ([ν−(c −1)/2ρ, νa−1ρ])o σsp) +

2 δ([νaρ, ν(c−1)/2ρ])⊗ L(δ([ν−(c −1)/2ρ, ν(x−1)/2ρ])o σ(1)
sp ) +

4 δ([νaρ, ν(c−1)/2ρ])⊗ L(δ([ν−(y−1)/2ρ, νx−1ρ])o σ(2)
sp ) +

2 δ([νaρ, ν(c−1)/2ρ])⊗ L(δ([ν−(y−1)/2ρ, νa−1ρ])o σ(3)
sp ) +

δ([νaρ, ν(c−1)/2ρ])⊗ L(δ([ν−(c −1)/2ρ, ν(z−1)/2ρ])o σ(4)
sp ) +

2 δ([νaρ, ν(c−1)/2ρ])⊗ L(δ([ν−(y−1)/2ρ, ν(z−1)/2ρ])o σ(5)
sp ),

where σ
(1)
sp denotes a strongly positive discrete series such that Jord(σ

(1)
sp ) =

Jord(σsp) \ {(x, ρ)} ∪ {(2a − 1, ρ)}, σ
(2)
sp denotes a strongly positive dis-

crete series such that Jord(σ
(2)
sp ) = Jord(σ

(1)
sp ) \ {(y, ρ)} ∪ {(c , ρ)}, σ(3)

sp de-

notes a strongly positive discrete series such that Jord(σ
(3)
sp ) = Jord(σsp) \

{(y, ρ)} ∪ {(c , ρ)}, σ(4)
sp denotes a strongly positive discrete series such that

Jord(σ
(4)
sp ) = Jord(σsp)\{(z, ρ)}∪{(2a−1, ρ)}, while σ

(5)
sp denotes a strongly

positive discrete series such that Jord(σ
(5)
sp ) = Jord(σ

(3)
sp ) \ {(z, ρ)} ∪ {(2a−

1, ρ)}.
If ϵ((y, ρ), (c , ρ)) = −1 then the following equality holds in R(GL)⊗R:

µ∗(σ)(a,c,ρ) = δ([νaρ, ν(c−1)/2ρ])⊗ L(δ([ν−(c −1)/2ρ, νa−1ρ])o σsp) +

2 δ([νaρ, ν(c−1)/2ρ])⊗ L(δ([ν−(c −1)/2ρ, ν(x−1)/2ρ])o σ(1)
sp ) +

δ([νaρ, ν(c−1)/2ρ])⊗ L(δ([ν−(c −1)/2ρ, ν(z−1)/2ρ])o σ(4)
sp ),

for σ
(1)
sp and σ

(4)
sp as above.
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Proof. We just note the equality

µ∗(σind)(a,c,ρ) = 2 δ([νaρ, ν(c−1)/2ρ])⊗ L(δ([ν−(c −1)/2ρ, νa−1ρ])o σsp) +

4 δ([νaρ, ν(c−1)/2ρ])⊗ L(δ([ν−(c −1)/2ρ, ν(x−1)/2ρ])o σ(1)
sp ) +

4 δ([νaρ, ν(c−1)/2ρ])⊗ L(δ([ν−(y−1)/2ρ, νx−1ρ])o σ(2)
sp ) +

2 δ([νaρ, ν(c−1)/2ρ])⊗ L(δ([ν−(y−1)/2ρ, νa−1ρ])o σ(3)
sp ) +

2 δ([νaρ, ν(c−1)/2ρ])⊗ L(δ([ν−(c −1)/2ρ, ν(z−1)/2ρ])o σ(4)
sp ) +

2 δ([νaρ, ν(c−1)/2ρ])⊗ L(δ([ν−(y−1)/2ρ, ν(z−1)/2ρ])o σ(5)
sp ).

The rest of the proof can be obtained in completely analogous manner as
the proof of Proposition 4.10, details being left to the reader.

4.3 Case a = 1
2

In this subsection we discuss the remaining case a = 1
2
. Throughout this

subsection we denote min(Jordρ) by cmin. Again, we start our determina-
tion with a technical lemma, the proof of which we omit, followed by some
elementary situations.

Lemma 4.12. If c = cmin or ϵ(cmin, ρ) = −1 then for an irreducible con-

stituent δ([ν
1
2ρ, ν(c−1)/2ρ])⊗ π of µ∗(σind) we have

π ≤ δ([ν
1
2ρ, ν(c −1)/2ρ])o σsp,

Otherwise,

π ≤ δ([ν
1
2ρ, ν(c −1)/2ρ])o σsp ⊕ δ([ν−(cmin−1)/2ρ, ν(c −1)/2ρ])o σ′

sp,

where σ′
sp denotes a strongly positive discrete series such that Jord(σ′

sp) =
Jord(σsp) \ {(cmin, ρ)}, i.e., σ′

sp is a unique strongly positive discrete series

such that σsp embeds in δ([ν
1
2ρ, ν(cmin−1)/2ρ])oσ′

sp. Also, ϵσ′
sp
(min(Jordρ(σ

′
sp)), ρ) =

−1, where an admissible triple attached to σ′
sp is denoted by (Jord(σ

′
sp), σcusp, ϵσ′

sp
).

Proposition 4.13. Suppose that c = cmin. If ϵ(c , ρ) = −1, in R(GL)⊗ R
we have

µ∗(σ)( 1
2
,c,ρ) = δ([ν

1
2ρ, ν(c−1)/2ρ])⊗ L(δ([ν−(c −1)/2ρ, ν− 1

2ρ])o σsp).
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If ϵ(c , ρ) = 1, in R(GL)⊗R we have

µ∗(σ)( 1
2
,c,ρ) = δ([ν

1
2ρ, ν(c−1)/2ρ])⊗ L(δ([ν−(c −1)/2ρ, ν− 1

2ρ])o σsp) +

2 δ([ν
1
2ρ, ν(c−1)/2ρ])⊗ σds,

where σds denotes a unique discrete series subquotient of δ([ν
−(c −1)/2ρ, ν− 1

2ρ])o
σsp.

Proof. It easily follows

µ∗(σind)( 1
2
,c,ρ) = 2 δ([ν

1
2ρ, ν(c−1)/2ρ])⊗ L(δ([ν−(c −1)/2ρ, ν− 1

2ρ])o σsp) +

2 δ([ν
1
2ρ, ν(c−1)/2ρ])⊗ σds.

It can be deduced from Theorem 5.1 of [12] that µ∗(σds) ≥ δ([ν
1
2ρ, ν(c −1)/2ρ])⊗

σsp. Thus, if π is an irreducible subquotient of σind such that µ∗(π) ≥
δ([ν

1
2ρ, ν(c−1)/2ρ])⊗σds, then π is a discrete series representation (by Lemma

4.1) and there is an irreducible constituent δ⊗σsp of µ
∗(π) such that m∗(δ) ≥

δ([ν
1
2ρ, ν(c−1)/2ρ]) ⊗ δ([ν

1
2ρ, ν(c −1)/2ρ]). In standard way we obtain δ ≃

δ([ν
1
2ρ, ν(c−1)/2ρ])× δ([ν

1
2ρ, ν(c −1)/2ρ]) and Proposition 7.4 of [17] shows that

µ∗(σ) ≥ δ([ν
1
2ρ, ν(c−1)/2ρ])⊗ σds if and only if ϵ(c , ρ) = 1.

This ends the proof.

Proposition 4.14. Suppose c ̸= cmin and ϵ(cmin, ρ) = −1. If ϵ(((c ) , ρ),
(c , ρ)) = −1 in R(GL)⊗R we have

µ∗(σ)( 1
2
,c,ρ) = δ([ν

1
2ρ, ν(c−1)/2ρ])⊗ L(δ([ν−(c −1)/2ρ, ν− 1

2ρ])o σsp).

If ϵ(((c ) , ρ), (c , ρ)) = 1, in R(GL)⊗R we have

µ∗(σ)( 1
2
,c,ρ) = δ([ν

1
2ρ, ν(c−1)/2ρ])⊗ L(δ([ν−(c −1)/2ρ, ν− 1

2ρ])o σsp) +

2 δ([ν
1
2ρ, ν(c−1)/2ρ])⊗ τ,

where τ is a unique irreducible subquotient of δ([ν−(c −1)/2ρ, ν− 1
2ρ])o σsp dif-

ferent than L(δ([ν−(c −1)/2ρ, ν− 1
2ρ])o σsp).

Proof. The following equality holds in R(GL)⊗R:

µ∗(σind)( 1
2
,c,ρ) = 2 δ([ν

1
2ρ, ν(c−1)/2ρ])⊗ L(δ([ν−(c −1)/2ρ, ν− 1

2ρ])o σsp) +

2 δ([ν
1
2ρ, ν(c−1)/2ρ])⊗ τ,
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and the first part of Theorem 5.1 from [12] implies that there is some ir-
reducible constituent of the form δ([ν((c ) +1)/2ρ, ν(c −1)/2ρ]) ⊗ π appearing
in µ∗(τ). Now it can be obtained in the same fashion as in the proof of

the previous proposition that µ∗(σ) ≥ δ([ν
1
2ρ, ν(c−1)/2ρ]) ⊗ τ if and only if

ϵ(((c ) , ρ), (c , ρ)) = 1.

In the rest of this section we assume c ̸= cmin and ϵ(cmin, ρ) = 1. Let us
denote by x an element of Jordρ such that x = cmin and by y an element of
Jordρ such that (c ) = y.

Proposition 4.15. Suppose x = c , i.e. y = cmin. If ϵ((cmin, ρ), (c , ρ)) = 1
then the following equality holds in R(GL)⊗R:

µ∗(σ)( 1
2
,c,ρ) = δ([ν

1
2ρ, ν(c−1)/2ρ])⊗ L(δ([ν−(c −1)/2ρ, ν− 1

2ρ])o σsp) +

2 δ([ν
1
2ρ, ν(c−1)/2ρ])⊗ L(δ([ν−(cmin−1)/2ρ, ν− 1

2ρ])o σ(1)
sp ) +

2 δ([ν
1
2ρ, ν(c−1)/2ρ])⊗ L(δ([ν−(c −1)/2ρ, ν(cmin−1)/2ρ])o σ(2)

sp ) +

4 δ([ν
1
2ρ, ν(c−1)/2ρ])⊗ σ1 + δ([ν

1
2ρ, ν(c−1)/2ρ])⊗ σ2,

where σ
(1)
sp denotes a strongly positive discrete series such that Jord(σ

(1)
sp ) =

Jord(σsp)\{(cmin, ρ)}∪{(c , ρ)}, σ(2)
sp denotes a strongly positive discrete se-

ries such that Jord(σ
(2)
sp ) = Jord(σsp)\{(cmin, ρ)}, while σ1 and σ2 are mutu-

ally non-isomorphic discrete series subrepresentations of δ([ν−(cmin−1)/2ρ, ν(c −1)/2ρ])o
σ
(2)
sp and µ∗(σ1) contains an irreducible constituent of the form δ([ν

1
2ρ, ν(cmin−1)/2ρ])⊗

τ .
If ϵ((cmin, ρ), (c , ρ)) = −1 then the following equality holds in R(GL)⊗R:

µ∗(σ)( 1
2
,c,ρ) = δ([νaρ, ν(c−1)/2ρ])⊗ L(δ([ν−(c −1)/2ρ, ν− 1

2ρ])o σsp) +

2 δ([ν
1
2ρ, ν(c−1)/2ρ])⊗ L(δ([ν−(c −1)/2ρ, ν(cmin−1)/2ρ])o σ(2)

sp ) +

δ([ν
1
2ρ, ν(c−1)/2ρ])⊗ σ2,

for σ
(2)
sp and σ2 as above.

Proof. In R(GL)⊗R holds

µ∗(σind)( 1
2
,c,ρ) = 2 δ([ν

1
2ρ, ν(c−1)/2ρ])⊗ L(δ([ν−(c −1)/2ρ, ν− 1

2ρ])o σsp) +

2 δ([ν
1
2ρ, ν(c−1)/2ρ])⊗ L(δ([ν−(cmin−1)/2ρ, ν− 1

2ρ])o σ(1)
sp ) +

4 δ([ν
1
2ρ, ν(c−1)/2ρ])⊗ L(δ([ν−(c −1)/2ρ, ν(cmin−1)/2ρ])o σ(2)

sp ) +

4 δ([ν
1
2ρ, ν(c−1)/2ρ])⊗ σ1 + 2 δ([ν

1
2ρ, ν(c−1)/2ρ])⊗ σ2.
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We have already seen that δ([νaρ, ν(c−1)/2ρ]) ⊗ L(δ([ν−(c −1)/2ρ, ν− 1
2ρ]) o

σsp) appears in µ∗(σ) with multiplicity one.

Further, it follows directly that µ∗(L(δ([ν−(cmin−1)/2ρ, ν− 1
2ρ])oσ

(1)
sp )) con-

tains some irreducible constituent of the form

δ([ν−(cmin−1)/2ρ, ν− 1
2ρ])× δ([ν(cmin+1)/2ρ, ν(c −1)/2ρ])⊗ π.

Thus, if π1 is an irreducible subquotient of σind with the property µ∗(π1) ≥
δ([ν

1
2ρ, ν(c−1)/2ρ]) ⊗ L(δ([ν−(cmin−1)/2ρ, ν− 1

2ρ]) o σ
(1)
sp ), then there is some ir-

reducible constituent δ ⊗ π of µ∗(π1) such that

m∗(δ) ≥ δ([ν
1
2ρ, ν(c−1)/2ρ])⊗δ([ν−(cmin−1)/2ρ, ν− 1

2ρ])×δ([ν(cmin+1)/2ρ, ν(c −1)/2ρ]).

From µ∗(σind) we deduce

δ ≃ δ([ν(cmin+1)/2ρ, ν(c −1)/2ρ])× δ([ν−(cmin−1)/2ρ, ν(c−1)/2ρ])

and it follows that µ∗(σ) ≥ δ([ν
1
2ρ, ν(c−1)/2ρ]) ⊗ L(δ([ν−(cmin−1)/2ρ, ν− 1

2ρ]) o
σ
(1)
sp ) if and only if ϵ((cmin, ρ), (c , ρ)) = 1.

Since, by Theorem 5.1 of [12], µ∗(σ1) ≥ δ([ν
1
2ρ, ν(cmin−1)/2ρ]) × δ([ν

1
2ρ,

ν(c −1)/2ρ]) ⊗ τ ′, for some irreducible representation τ ′, in the same way we

obtain that µ∗(σ) ≥ δ([ν
1
2ρ, ν(c−1)/2ρ])⊗σ1 if and only if ϵ((cmin, ρ), (c , ρ)) =

1.
From definition of σ we obtain

σ ↪→ δ([ν−(c −1)/2ρ, ν(c−1)/2ρ])× δ([ν
1
2ρ, ν(cmin−1)/2ρ])o σ(2)

sp .

Sincem∗(δ([ν−(c −1)/2ρ, ν(c−1)/2ρ])×δ([ν
1
2ρ, ν(cmin−1)/2ρ])) ≥ 2 δ([ν

1
2ρ, ν(c−1)/2ρ])⊗

δ([ν−(c −1)/2ρ, ν(cmin−1)/2ρ]), using Frobenius reciprocity we obtain that

δ([ν
1
2ρ, ν(c−1)/2ρ])⊗ δ([ν−(c −1)/2ρ, ν(cmin−1)/2ρ])⊗ σ(2)

sp

appears with multiplicity two in Jacquet module of σ with respect to an
appropriate parabolic subgroup.

Transitivity of Jacquet modules implies that there is some irreducible
constituent δ([ν

1
2ρ, ν(c−1)/2ρ]) ⊗ π of µ∗(σ) such that µ∗(π) ≥ δ([ν−(c −1)/2ρ,

ν(cmin−1)/2ρ])⊗σ
(2)
sp . Description of µ∗(σind) given in the beginning of the proof

shows π ≃ L(δ([ν−(c −1)/2ρ, ν(cmin−1)/2ρ])oσ
(2)
sp ). Also, since µ∗(L(δ([ν−(c −1)/2ρ,
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ν(cmin−1)/2ρ]) o σ
(2)
sp )) contains δ([ν−(c −1)/2ρ, ν(cmin−1)/2ρ]) ⊗ σ

(2)
sp with multi-

plicity one, δ([ν
1
2ρ, ν(c−1)/2ρ]) ⊗ L(δ([ν−(c −1)/2ρ, ν(cmin−1)/2ρ]) o σ

(2)
sp ) is con-

tained in µ∗(σ) with multiplicity at least two. Examining analogous proper-
ties of µ∗(σ′) we get that such irreducible constituent is contained in µ∗(σ)
with multiplicity exactly two.

It remains to consider δ([ν
1
2ρ, ν(c−1)/2ρ]) ⊗ σ2. First we note that in an

appropriate Grothendieck group holds ([12], Proposition 3.1)

δ([ν(cmin+1)/2ρ, ν(c −1)/2ρ])oσsp = L(δ([ν−(c −1)/2ρ, ν−(cmin+1)/2ρ])oσsp)+σ(1)
sp .

Since µ∗(δ([ν(cmin+1)/2ρ, ν(c −1)/2ρ]) o σsp) contains L(δ([ν
1
2ρ, ν(cmin−1)/2ρ]) ×

δ([ν(cmin+1)/2ρ, ν(c −1)/2ρ]))⊗σ
(2)
sp and such irreducible constituent does not ap-

pear in µ∗(σ
(1)
sp ) by Theorem 4.6 of [7], it has to appear in µ∗(L(δ([ν−(c −1)/2ρ,

ν−(cmin+1)/2ρ])o σsp)).

Now from µ∗(σ) ≥ δ([ν
1
2ρ, ν(c−1)/2ρ])⊗ L(δ([ν−(c −1)/2ρ, ν−(cmin+1)/2ρ])o

σsp), we obtain that there is some irreducible constituent δ⊗σ
(2)
sp of µ∗(σ) such

that m∗(δ) ≥ δ([ν
1
2ρ, ν(c−1)/2ρ]) ⊗ L(δ([ν

1
2ρ, ν(cmin−1)/2ρ]) × δ([ν(cmin+1)/2ρ,

ν(c −1)/2ρ])). Using structural formula for µ∗(σind) it is not hard to see

δ ≃ δ([ν
1
2ρ, ν(c−1)/2ρ])×L(δ([ν

1
2ρ, ν(cmin−1)/2ρ])× δ([ν(cmin+1)/2ρ, ν(c −1)/2ρ])).

This gives m∗(δ) ≥ δ([ν
1
2ρ, ν(c−1)/2ρ]) ⊗ δ([ν−(cmin+1)/2ρ, ν(c −1)/2ρ]) and, by

transitivity of Jacquet modules, there is some irreducible constituent δ([ν
1
2ρ,

ν(c−1)/2ρ])⊗ π of µ∗(σ) such that µ∗(π) ≥ δ([ν−(cmin+1)/2ρ, ν(c −1)/2ρ])⊗ σ
(2)
sp .

It can be seen directly from the description of µ∗(σind) that π ∈ {σ1, σ2}.
The same conclusion can be made for µ∗(σ′) and in the same way as in

the proof of Proposition 4.9 we obtain that δ([ν
1
2ρ, ν(c−1)/2ρ]) ⊗ σ2 appears

in µ∗(σ) with multiplicity one.

Proposition 4.16. Suppose x = y. If ϵ((x, ρ), (c , ρ)) = 1 then the following
equality holds in R(GL)⊗R:

µ∗(σ)( 1
2
,c,ρ) = δ([ν

1
2ρ, ν(c−1)/2ρ])⊗ L(δ([ν−(c −1)/2ρ, ν− 1

2ρ])o σsp) +

2 δ([ν
1
2ρ, ν(c−1)/2ρ])⊗ L(δ([ν−(c −1)/2ρ, ν(cmin−1)/2ρ])o σ(1)

sp ) +

2 δ([ν
1
2ρ, ν(c−1)/2ρ])⊗ L(δ([ν−(x−1)/2ρ, ν− 1

2ρ])o σ(2)
sp ) +

4 δ([ν
1
2ρ, ν(c−1)/2ρ])⊗ L(δ([ν−(x−1)/2ρ, ν(cmin−1)/2ρ])o σ(3)

sp ) +

δ([ν
1
2ρ, ν(c−1)/2ρ])⊗ L(δ([ν−(c −1)/2ρ, ν(x−1)/2ρ])o σ(4)

sp ) +

2 δ([ν
1
2ρ, ν(c−1)/2ρ])⊗ σ1,
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where σ
(1)
sp denotes a strongly positive discrete series such that Jord(σ

(1)
sp ) =

Jord(σsp) \ {(cmin, ρ)}, σ(2)
sp denotes a strongly positive discrete series such

that Jord(σ
(2)
sp ) = Jord(σsp) \ {(x, ρ)} ∪ {(c , ρ)}, σ

(3)
sp denotes a strongly

positive discrete series such that Jord(σ
(3)
sp ) = Jord(σsp)\{(cmin, ρ), (x, ρ)}∪

{(c , ρ)}, σ(4)
sp denotes a strongly positive discrete series such that Jord(σ

(4)
sp ) =

Jord(σ
(1)
sp ) \ {(x, ρ)} ∪ {(cmin, ρ)}, while σ1 is a discrete series subrepresen-

tation of both induced representations δ([ν−(cmin−1)/2ρ, ν(x−1)/2ρ]) o σ
(2)
sp and

δ([ν−(x−1)/2ρ, ν(c −1)/2ρ])o σ
(4)
sp .

If ϵ((x, ρ), (c , ρ)) = −1 then the following equality holds in R(GL)⊗R:

µ∗(σ)( 1
2
,c,ρ) = δ([νaρ, ν(c−1)/2ρ])⊗ L(δ([ν−(c −1)/2ρ, ν− 1

2ρ])o σsp) +

2 δ([ν
1
2ρ, ν(c−1)/2ρ])⊗ L(δ([ν−(c −1)/2ρ, ν(cmin−1)/2ρ])o σ(1)

sp ) +

δ([ν
1
2ρ, ν(c−1)/2ρ])⊗ L(δ([ν−(c −1)/2ρ, ν(x−1)/2ρ])o σ(4)

sp ),

for σ
(1)
sp and σ

(4)
sp as above.

Proof. We provide only the main details of the proof since it mostly follows
the same lines as in the proof of previous proposition. Using structural
formula, Theorem 5.1 from [12] and Proposition 3.2 of [8] we get

µ∗(σind)( 1
2
,c,ρ) = 2 δ([ν

1
2ρ, ν(c−1)/2ρ])⊗ L(δ([ν−(c −1)/2ρ, ν− 1

2ρ])o σsp) +

4 δ([ν
1
2ρ, ν(c−1)/2ρ])⊗ L(δ([ν−(c −1)/2ρ, ν(cmin−1)/2ρ])o σ(1)

sp ) +

2 δ([ν
1
2ρ, ν(c−1)/2ρ])⊗ L(δ([ν−(x−1)/2ρ, ν− 1

2ρ])o σ(2)
sp ) +

4 δ([ν
1
2ρ, ν(c−1)/2ρ])⊗ L(δ([ν−(x−1)/2ρ, ν(cmin−1)/2ρ])o σ(3)

sp ) +

2 δ([ν
1
2ρ, ν(c−1)/2ρ])⊗ L(δ([ν−(c −1)/2ρ, ν(x−1)/2ρ])o σ(4)

sp ) +

2 δ([ν
1
2ρ, ν(c−1)/2ρ])⊗ σ1.

For π ∈ {L(δ([ν−(x−1)/2ρ, ν− 1
2ρ])oσ

(2)
sp ), L(δ([ν−(x−1)/2ρ, ν(cmin−1)/2ρ])oσ

(3)
sp ), σ1}

there is some irreducible constituent of the form δ([ν(x+1)/2ρ, ν(c −1)/2ρ])⊗ π′

appearing in µ∗(π). If δ ⊗ π′ is an irreducible constituent of µ∗(σind) such

that m∗(δ) ≥ δ([ν
1
2ρ, ν(c−1)/2ρ])⊗δ([ν(x+1)/2ρ, ν(c −1)/2ρ]), then it can be seen

that m∗(δ) also contains δ([ν(x+1)/2ρ, ν(c −1)/2ρ])⊗ δ([ν
1
2ρ, ν(c−1)/2ρ]). Conse-

quently, µ∗(σ) contains δ([ν
1
2ρ, ν(c−1)/2ρ])⊗π for π ∈ {L(δ([ν−(x−1)/2ρ, ν− 1

2ρ])o
σ
(2)
sp ), L(δ([ν−(x−1)/2ρ, ν(cmin−1)/2ρ])oσ

(3)
sp ), σ1} if and only if ϵ((x, ρ), (c , ρ)) =

1.
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Since both µ∗(σ) and µ∗(σ′) contain δ([ν−(c −1)/2ρ, ν(c−1)/2ρ]) × δ([ν
1
2ρ,

ν(cmin−1)/2ρ]) ⊗ σ
(1)
sp and δ([ν

1
2ρ, ν(c−1)/2ρ]) ⊗ δ([ν−(c −1)/2ρ, ν(cmin−1)/2ρ]) ap-

pears with multiplicity two inm∗(δ([ν−(c −1)/2ρ, ν(c−1)/2ρ])×δ([ν
1
2ρ, ν(cmin−1)/2ρ])),

in the same way as in the proof of Proposition 4.15 we get that µ∗(σ) con-

tains δ([ν
1
2ρ, ν(c−1)/2ρ])⊗L(δ([ν−(c −1)/2ρ, ν(cmin−1)/2ρ])oσ

(1)
sp ) with multiplic-

ity two.
Similarly, both σ and σ′ are irreducible subrepresentations of

δ([ν−(c −1)/2ρ, ν(c−1)/2ρ])×L(δ([ν
1
2ρ, ν(cmin−1)/2ρ])×δ([ν(cmin+1)/2ρ, ν(x−1)/2ρ]))oσ(4)

sp .

Lemma 1.3.3 of [2] shows that the induced representation

δ([ν−(c −1)/2ρ, ν(c−1)/2ρ])×L(δ([ν
1
2ρ, ν(cmin−1)/2ρ])×δ([ν(cmin+1)/2ρ, ν(x−1)/2ρ]))

is irreducible and it is not hard to see, using Frobenius reciprocity and tran-
sitivity of Jacquet modules, that Jacquet modules of both σ and σ′ with
respect to an appropriate parabolic subgroup contain

δ([ν
1
2ρ, ν(c−1)/2ρ])⊗ δ([ν−(c −1)/2ρ, ν(x−1)/2ρ])⊗ σ(4)

sp .

Now it can be seen in the same way as before that δ([ν
1
2ρ, ν(c−1)/2ρ]) ⊗

L(δ([ν−(c −1)/2ρ, ν(x−1)/2ρ]) o σ
(4)
sp ) appears in µ∗(σ) with multiplicity one.

This ends the proof.

The remaining case is settled in the following proposition. We omit the
proof, since it can be obtained applying the same arguments as in the proof
of the previous proposition.

Proposition 4.17. Suppose x < y. If ϵ((y, ρ), (c , ρ)) = 1 then the following
equality holds in R(GL)⊗R:

µ∗(σ)( 1
2
,c,ρ) = δ([ν

1
2ρ, ν(c−1)/2ρ])⊗ L(δ([ν−(c −1)/2ρ, ν− 1

2ρ])o σsp) +

2 δ([ν
1
2ρ, ν(c−1)/2ρ])⊗ L(δ([ν−(c −1)/2ρ, ν(cmin−1)/2ρ])o σ(1)

sp ) +

2 δ([ν
1
2ρ, ν(c−1)/2ρ])⊗ L(δ([ν−(y−1)/2ρ, ν− 1

2ρ])o σ(2)
sp ) +

4 δ([ν
1
2ρ, ν(c−1)/2ρ])⊗ L(δ([ν−(y−1)/2ρ, ν(cmin−1)/2ρ])o σ(3)

sp ) +

δ([ν
1
2ρ, ν(c−1)/2ρ])⊗ L(δ([ν−(c −1)/2ρ, ν(x−1)/2ρ])o σ(4)

sp ) +

2 δ([ν
1
2ρ, ν(c−1)/2ρ])⊗ L(δ([ν−(y−1)/2ρ, ν(x−1)/2ρ])o σ(5)

sp ).
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where σ
(1)
sp denotes a strongly positive discrete series such that Jord(σ

(1)
sp ) =

Jord(σsp) \ {(cmin, ρ)}, σ(2)
sp denotes a strongly positive discrete series such

that Jord(σ
(2)
sp ) = Jord(σsp) \ {(y, ρ)} ∪ {(c , ρ)}, σ

(3)
sp denotes a strongly

positive discrete series such that Jord(σ
(3)
sp ) = Jord(σsp)\{(cmin, ρ), (y, ρ)}∪

{(c , ρ)}, σ(4)
sp denotes a strongly positive discrete series such that Jord(σ

(4)
sp ) =

Jord(σ
(1)
sp )\{(x, ρ)}∪{(cmin, ρ)} and σ

(5)
sp denotes a strongly positive discrete

series such that Jord(σ
(5)
sp ) = Jord(σ

(4)
sp ) \ {(y, ρ)} ∪ {(c , ρ)}.

If ϵ((y, ρ), (c , ρ)) = −1 then the following equality holds in R(GL)⊗R:

µ∗(σ)( 1
2
,c,ρ) = δ([νaρ, ν(c−1)/2ρ])⊗ L(δ([ν−(c −1)/2ρ, ν− 1

2ρ])o σsp) +

2 δ([ν
1
2ρ, ν(c−1)/2ρ])⊗ L(δ([ν−(c −1)/2ρ, ν(cmin−1)/2ρ])o σ(1)

sp ) +

δ([ν
1
2ρ, ν(c−1)/2ρ])⊗ L(δ([ν−(c −1)/2ρ, ν(x−1)/2ρ])o σ(4)

sp ),

for σ
(1)
sp and σ

(4)
sp as before.

5 Case Jordρ(σsp) = ∅ and c odd.

The purpose of this section is to provide a description of µ∗(σ)(c,ρ) in an
exceptional case. Throughout this section we assume that c is odd and
Jordρ(σsp) = ∅. Consequently, c = max(Jordρ(σsp)) and ϵ((c, ρ)) is defined.
Further, the induced representation ρo σcusp reduces in a direct sum of two
nonisomorphic tempered representations which we denote by τ1 and τ−1.
Also, ϵ((c, ρ)) = i if and only if there is some irreducible representation
π such that σ is a subrepresentation of π × δ([νρ, ν(c−1)/2ρ]) o τi. Also,
ϵ((c, ρ)) ̸= ϵ′((c, ρ)).

Results obtained in the previous sections show that we only need to con-
sider µ∗(σ)(a,c,ρ) for a ≤ (c − 1)/2. In the following theorem we provide a
description of corresponding Jacquet modules.

Theorem 5.1. For −(c − 1)/2 ≤ a ≤ 0, in R(GL)⊗R we have

µ∗(σ)(a,c,ρ) = δ([νaρ, ν(c−1)/2ρ])⊗ L(δ([ν−(c −1)/2ρ, νa−1ρ])o σsp),

while for 1 ≤ a ≤ (c − 1)/2 we have:

δ([νaρ, ν(c−1)/2ρ])⊗L(δ([ν−(c −1)/2ρ, νa−1ρ])oσsp)+2 δ([νaρ, ν(c−1)/2ρ])⊗σ
(a)
ds ,
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where σ
(a)
ds is a discrete series subrepresentation of δ([ν−a+1ρ, ν(c −1)/2ρ])oσsp

such that for the corresponding admissible triple (Jord(a), σcusp, ϵ
(a)) holds

ϵ(a)((c , ρ)) = ϵ((c, ρ)).

Proof. We only comment the case a ≥ 1. In this case it is easy to obtain

µ∗(σind)a,c,ρ = 2 δ([νaρ, ν(c−1)/2ρ])⊗ L(δ([ν−(c −1)/2ρ, νa−1ρ])o σsp) +

2 δ([νaρ, ν(c−1)/2ρ])⊗ σ1 + 2 δ([νaρ, ν(c−1)/2ρ])⊗ σ−1,

where σ1 and σ−1 denote mutually non-isomorphic discrete series subrepre-
sentations of δ([ν−a+1ρ, ν(c −1)/2ρ])oσsp. Further, we denote by (Jord

(i), σcusp,
ϵ(i)) an admissible triple corresponding to σi, for i ∈ {1,−1}, and assume
ϵ(i)((c , ρ)) = i.

Proposition 4.2 shows that it is enough to consider δ([νaρ, ν(c−1)/2ρ])⊗σ1

and δ([νaρ, ν(c−1)/2ρ])⊗ σ−1. Thus, suppose that δ([ν
aρ, ν(c−1)/2ρ])⊗ σi is an

irreducible constituent of µ∗(σ), for some i ∈ {1,−1}. By [16], there is an
irreducible representation π such that σi contains

π ⊗ δ([νρ, ν(c −1)/2ρ])⊗ τi

in Jacquet module with respect to an appropriate parabolic subgroup. In
consequence, there is some irreducible constituent δ ⊗ τi of µ

∗(σi) such that
m∗(δ) contains π⊗ δ([νρ, ν(c −1)/2ρ]). Calculating µ∗(δ([ν−a+1ρ, ν(c −1)/2ρ])o
σsp) we deduce

δ ≃ π′ × δ([νρ, ν(c −1)/2ρ])× δ([νρ, νa−1ρ])

where π′ stands for an irreducible representation such that π′ ⊗ σcusp ≤
µ∗(σsp). Since there are no twists or ρ appearing in the cuspidal support of
π′, it easily follows π ≃ π′ × δ([νρ, νa−1ρ]) ≃ δ([νρ, νa−1ρ])× π′.

Transitivity of Jacquet modules shows that

δ([νaρ, ν(c−1)/2ρ])⊗ δ([νρ, νa−1ρ])× π′ ⊗ δ([νρ, ν(c −1)/2ρ])⊗ τi

appears in Jacquet module of σ with respect to an appropriate parabolic
subgroup. Hence, there is some irreducible constituent δ′ ⊗ τi of µ

∗(σ) such
that Jacquet module of δ′ with respect to an appropriate parabolic subgroup
contains δ([νaρ, ν(c−1)/2ρ]) ⊗ δ([νρ, νa−1ρ]) × π′ ⊗ δ([νρ, ν(c −1)/2ρ]). In the
same way as before we conclude

δ′ ≃ δ([νρ, ν(c−1)/2ρ])× π′ × δ([νρ, ν(c −1)/2ρ])
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so Jacquet module of σ with respect to an appropriate parabolic subgroup
contains

π′ × δ([νρ, ν(c −1)/2ρ])⊗ δ([νρ, ν(c−1)/2ρ])⊗ τi.

It follows that µ∗(σ) contains some irreducible constituent π′×δ([νρ, ν(c −1)/2ρ])⊗
τ such that µ∗(τ) ≥ δ([νρ, ν(c−1)/2ρ])⊗ τi. From µ∗(σind) we directly obtain
τ ≤ δ([ρ, ν(c−1)/2ρ])o σcusp. In an appropriate Grothendieck group we have

δ([ρ, ν(c−1)/2ρ])o σcusp ≤ δ([νρ, ν(c−1)/2ρ])o τ1 ⊕ δ([νρ, ν(c−1)/2ρ])o τ−1

and it follows immediately that δ([νρ, ν(c−1)/2ρ])⊗ τi appears with multiplic-
ity one in Jacquet module of the right-hand side of the previous inequality
and, by Frobenius reciprocity, it also appears in Jacquet module of unique
irreducible subrepresentation of δ([νρ, ν(c−1)/2ρ]) o τi. Thus, τ is a unique
irreducible subrepresentation of δ([νρ, ν(c−1)/2ρ])o τi and Proposition 7.5 of
[17] shows ϵ((c, ρ)) = i. Consequently, µ∗(σ) contains δ([νaρ, ν(c−1)/2ρ])⊗ σi

if and only if ϵ((c, ρ)) = ϵ(i)((c , ρ)). This ends the proof.
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