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SERIES EDITOR’S PREFACE

Approach your problems from the right end [t isn’t that they can’t see the solution. It is
and begin with the answers. Then one day, that they can’t see the problem.
perhaps you will find the final question.

G.K. Chesterton. The Scandal of Father
‘The Hermit Clad in Crane Feathers’ in R. Brown ‘The point of a Pin’.
van Gulik’s The Chinese Maze Murders.

Growing specialization and diversification have brought a host of monographs and textbooks on
increasingly specialized topics. However, the “tree” of knowledge of mathematics and related fields
does not grow only by putting forth new branches. It also happens, quite often in fact, that
branches which were thought to be completely disparate are suddenly seen to be related.

Further, the kind and level of sophistication of mathematics applied in various sciences has
changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical
economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the
structure of water meet one another in packing and covering theory; quantum fields, crystal defects
and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering;
and prediction and electrical engineering can use Stein spaces. And in addition to this there are
such new emerging subdisciplines as “experimental mathematics”, “CFD”, “completely integrable
systems”, “chaos, synergetics and large-scale order”, which are almost impossible to fit into the
existing classification schemes. They draw upon widely different sections of mathematics. This pro-
gramme, Mathematics and Its Applications, is devoted to new emerging (sub)disciplines and to such
(new) interrelations as exempla gratia:

- a central concept which plays an important role in several different mathematical and/or
scientific specialized areas;

- new applications of the results and ideas from one area of scientific endeavour into another;

- influences which the results, problems and concepts of one field of enquiry have and have had on
the development of another.

The Mathematics and Its Applications programme tries to make available a careful selection of
books which fit the philosophy outlined above. With such books, which are stimulating rather than
definitive, intriguing rather than encyclopaedic, we hope to contribute something towards better
communication among the practitioners in diversified fields.

Because of the wealth of scholarly research being undertaken in the Soviet Union, Eastern
Europe, and Japan, it was decided to devote special attention to the work emanating from these
particular regions. Thus it was decided to start three regional series under the umbrella of the main
MIA programme.

Geometric inequalities have a wide range of applications, both within geometry itself as well
beyond the traditional areas of geometry and geometric applications. For example, in the theory of
complex functions, in the calculus of variations (broadly speaking), in the theory of embedding
theorems for function spaces, and, more generally, in providing a priori estimates in several areas,
e.g. differential equations, they are invaluable tools.

xi
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SERIES EDITOR’S PREFACE

This book is not about these application areas; instead it is a unique and systematic encyclo-
paedic collection of geometric and related inequalities, which, I feel, will be of considerable value to
mathematicians and scientists of widely varying signatures, not least because the authors have taken
considerable pains to include also results published in the less accessible languages.

The unreasonable effectiveness of mathemat-

ics in science ...
Eugene Wigner
Well, if you know of a better "ole, go to it.

Bruce Bairnsfather

What is now proved was once only ima-

gined.

William Blake

Bussum, February 1988

As long as algebra and geometry proceeded
along separate paths, their advance was slow
and their applications limited.

But when these sciences joined company
they drew from each other fresh vitality and
thenceforward marched on at a rapid pace
towards perfection.

Joseph Louis Lagrange.

Michiel Hazewinkel



PREFACE

In the following text we shall use the abbreviation AGI for this book,
and the abbreviation GI for the book:

0. Bottema, R. Z. Djordjevié¢, R. R. Janié, D. S. Mitrinovié, and

P. M. Vasié. Geometric Inequalities, Groningen, 1969, 151 pp.

The book GI is very appreciated and has been much quoted in the
mathematical literature. It contains about 400 varied geometric in-
equalities related to the elements of figures in the plane (triangles,
quadrilaterals, n-gons, circles), and 225 authors are cited in it. The
book AGI contains several thousands of inequalities, not only for
elements of figures in the plane, as GI, but also for elements of
figures in space and hyperspace (tetrahedra, polyhedra, simplices, poly-
topes, spheres). AGI cites over 750 names, and some of them are cited
several times. The text has been updated and a lot of the most recent
results up to the end of 1986 are included in AGI. AGI also contains,
apart from numerous particular results, various methods for proof and
for formation of geometric inequalities. This is the essential charac-
teristic of AGI. It also contains many conjectures and unsolved problems
and, consequently, will serve to provoke and inspire further research.

AGI is, at first glance, a synthesis of a large number of uncon-
nected results, i.e., a unified and complete exposition of various geo-
metric inequalities. We have insisted on finding the original source of
each result, so that several historical priorities have been ascertained
in AGI. AGI contains many new unpublished results addressed to the
authors from several mathematicians and from the authors themselves.

Material on which data are difficult to obtain is presented in
greater detail. It is important to note that results published in
Chinese, Japanese, Serbo-Croatian, Bulgarian, Romanian, Hungarian and
Dutch have also been considered. Such results are frequently quite un-
known in the U.S.A., Canada and in Europe.

Chapters I-XVII were written on the basis of the very extensive
literature published since 1968. However, many geometric inequalities,
proved in the 19th and at the beginning of the 20th century, were for-
gotten and some of them later rediscovered. Such results, when they are
not contained in GI from 1969, are incorporated in AGI. Special atten-
tion was paid to the existence of a triangle (Chapter I), and to the
transformations (Chapters II, V, VII, XI). The same is true for some
important geometric inequalities, i.e. the book contains complete re-
views and unified treatments of recent results concerning the following
inequalities: fundamental inequality ~ I.1; Gerretsen's inequalities -
III.4; asymmetric trigonometric inequalities - VI.l and XV.24; Finsler-
Hadwiger's inequality - VII.1 and 2; polar moment of inertia inequality
XI.1, 3 and XVIII.2.22; Erd3s-Mordell's inequality - XI.5 and XV.25;
Neuberg-Pedoe's and Oppenheim's inequalities - XII.3 and XVIII.4.4; and
MSbius-Neuberg's and Mdbius-Pompeiu's theorems - XIII. Of course, many
of these inequalities were considered in GI, but after the appearance of
that book many new related results have appeared.

xiii



xiv PREFACE

Chapters XVIII, XIX, and XX include inequalities about elementary
figures in three-dimensional and n-dimensional Euclidean space. Here,
by elementary figures we mean convex polyhedrons and polytopes, surfaces
and hypersurfaces of the second order and finite sets of points. Thus,
the inequalities about general convex sets and about regular infinite
sets of points or other elements (such as tesselations, packings and
coverings) are not taken into consideration, because there is a very
abundant monographical literature about these objects.

The substance of Chapters XVIII-XX has not appeared in such a form
until now, as opposed to the case of Chapters I-XVII, which were par-
tially covered by GI. Therefore, during the preparation of these three
chapters we took into consideration not only the recent advances but the
older results, too. The older inequalities included in Chapter XX have
been tossed about in a great number of books which will not be cited
here. We take note only of the book F. G.-M., 'Exercices 3Je géométrie, 4.
éd., Paris-Tours 1912', which is probably the most complete of all books
of this kind.

In the greatest part of the book we arranged inequalities with
respect to the figures in which they appear, from the most general to
the most special figures. The single inequalities are arranged with
respect to the elements of figures which appear in them, and not with
respect to the logical connections of their proofs. Only the shorter and
simpler proofs are included in the book.

With the encyclopaedic content developed above, AGI will be a
unique book in the existing mathematical literature. The expert will
find some new material, since a state-of-the-art report has been given
in the book about the results of geometric inequalities. However, the
book is intended for a wide circle of readers - for the students attend-
ing high schools, colleges, universities, as well as for teachers and
professors of colleges and universities. We had in mind that its con-
tent is extremely various - comprising material of very diverse levels
of comprehension.

There is a great probability that in voluminous work, such as AGI,
major or minor errors and various omissions occur. They can be made in
all steps of the creation and production of a book. It is considered that
there is no error-free book. In order that the errors in AGI be reduced
at minimum, the authors turned for help to several mathematicians in
the world, who offered their advice and criticism.

During the preparation of AGI the authors were in touch with many
mathematicians dealing with geometric inequalities who read some of the
preliminary versions of the chapters or sections of the manuscript and
gave their comments. This enabled AGI to present a lot of unpublished
inequalities obtained through private communications which have been
cited. Thus, a great number of comments given in different stages of our
work is included in AGI.

J. F. Rigby has taken part in writing Chapter III, and W. Janous
in writing Chapter VI.

W. Janous and C. T&ndsescu have given considerable help as they
have already read the whole manuscript. In many cases they improved the
text by their suggestions and comments.

Without their assistance many misprints and even errors would
probably have remained unnoticed.

The following mathematicians: A. Bager, K. Baron, S. J. Bilcev,

O. Bottema, V. Cepulié, H. S. M. Coxeter, H. Demir, V. Devidé, L. Fejes-
Téth, J. Garfunkel, J. T. Groenman, S. Iwata, Dj. Kurepa, S. Kurepa,

V. Mascioni, M. T. McGreggor, D. M. MiloSevié, A. Oppenheim, D. Pedoe,
M. J. Pelling, K. Post, J. F. Rigby, D. Svrtan, G. Tsintsifas,



PREFACE Xv

G. R. Veldkamp, D. Veljan kindly read different portions of AGI in
various stages of preparations of the manuscript and made valuable
suggestions, corrections, additions or comments.

R. R. Janié and B. Crstici assisted in collecting documentary
material.

We have received invaluable help from R. R. Janié, D. Dj. To3ié and
W. Janous, who have carefullv read all the proofs of this book and have
provided us with useful suggestions.

The authors feel indebted to all those mentioned above for the help
which thev gave, in one way or another.

We intend to keep a systematic check of the further development of
geometric inequalities, and to make, from time to time, a research-
expository paper, as well as perhaps a second edition of AGI, revised
and updated, if AGI provokes a sufficient interest as a reference tool
in research work.

We therefore invite the readers of AGI to send us any comment on
the content and form of AGI, as well as on the methods used in the book
so that later editions can be more complete and more accurate.

In particular, we invite the authors of papers from which some
results were included in AGI to communicate us comments if their
contributions are not presented correctly or completely.

After the appearance of GI (called "Bible of Bottema" in the
Canadian journal Crux Mathematicorum) in 1969, during the period from
1969-1986 a larae number of papers and problems concerning geometric
inequalities were published in mathematical journals and this inspired
us to compile encyclopaedic work AGI. We hope that AGI like GI will
stimulate and motive new investigations in the development of geometric
inequalities - branch of mathematics which permanently interested and
attracted mathematicians from the 18th century to nowadays. We consider
that this book is a good base for the various synthesis of apparently
unconnected results about geometric inequalities, and also represents
a rich source book for obtaining some deeper and essential generaliza-
tions.

The authors also wish to express their appreciation to D. Reidel
Publishing Company, well known for their high-quality productions, and
especially to the publisher Dr. D. J. Larner, assistant publisher
0. A. Pols, as well as the series editor Professor M. Hazewinkel, for
their most efficient handling of the publication of this book.

January 1, 1988
Belgrade/Zagreb
Yugoslavia

D. S. Mitrinovidé
Smiljanicdeva 38
11000 Belgrade, Yugoslavia

J. E. PeCaridé

Tehnolo&ki fakultet

Ive Lole Ribara 126/3
41000 Zagreb, Yugoslavia

V. Volenec
Prirodoslovno-matemati&ki fakultet
P. O. Box 187

41001 Zagreb, Yugoslavia



NOTATION AND ABBREVIATIONS
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book the following notations are used (if not stated different-

g8 -

B

Q

v =

s - b,

vertices or angles of a triangle
sides BC, CA, AB
altitudes

medians
angle-bisectors

radius of circumcircle
radius of incircle
semi-perimeter

radii of excircles

medians extended to the circumcircle
angle-bisectors extended to the circumcircle
altitudes extended to the circumcircle

circumcentre
incentre
orthocentre
centroid
excentres

Lhuilier-Lemoine point
Georgone point

Nagel point
Crelle-Brocard points
Crelle~Brocard angle
center of Spieker's circle
Gergonne cevians

Nagel cevians

area of ABC
point in the interior of a triangle
distances from P to the vertices of ABC

distances from P to the sides of ABC
angle-bisectors of the angles BPC, CPA, APB

Cevian segments PD, PE, PF

zZ = s — C

cyclic sum, for example: If(a)=f(a)+f(b)+f (c),
Lf(b, c)=f(b, c)+ f£{c, a)+f(a, b)

xvii



xviii NOTATION

i cyclic product, for example: Il(bc) = Ilbc =
Q=Z(b-c)2 =bc * ca  ab, IIGA = GA * GB * GC.
'’ = W = lanl?
Mr(x, Yy ees) mean of order r of the numbers x, y, ... For
example for numbers x, y, 2z
Mr(x) = Mr(x, y, 2) = (xyz)l/3 for r = 0
= (%_Zxr)l/r for r # 0,
lrl < 40
= min(x, y, 2z) for r = =
= max(x, y, 2z) for r +o0
A, B, C, D vertices or angles of a quadrilateral
a, b, ¢, d sides AB, BC, CD, DA
P, 9 diagonals AC, BD
L = 2s perimeter of ABCD
F area of ABCD
A1, ..y vertices or angles of an n-gon
A,y eeer @ its sides
1 n
L = 2s its perimeter
F its area
P point in the interior of an n-gon
R = Py
rk distance from P to the side ak = AkAk+1
W segment of the bisector of the angle
APA L, = 26k from P to its intersection with
the side ak
{8} equality is valid if and only if the triangle
is equilateral
a/2b, 1/sin A sin B a/(2b), 1/(sin A sin B)
{... equality is valid if and only if the conditions
mentioned inside the accolade are satisfied
[n]* in the paper [n] only the extremal case of the

inequality was found but this inequality does
not appear in the paper [n].
if and only if

iff D. S. Mitrinovié (in cooperation with
P. M. Vasié¢), Analytic Inequalities. Berlin-
Heidelberg-New York, 1970.

GI 0. Bottema, R. Z. Djordjevié, R. R. Janié,
D. S. Mitrinovié, and P. M. Vasié, Geometric
Inequalities, Groningen, 1969.

SM V. P. Soltan and S. I. Mejdman, ToZdestva i
neravenstva v treugol'nike, Ki&inev, 1982.

MO A. W. Marshall and I. Olkin, Inequalities: Theory
of Majoration and Its Applications, MNew York-
‘London-Toronto-Sydnev-San Francisco, 1979.

Other symbols are defined in the text.




ORGANIZATION OF THE BOOK

Besides the Preface, Notation and Abbreviations, and the Indexes, the
book contains twenty chapters, each of which is divided into a number

of sections, some of these into subsections some of which in smaller
divisions. As a rule, the numeration of theorems/remarks is continuous
throughout a subsection, or a section which does not contain subsections,
or a chapter which does not contain sections.

After the end of the chapters I-VIII, XIII and XVIII-XX are quoted
the bibliographical references. In the other chapters the references are
mentioned after the sections, subsections or the smaller divisions of
subsections.

The abbreviations of the cited journals are given according to
Mathematical Reviews.

The book contains 16 figures, and graphs.

xix



Chapter I

THE EXISTENCE OF A TRIANGLE¥

0. Introduction

This Chapter is concerned with existence of a triangle satisfying pre-
scribed conditions. Of course, it is well-known that a, b, c are sides
of a triangle if and only if a, b, ¢ 2 0, b+c 2 a, c+a 2 b, a+tb 2> c.

If we wanted to rule out degenerate triangles, we would have to omit the
equality signs.

Similarly, A, B, C are angles of a triangle if and only if

A, B, C20, A+B+C=T,
with equality in the first conditions for degenerate triangles.

Note that apart from the sides a, b, ¢ and the angles A, B, C the
most important concepts in the geometry of the triangle are the vari-
ables R, r, s, where R is the radius of the circumcircle, r is the
radius of the incircle and s is the semi-perimeter. The inequality which
gives the necessary and sufficient condition for the existence of a tri-
angle with given values of R, r, s is known in the literature as the
'fundamental inequality'. This inequality is considered in the first
Section of this Chapter, which gives a history of the fundamental in-
equality and some critical analyses. It is interesting to note that this
important inequality has been rediscovered a number of times in very
different forms. Further, some authors called this inequality 'Blundon's
fundamental inequality' although it was known more than a hundred years
(1851) before the appearance of Blundon's papers. We also give several
proofs of the fundamental inequality. Many of these proofs are new. At
the end of this Section we give g geometric interpretation of the fun~
damental inequality [8].

The second Section gives a series of results concerning necessary
and sufficient conditions for the existence of a triangle in terms of
some other given elements of a triangle. Note that most of these results
are due to G. Petrov [18], and in the book 'Geometric Inequalities' only
a few of his results were stated. We hope that this Section, especially,
will initiate some new contributions.

The third Section gives results about the existence of a triangle
whose sides are equal to specified elements of another triangle. This
part connects numerous isolated results, new and old, comments, and new
proofs. Of course, we expect many similar contributions in the future.

1. The Fundamental Inequality

1.1, History

(a) In 1851, as an answer to Ramus' gquestion, E. Rouché proved

* Chapter XIII also contains many criteria for the existence of a tri-

angle and of some other figures in E2 and E3
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the following result (see also GI 7.11):

THEOREM A

2 2 / 3 172
(1) r <2R + 10Rr - r" - 2/R(R - 2r) ) <F
1/2
<r <2R2 + 10Rr - r2 + 2V/R(R - 2r)3>,.

If one of the signs < in (1) means =, then the triangle is isos-
celes; and vice versa. If both signs < in (1) stand for =, then the tri-
angle is equilateral; and vice versa.

Note that using the formula F = rs, a simple transformation of (1)
gives the following inequalities

2
(2) 2R2 + 10Rr - r2 - 2(R - 2r) R2 - 2Rr € s
< 2R2 + 10Rr - r2 + 2(R - 2r) R2 ~ 2Rr.

(b) E. Lemoine proved in 1891 the following result of R. Sondat
from 1890 ([2], see also GI 13.8):

THEOREM B. A necessary and sufficient condition for the existence of a
triangle with elements R, r and s, is

(3) s4 - 2(2R2 + 10Rr - r2)52 + r(4rR + r)3 < 0.

Equality in (3) holds only if the triangle is isosceles.
Note that two other results are also given in [2]. For the funda-
mental inequality the following result is important:

THEOREM Bl. Let S be the area of the triangle OIH and let a > b > c;
then

2 B - C A -C A - B
° _ . . .
1 S 2R" sin 5 sin 5 sin 5
90 S:(b-C)(a—C)(au--b)’
8r
2
3° 168 = —s4 + 2(2R2 + 10Rr - r2)52 - r(4R + r)3.

Remark. The inequalities (1), (2), and (3) are equivalent, and Theorem
B states that for example (2) is not only valid for every triangle, but
conversely, if it is satisfied by R, r, and s, there exists a triangle
with these data.

(c) Note that Theorem A is stated in the well-known book [3] dating
from 1896.

(d) s. Nakajima in 1925 and 1926 ([4], [5]) proved the following
result:

THEOREM D.

2
(@) slr - 2EV 5 (2, F- _ ,p2 _ 10RF)2
Sy 2 :
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with equality if and only if the triangle is isosceles.

In the proof he used the formula F = rs and Theorem A, but as
reference for Theorem A he gave [3]. Note that Theorem D is given in
GI 7.8 but there we had to put s = a + b + c.

(e) In 1957, R. Frucht [6] proved the following result (GI 4.19):

2
THEOREM E. If g = (%Z(a - b) )1/2, then

(5) %75(5 + q)2(s - 2q) < P < (s - q)2(s + 2q).

N
~

The first (second) equality sign in (5) holds for an isosceles triangle
whose base is the largest (smallest) of the three sides; of course both
equality signs apply when the triangle is equilateral, since then q = 0.

(£) In two important papers ([7], [8]) W. J. Blundon has drawn
attention to these results. He proved the following theorem (see also
GI 5.10):

THEOREM F. Let (R,r) - f(R,r) and (R,r) - F(R,r) be homogeneous
real functions for R, r > 0. Then the strongest possible inequalities of
the. form

s2 S F(R, r)

N

(6) £(R, )

are given by

(7) f(R,r) = 2R2 + 10Rr - r2 - 2(R - 2r) R2 - 2Rr,
and

2 2 2
(8) F(R,r) = 2R” + 10Rr - r" + 2(R - 2r)YR™ - 2Rr,

with simultaneous equality only if the triangle is equilateral.
Blundon proved his theorem using the identity

(9) —s4 + 2(2R2 + 10Rr - r2)s2 - r(4r + r)3 =

= —li(a - b)2(b - c)2(c - a)2
4r

R A S R R
4r

where x = s - a, etc. Note that (9) is a simple consequence of 2° and 3°
from Theorem Bl.

Of course, (6) (with (7) and (8)) is the inequality (2). Blundon
gave this form of the fundamental inequality and proved that these in-
equalities are the best possible.

(g) 0. Bottema [9] proved the following theorem (see GI 14.27):



4 CHAPTER I

THEOREM G. If d denotes the distance between the circumcentre and the
incentre of a triangle, then

(10) (R - d)(3R + d)3 < 4st2

3
S (R+d) (3R -4).

(h) In 1971, O. Bottema [10] considered Blundon's result. He noted
that this is an old result and he called this result the 'fundamental
inequality'. Furthermore, he gave the following form of the fundamental
inequality

(11) I = (r2 +s57)° + 12Rr3 - 20Rr52 + 48R2r2 - 4st2 + 64R3r <o,

and also a new geometric interpretation of it (see part 2.3).

(i) R. Frucht and M. S. Klamkin [11] considered the best possible
inequalities in the form (6), but in the case when f(R,r) and F(R,r)
are quadratic forms. Their results are generalizations of some in-
equalities of Gerretsen, Steinig and Blundon, but also a correction of a
result of Blundon. In the proof they used the fundamental inequality.

(j) Some remarks on Bottema's geometric interpretation of funda-
mental inequality were given in [12].

(k) A new proof of the fundamental inequality was given in [13],
and also a modification of Blundon's proof of Theorem F in [14] (see
part 1.2 of this Section).

(1) Equality cases of Theorem E are also valid for inequalities
(1), (2), and (9), because they are equivalent (see [15]).

Note that in GI 5.10, 7.11 and 14.27 it is specified that equality
cases occur if and only if the triangle is equilateral, i.e. when both
equalities occur.

A. Lupas in [15] also proved the identity (9).

(m) V. N. Murty [16] gave some remarks about Bottema's geometric
interpretation of the fundamental inequality. He considered this in-
equality in the forms (11) and

2.2
2 - 10Rr + r ) ,

(12) 4R (R -~ 2r)3 2 (52 - 2R
which could be deduced easily from (4).

(n) Two proofs of the fundamental inequality and several similar
results are given in [17] (see part 3. of this Section).

(o) Of course, one can formulate several results similar to
Theorem B. For example, since F = rs, the following two theorems are
also valid:

THEOREM Ol. A necessary and sufficient condition for the existence of
a triangle, with elements R, r and F, is that

(13) F4 - 2r2(2R2 + 10Rr - r2)F2 + r5(4R + r)3 < 0.

THEOREM O2. A necessary and sufficient condition for the existence of a
triangle, with the elements R, F, and s, is (4) or

2
(14) 54 - 2<2R2 + 10R £ - E—)sz + E<4R + E>2 < 0.
s S2 s s
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Since the set of variables (R, r, s), (R, r, F) and (R, F, s) are
equivalent, in the following we shall use only the triple(R, r, s).

1.2. Proofs

(a) First, we shall give Blundon's proof of Theorem F with Rigby's modi-
fication (see [8] and [14]):
From the identity (9) it follows that (3) holds, which is equiv-

. . ) . A
alent to (2), since inequality (3) is quadratic in s".
Further, we know that R - 2r 2 0 (Chapple-Euler's inequality, GI
5.1), and the distance d between its circumcentre and incentre is given

2
by d = R(R - 2r); hence all triangles having given values of R and r
can be regarded as having the same circumcircle and incircle.

C,
B, E E N
A, A,
C
C,

B,

Fig. 1.

In the figure, circles C and c¢ of radii R and r have their centres

a distance d apart. Blcl and B2C2 (both tangent to circle c) are perpen-

dicular to the line joining the centres of the two circles.
It is not difficult to show that the triangles A1B1C1 and A2B2C2
have semiperimeters sy and 52 given by

2 2
s1 = f(R,r), 52 = F(R,r),

(since f(R,r) < 52 < F(R,r), it follows that, of all triangles in-

scribed in C and circumscribed to c, A1B1C1 has the smallest perimeter

and A2B2C2 the largest). Now, let s~ 2 ¢(R,r) be any inequality valid

for all triangles. For any given values of R, r (subject to the con-
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dition R 2 2r 2 0), we have just seen that there exists a triangle

2
A1B1C1 for which 52 = £(R,r). The inequality s~ 2 ¢(R,r) is valid for

this triangle; hence £(R,r) 2> ¢(R,r). This is true for all values of
R, r such that R 2 2r 2 0, so 52 - f(R,r) 2 0 is a better inequality

than 52 - ¢(R, r) 2 0. A similar argument holds for F(R, r).

(b) Note that the major part of the proofs depends upon the fol-
lowing three theorems. Although the results are well-known (see for
example [17]) we shall give their proofs for the sake of completeness.

THEOREM 1. (Sturm) The equation

(15) t3 + ut2 +vt +w =0,
with real coefficients u, v, w has real roots tl’ t2, t3 if and only if
2 2 2 3 2 2 3
(16) (t1 - t2) (t2 - t3) (t3 - tl) = -4uw +u v + 18uvw - 4v -~
- 27w2 2 0.

Proof. That the equality in (16) holds we can show using the Viéte
formulas. Further, if the roots are real, the inequality in (16) is ob-
vious. But, if not, one root is real (say tl) and two are complex con-

jugate (say t2 = A + Bi and t3 =A - Bi, B # 0), and we have

. 2 2
(t1 - t2)(t2 - t3)(t3 - tl) = 2B1((t1 - A) +B),

i.e. the reversed inequality in (16) is wvalid.
THEOREM 2. The equation (15) has positive roots if and only if (16) and
(17) u<o0, v>o0, w<o,
hold.

Proof. If the roots are positive, Viete's formulas give (17). Of
course the roots are real, so (16) must be fulfilled.

Conversely, if u, v, w fulfill the conditions (16) and (17), then
Theorem 1 implies that the roots of (15) must be real. Suppose that

t1 < 0, then (17) implies that the expression ti + uti + vt1 + w 1is

negative, which is a contradiction.

THEOREM 3. The roots of the equation:(15) are the lengths of sides of a
triangle if and only if (16), (17) and

(18) u3 - 4uv + 8w > 0

hold.
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Proof. Using Viete's formulas we have

+ t)) = u3 - 4uv + 8w,

(t1 + t 5 3

- t3)(t1 -t, + t3)(—t1 + t

2 2
So, (18) must also hold. Since the sides are real and positive, we infer
that (16) and (17) must hold.

Now, we give several similar proofs of the fundamental inequality
which depend on Theorems 1, 2, and 3.

The following results are known:

1) a, b, ¢ are roots of the equation (GI, p. 72, [1], [2], [17,

p. 171):

2
t3 - 2st + (52 + r2 + 4Rr)t - 4sRr = 0.

2) X, v, 2 (x =s - a, etc.) are roots of the equation (GI p. 72,
{11, [21, [17, p. 19]):

t3 - st2 + r(4R + r)t - sr2 = 0.

3) ha, hb, hc are roots of the equation ([17, p. 21]):

2
2Rt3 - (s" + r2 + 4Rr)t2 + 452rt - 452r2 = 0.
4) ¥, T, ¥_ are roots of the equation (GI p. 49, [17, p. 23]):
2
t3 - (4R + r)t° + 52t - 52r = 0.

5) sin A, sin B, sin C are roots of the equation

2
4R t3 - 4Rst2 + (52 + r2 + 4Rr)t - 2sr = O.

6) cos A, cos B, cos C are roots of the equation ([17, p. 26]):

2
4R t3 - 4R(R + r)t2 + (s2 + r2 - 4R2)t + (2R + r)2 - s2 = 0.

7) cotan A, cotan B, cotan C are roots of the equation ([17,
p. 281):

2srt3 - (52 - r2 - 4Rr)t2 + 2srt + (2R + r)2 - 52 = 0.

8) tan A, tan B, tan C are roots of the equation ([17, p. 29]):

(s2 - (2R + r)2)t3 - 2srt2 + (52 - 4Ry - r2)t - 2sr = 0.
A B (o] .
9) tan PL tan 7 tan 7 are roots of the equation ([17, p. 30]):

st™ - (4R + r)t2 + st - r = 0.



10)
p. 32]):

11)

12)

CHAPTER I

cotan %, cotan %’ cotan % are roots of the equation ([17,

rt3 - st2 + (4R + r)t - s= 0.

sin2 %, sin2 g, s1n2 % are roots of the equation ([17, p. 34]):
16R2t3 - 8R(2R - r)t2 + (52 + r2 - 8Rr)t - r2 = 0.

cos2 %, cos2 %y cos2 % are roots of the equation ([17, p. 34]):
16R2t3 - 8R(4R + r)t2 + (s2 + (4R + r)2)t - 52 = 0.

Using the substitution t - 1/t, we get the following similar re-

sults:
13)

14)

15)

16)

17)

18)

19)

cosec A, cosec B, cosec C are roots of the equation:
2
ZSrt3 - (s + r2 + 4Rr)t2 + 4Rst - 4R2 = 0.
sec A, sec B, sec C are roots of the equation:
2 2
(s - (2R + r)2)t3 - (s + r2 - 4R2)t2 + 4R(R + )t - 4R2 =
cosec2 %, cosec2 g; cosec2 g-are roots of the equation:
2 2
r2t3 - (s +r - 8Rr)t2 + 8R(2R - r)t - 16R2 = 0.
sec2 %, sec2 %v sec2 % are roots of the equation
2.3 2 2
s’t” - (s + (4R + r)z)t2 + 8R(4R + r)t - 16R = 0.
i/a, 1/b, 1/c are roots of the equation

4ert3 - (s2 + r2 + 4Rr)t2 + 2st -1 = 0.

1/x, 1/y, 1/z are roots of the equation

2
sr t3 - r{4rR + r)t2 + st -1 =0.

1/ra, 1/rb, 1/rc are roots of the equation

szrt3 - 52t2 + (4R + r)t - 1 = 0.

0.
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20) 1/h , 1/hb, 1/hc are roots of the equation
a

452r2t3 - 4s2rt2 + (52 + r2 + 4Rr)t - 2R = 0.

Using the Theorem 1 and any of the above results we get (3) (i.e.
(2)). For example, 1) and 2) were used in [1] (with s » F/r) and [9];
4) in [13]. Further, using Theorem 2 and any of the results: 2), 3), 4),
9), 10y, 17), 18), 19), 20), we get Theorem B directly (i.e. Theorem 01
and 02). Of course, using Theorem 3 and 1) we can also get Theorem B
([17, op. 54-561).

1.3. A Geometric Interpretation

In order to investigate the set of triples (R, r, s) satisfying the fun-
damental inequality (3) i.e. (11), we remark that I is, of course, a
homogeneous polynomial and hence only the ratios of R, r, and s are of
interest (see [10] or [16]). Therefore, we introduce variables x > 0 and
y > 0 defined by

(19) Rx = ¢ and Ry = s.
This transforms (11) into

(20) (x2 + y2)2 + 12x3 - 20xy2 + 48x2 - 4y2 + 64x £ 0.

To each R-r-s triangle there corresponds to a point (x, y) of the graph

of (20) in (the first quadrant of) the Cartesian plane; and, conversely,

to each point (x, y) of the graph of (20) there corresponds infinitely

many R-r-s triangles (one for each R > 0, for which r and s are then

given by (19)). The graph of (20) is the shaded region in Figure 2.
Since the left member of (20) can be written (see [16]) as:

(y2 - (2 + 10x - x2))2 - 4a(1 - 2%)°,

arc OA1 in the figure is the graph of

y = /Qz + 10x - x2) -2(1 - 2x)3/2, 0<x<s1/2,

and arc AlD is the graph of

y = VQZ + 10x - x2) +2(1 - 2x)3/2, 0<x<1/2.

(Bottema [10] has shown that arc OR, and A,D are parts of a hypocycloid

of three cusps, or deltoid.) The points of arcs OA1 and AlD correspond

to isosceles R-r-s triangles; the point A1 corresponds to all equilateral

R-r-s triangles; and the points on the segment OD (which are not part

of the graph of (20)) correspond to degenerate triangles. Arc OA1 is

concave, arc A,D is convex, the line y = V3 (1 + x) is tangent to both

1

arcs at Al’ and the line x = 0 is tangent to arc OA1 at O.
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2. The Existence of a Triangle with Given Elements

11

As we saw, the theorem which states the existence of a triangle with

elements R, ¥ and s is the well-known 'fundamental inequality'.

Here we

shall give several similar results with other elements of the triangle.

1° A necessary and sufficient condition for the existence
triangle with elements a, b and wa, is

b +a b - a
. — < - >
2b 5——:fg-> wa, 2b b - a wa for b a 0

and

If this condition is fulfilled, then there exists one and only
angle with these given elements (in the following, for such an
we shall write only (A)).

2° A necessary and sufficient condition for the existence
angle, with elements b, ¢ and wa, is

0<w <2
a b + ¢

3° A necessary and sufficient condition for the existence
angle, with elements a, b and ma, is

a+2b-2m >0, a-2b+2m >0, -a + 2b + 2m
a a a

4° A necessary and sufficient condition for the existence
angle, with elements b, c and ma, is

b+c=-2m >0, b-c+2m >0, -b +c + 2m >
a a a

5° A necessary and sufficient condition for the existence
angle, with elements a, b and r, is

r>0, 4r6 + 4(2a2 + 2b2 + 7ab)r4 +

3

4
+ 4(a4 - a3b - a2b2 - ab™ + b“)r2 - a2

of a

one tri-
assertion,

of a tri-

(a)

of a tri-

> 0. (a)

of a tri-

0. (n)

of a tri-

b2(a - b)2 <0

If the condition for equality is fulfilled, then there exists only one
triangle with these given elements; if not, there exist two triangles

(in the following, for such an assertion, we shall write (B)).
6° A necessary and sufficient condition for the existence
angle, with elements a, b and ha’ is

b2h >0.
a

of a tri~

(B)
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7° A necessary and sufficient condition for the existence of a tri-
angle, with elements b, c and ha’ is

b2h, cZh >0.
a a

If, in the case of two possible equalities, only one is fulfilled, then
there exists one and only one triangle with given elements; if not,
there exist two triangles (in the following, for such an assertion, we
shall write (C)).

8° A necessary and sufficient condition for the existence of a tri-
angle, with elements a, b and R, is

a € 2R, b< 2R. (C)

9° A necessary and sufficient condition for the existence of a tri-
angle, with elements a, ma and w, , is

b
a + 2ma a - 2ma
—_ & , .2 ¢ -
2a 32T o > Wi 2a 32 = om W for a 2ma >0,
a a
and
w, >0 for a-2m < O. (a)
b a

10° A necessary and sufficient condition for the existence of a
triangle, with elements a, ma and mb, is

3a + 2ma - 4mb >0, 3a - 2ma + 4mb >0,
-3a + 2ma + 4mb > 0. ()

11° A necessary and sufficient condition for the existence of a
triangle, with elements a, mb and mc, is

3a + Zmb - 2mc >0, 3a - 2mb + 2mc >0,
-3a + Zmb + 2mc > 0. (a)

12° A necessary and sufficient condition for the existence of a
triangle, with elements a, ha and hb' is

a2 h . (B)

13° A necessary and sufficient condition for the existence of a
triangle, with elements a, hb and hc' is

a>hb, azh . (c)
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14° A necessary and sufficient condition for the existence of a

triangle, with elements a, ma and R, is either

a2 + 4m2
a

2R 2 ———— for 2 m # a,

4m
a

or

(B)

in the last case an infinity of solutions depending on a real parameter

is possible.

15° A necessary and sufficient condition for the existence of a

triangle, with elements a, ma and ha, is

m 2 h .
a a

16° A necessary and sufficient condition
triangle, with elements a, mb and hb’ is

a > hb, m, > hb'

17° A necessary and sufficient condition
triangle, with elements a, ma and hb’ is

18° A necessary and sufficient condition
triangle, with elements h, mb and ha, is

>
21‘1’1b Zz ha.

19° A necessary and sufficient condition
triangle, with elements a, mb and hc' is

> >
a/hc, Zmb/hc.

20° A necessary and sufficient condition
triangle, with elements a, mb and R, is

a2 - 2m§

— = | < 2R, a < 2R.

mb

21° A necessary and sufficient condition

for

for

for

for

for

for

the

the

the

the

the

the

existence

existence

existence

existence

existence

existence

of

of

of

of

of

of

(B)

(C)

()

(B)

(c)

(c)
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triangle, with elements a, hb and wb, is

a2 hb' W, > hb' (C)

22° A necessary and sufficient condition for the existence of a

triangle, with elements a, hb and wc, is

2 2 2
P < - B
a > hb' W 2a{a + va hb). (B)

23° A necessary and sufficient condition for the existence of a
triangle, with elements a, hb and R, 1is

2R 2 a, hb < a, (c)
2
but for R = %H— there exists only one solution, too.
b

24° A necessary and sufficient condition for the existence of a
triangle, with elements a, hb and r, is

a > hb > 2r. (B)

25° A necessary and sufficient condition for the existence of a
triangle, with elements a, mb and wb, is

2 - a

0 < W < a ——— for m - a >0, (a)
and
W < m for m - a < 0. (C)

26° A necessary and sufficient condition for the existence of a
triangle, with elements a, b + ¢ and ma, is

a<b + ¢, 2ma<b+c, (b+c)2<a2+4m§. (B)

27° A necessary and sufficient condition for the existence of a
triangle, with elements a, b + ¢ and ha, is

(b + c)2 2 a2 + 4h§. (B)

28° A necessary and sufficient condition for the existence of a
triangle, with elements a, b + ¢ and wa, is
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2 2
(b + c)2 Za" o+ 4wa, 2(b + c)wa >

29° A necessary and sufficient condition
triangle, with elements a, wa and ma, is

2 2
dm_ - a
m>w >—2 >0,
a a 4ma

30° A necessary and sufficient condition
triangle, with elements a, b + ¢ and R, is

(b + c)2

V(b + c)2 - a

31° A necessary and sufficient condition
triangle, with elements a, b + ¢ and r, is

4R 2 for 2R 2 a.

a2 + 4r2

b +c?2a————-——— for a>2r.
2 2
a - 4r

32° A necessary and sufficient condition
triangle, with elements a, ma and r, is

33° A necessary and sufficient condition
triangle, with elements a, ha, and wa, is

34° A necessary and sufficient condition
triangle, with elements a, ha, and R, is

8h R > a’ + 4h°, 2R > a.
a a

35° A necessary and sufficient condition
triangle, with elements a, ha' and r, is

2

h 2 —_Lar , a > 2r.
a 2 2
a - 4r

36° A necessary and sufficient condition
triangle, with elements a, wa, and R, is

(b + c)2

for

for

for

for

for

for

for

for

the

the

the

the

the

the

the

the

- a2 > 0.

existence

existence

existence

existence

existence

existence

existence

existence

of

of

of

of

of

of

of

of

15

(B)

(B)

(c)

(B)

(B)
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2 2
1. 8w R 2 a” + 4w, for a< 2w ; (a)
a a a

2. 2R 2 a, for a2 2wa,

where we have two solutions in the case
2 2
8w RS a” + 4w
a a
and one solution in the case
2
8w R > a + 4w2.
a a
37° A necessary and sufficient condition for the existence of a

triangle, with elements a, wa, and r, is

2
w2 _Lfaxr for a > 2r. (B)
a 2 2

a~ - 4r

38° A necessary and sufficient condition for the existence of a
triangle, with elements a, R, and r, is

2
_Eéé_E_f 2 2R + V4R2 - a2 for a > 2r; 2R 2 a. (n)
a - 4r

39° A necessary and sufficient condition for the existence of a
triangle, with elements a, mc, and wb, is

a-m
c
—— <
W > 4a P 2mc for a > m_, Wy >0 for asm,;
and
a+m,
< ———
W, Sda 5T Zn_ (a)

40° A necessary and sufficient condition for the existence of a
triangle, with elements a, mb, and wa, is

a - 2mb

- — - >
W > 4(a mb) Erg. 4mb for a Zmb 2z 0, or

W >0 for a - 2mb <o, a-m >0, or
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2mb - a
- _— - <
w, > 4(mb a) 4mb Y for a m

and

a + 2mb

3a + 4mb ° (A)

v, <4(a + mb)

Remark. The above results are given in the important paper of
G. Petrov [18]. In GI 13.7 only 2°, 3°, 5°, 24°, 26°, 34°, and 36° are
stated.

The following similar result is given in [19]:

41° A necessary and sufficient condition for the existence of a
triangle, with elements a, b + ¢ and angle A (0 < A < m), is

a<b +c< a/sin(a/2).

42° [43] A necessary and sufficient condition for the existence of
a triangle with elements hc, a + b, C, is

(a + b) cos g-? 2h . (B)

43° (GI 13.4). Let p, g be real numbers such that p + @ = 1. Then
a triangle with the sides a, b, ¢ exists if and only if

2
pa2 +gb 2 pqc2 for all p, q.

Remark. V. T. Janekoski [20], showed that Bohr's inequality for
complex numbers (AI, p. 312):

a,lz, 17 + a,lz > lz1 +z 1%, a,, a, >0, 1/a1 + 1/a

and 43° are equivalent.
44° A necessary and sufficient condition that three positive num-
bers u, v, w are lenghts of the sides of a triangle is [21]:

2 + _ 2
% L *tv - w > 1.

2uv

45° ([41]) Let T Tye T be arbitrary chosen positive numbers.

Then there exists one and only one (real) triangle whose exradii are
r r r ; moreover necessaril
a' b! Cl y

= 1/2
a = ra(rb + rc)/(ErbrC) , etc.

46° [42] If s, F, and C are given, then there exists a triangle ABC
if and only if
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s> Y2(sin c/2 + 1)/F
- vsin C :

Remarks. 1° [42] For ¢ = 7/2 we get that there exists a right tri-
angle with semi-perimeter s and area F if and only if

s> (1 + V2)/F.

2° Note that the following result is equivalent to the last one.
If s, r, and C are given, then there exists a triangle ABC if and
only if

> 2(sin c/2 + 1)2r
s 2 "
sin C

3° The result given in 46° is due to H. Ahlburg, and it is a gener-
alization of a problem given by O. Bottema.

47° [29] A necessary and sufficient condition for the existence of
a triangle with altitudes ha' hb' and hc is

ha

+ — tc.
h etc
C

D‘[D"
[

<1<

o o™
o7 o™

[e]

Proof. Since b = aha/hb, c= aha/hc' this is equivalent to

Ib -cl €£a<b+c (etc.).

3. Some Other Results

In this Section we shall give results concerning the existence of a tri-
angle the sides of which are obtained as elements of any given triangle.
1. Let x - f(x) be any non-negative non-decreasing subadditive
function on the domain [0, 2s]. If a, b, ¢ form a triangle, the f(a),
f(b), f£(c) form a triangle, too.

Remark. This result is given in GI 13.3. In [22] a special case of
1. is given, i.e. it is proved for a positive increasing function
x - £(x) for which £''(x) < 0, Of course, the result from [22] is a
simple consequence of the well-known Petrovié¢ inequality for convex
functions (see AI, p. 22)., The following special case of the above re-
sult is given in [24]:

a/(a +1), b/(b+ 1), c/(c + 1) form a triangle.

2, If a triangle is acute, then a2, b2, c2 form a triangle, too.

Remark. This is an old result (see for example GI 11.26).

3. A triangle whose sides are sin A, sin B, sin C exists.

Proof 1. This is a simple consequence of triangle inequalities
a<b +c, etc. and a = 2R sin A, etc.

Proof 2. ([17]) This follows from Theorem 3 and 5) of 1.2.

cos B cos E-exists
2! 2 )

4. (GI 13.6) A triangle whose sides are cos %,
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Proof. This is a consequence of 3. since A' = (m - Aa)/2,
B' = (m - B)/2, C' = (T - C)/2 are angles of a triangle.
2 2
5. (GI 13.5) A triangle the sides of which are cos %y cos %,
2
cos < exists.

2

Proof. ([17]) This is a consequence of Theorem 3 and 12) of 1.2.

Remark. Using 5. and 1. for the function f (x) = V;, we get 4.

Further, we shall show that some results from [21), |25-27] are
also consequences of 3.

6. 1f 0 <A, B, ¢ < m/2, then a triangle the sides of which are
sin 2A, sin 2B, sin 2C exists.

Proof. This follows from 3., since A' = 7T - 2A, B' = 1m - 2B,
C' = T - 2C are angles of a triangle.

7. 1£f 0 <A, B< 7/2, 0 < ¢ <7 then a triangle the sides of which
are cos A, cos B, sin C exists.

m
Proof. This follows from 3., since A' = g - A, B' = 5 B,
C' = M - C are angles of a triangle. B c
8. A triangle the sides of which are sin X sin 3¢ cos E-exists.
Y m +
Proof. This follows from 3., because A' = %, B' = gy Cc' = ——E—E

are angles of a triangle.

Remark. Of course, using other transformations for angles of a tri-
angle (see [28-30] or Chapter V), we can get several similar results.
Some results of this kind are given in [30].

9. If A, B, C are the angles of the triangle ABC, then there exists
2 B 2cC

E' cos 5.

every angle A < m/3 (A € B € C) there exists exactly one triangle ABC
similar to A'B'C'.

Remark. This extension of 5. is given in [31]

2
a triangle A'B'C' the sides of which are cos %, cos For

10. The minimum of k{n) such that kx{n) + sin

[0}

m
k(n) + sin %-are sides of a triangle for n 2 1 is sin o
Remark. This result of M. S. Klamkin [32] for n = 1 becomes 3.
11, 1f F(O) = u(sin 9 + sin E) + v(cos 9—— cos E), then for all u,
n n n n

v 20 and n 2 1| the triple F(A), F(B), F(C) form a triangle.

Remark. This result is an answer of Hj. Stocker to the following
problem posed by M. S. Klamkin ([33]):

Give a generalization of 3, 4, and 5 which includes all these
results as special cases.

For another answer given by G. Bercea, see 36. and [33].

12. cosA (a/A), cosx (B/N), cosA (C/\) form a triangle for all real

A= 2.
Proof. If A 2 B 2 C, it suffices to show that

cosA (A/\) + cosx (B/X) 2 cosx (c/A) .

Since max cos(C/A) = 1 and min(cosA(A/X) + cosA(B/A)) occurs for C = 0,
we can only prove that
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cosA (A/)\) + cosA (B/A) =2 1 for A+ B =T.

For A = 2, the l.h.s. reduces to 1. For larger values of A, the in-
equality immediately follows from the following:

A
LEMMA. cos (A/M) (0 <A ST is a non-decreasing function of A for
X Z 2,

For the proof of this Lemma, it is sufficient to prowve that
A
dy/d\ 2 O,where y = cos (A/A). Here y'/y = X tan x + log cos X, where
2
x = A/A. Then Dx(y'/y) = x sec” x 2 0. Also,,log vy is concave (in A).

Finally, by means of 1.: (cosu (a/\), cosLl (B/A\), cosu (c/\) are
sides of a triangle, where A 2 u 2 0, A > 2.

Remark. The above results of P. Erdds and M.S. Klamkin [34] are
generalizations of 4. and 5.

13. m_, m, m are sides of a triangle (see [29] and [35] or [36]).

14. [37] Let ¢, ¢ c, be three cevians of a triangle dividing
a

bl
the sides in the ratio v/u where u + v = 1. Then ca, c
triangle.

Proof. Let X, §, ¥ denote three vectors from an origin O to the
respective vertices of a triangle ABC. Now consider the three cevians

. . . >
c ., cb, cc, whose endpoints are the respective endpoints of A, u% + va;

a
u€ + vA; and 3, uA + vB. Since Z(uB + vC - R) = 6, (Ca, S
triangle

15. A triangle whose sides are 1/ha, 1/hb, 1/hC exists.

b’ cC form a

c ) form a
c

Proof 1. This is a simple consequence of a + b 2 ¢, etc. since

a
=ﬁ , etc.

o7 ("

Proof 2. Note that 15 is a consequence of Theorems 3 and 20 of 1.2.

2
16. x, y, z form a triangle if and only if s~ < 4r(4R - r).

17. ha' hb’ hc form a triangle if and only if

(52 + r2 + 4Rr)3 < 32s2Rr(s2 + r2).

18. ra, rb, rc form a triangle if and only if

(4R + r)3 < 4s2(4R -r).

19. cos A, cos B, cos C form a triangle if and only if

2R +r <s and sz(R -r) < R2(3R +r).

20. cotan A, cotan B, cotan C form a triangle if and only if

2R + r < s and (s2 - 4Rr - r2)3 < 1652r2(8R2 + 4Rr + r2 - sz).
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21, tan A, tan B, tan C form a triangle if and only if
2
2R + r < s and s2r2 < (8R2 + 4RY + r2 - 52)(5 - (2R + r)2).

tan E-form a triangle if and only if

A B
22, tan 51 tan 5 5

(4R + r)3 < 452(4R - r).

23, cotan %, cotan gy cotan %-form a triangle if and only if
2
s” < 4r (4R - x).
2 2 2
24, sin %, sin gy sin %-form a triangle if and only if

8R3 + 4R2r < 52(2R -r).

Remarks. 1° The above results 16-24 were proved in [17] as conse-
quences of Theorem 3 and 2-4), 6-11) of 1.2,
2° 24, is our correction of a result from [17].

3° 16. and 23. are equivalent since x = r cotan %, etc.

4° 18. and 22. are equivalent since ra = s tan %, etc.

Similarly, using Theorem 3 and 13-19) of 1.2 we can prove the fol-
lowing results:
25. cosec A, cosec B, cosec C form a triangle if and only if

2 2
(s + r2 + 4Rr)3 < 32s Rr(s2 + r2).
26. sec A, sec B, sec C form a triangle if and only if
s> 2R + r

and

2 _4r%)3 < 16r(s? - (2R + D) 2((R + 1) (52 + £° - 4”R?) -

- 2R(s2 - (2R + r)2)).

2

2
cosec g-form a triangle if and only if

A 2 B
27. cosec X, cosec 5

(52 + r2 - 8Rr)3 < 32r2R(52(2R -r) - r(r2 + 6Rr + 16R2)).

2 2

, sec form a triangle if and only if

N
N O

28. sec %, sec

(s“ + (4R + r)2)3 < 32R52(rs2 + (4R + r)3).
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29. 1/a, 1/b, 1/c form a triangle if and only if

(s2 + r2 + 4Rr)3 < 3252Rr(52 + r2).

30. 1/%x, 1/y, 1/z form a triangle if and only if

(4R + r)3 < 4sr(4R + r - 2s).

31. 1/ra, 1/rb, 1/rc form a triangle if and only if

52 < 4r(4R ~ r).

Remark. 31 and 16 are equivalent since 1/ra =x/(rs), etc.

32, If ABC is an acute triangle, then A, B, C form a triangle [30].
2 2 2 .

33. a ha, b hb’ c hc form a triangle.

Proof. (see [26]). This result is a simple consequence of in-—

2
equalities a < b + ¢, etc., and formulas a ha = 2Fa, etc.

1 1
a+c'"b+c a+hb

35. a(s - a), b(s - b), c(s - c) form a triangle [23].

S. J. Billev and E. A. Velikova [45] gave the following general-
ization of this result:

If k 2 1 is any arbitrary real number, then a(2ks - (k + 1)a),
b(2ks - (k + 1)b), c(2ks - (k + 1)c) are the sides of a triangle.

36. Now, we shall give a generalization of the well-known MSbius-
Pompeiu's theorem., For this result see for example GI 15.5, but this is
an old result (see [38]). More about M&bius-Pompeiu's theorem will be
found in Chapter XIII.

Let D be an arbitrary point in the plane of a triangle ABC and let
BC =a, CA=Db, AB=c, AD = p, BD = g, CD = r, Then ap, bg, cr form a
triangle.

Remark. As we said, this result is an answer to a problem of
M. S. Klamkin (see 11.), i.e. G. Bercea [33] noted that 3., 4. and 5.
follow from the above result in the cases when D = O (circumcentre) ,

D = I {(incentre) and D = P, where the point P is given by

34. form a triangle [39].

PA/(s - a) = PB/(s - b) = PC/(s - c) = k.

37. Let a set T be defined by T = {(a, b, ¢): a, b, c are sides of
a triangle}.

1° The set P(c R) defined by P = {p:(a, b, C)ET = (ap, bp, cp)}
is given by P = [0, 1]. + . .

2° Sets U, Vand W (CR X R X R') defined by U = {(a, b, c):(ap,

D

bp, cp)€T for every p€R+}, v = {(a, Db, c):(ap, b, cp)GT for every

p <0}, w-= {ta, b, c):(ap, bp, cp)ET for every p€R}, are given by

8) {(a, b, ¢):b = ¢
v=1{(a, b, c):a>2b
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w={(a, a, a):aER+}.

This result is due to D. D. Adamovié [40].

38. [44] If ABC is an acute triangle, then a cos A, b cos B,
c cos C and a sin A, b sin B, ¢ sin C form triangles.

39, The following problem is given in [46]:

(i) Determine all real numbers A such that, whenever a, b, c are the
lenghts of three segments which can form a triangle, the same is true

for (b + c)A, (c + a)A, (a + b)A.

(For A = -1 we have 34.)

(ii) Determine all pairs of real numbers A, U such that, whenever a,
b, c are the lengths of three segments which can form a triangle, the

A
same is true for (b + ¢ + ua)x, (c +a+u) , (a+b + uc)x.
40. [47]1 a triangle whose sides are a + ha' b + hb, c + hc exists.
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Chapter II

DUALITY BETWEEN GEOMETRIC INEQUALITIES AND INEQUALITIES FOR POSITIVE
NUMBERS

0. Introduction

As we noted in Chapter I, many of the geometric inequalities can be re-
stricted to the three main sets of canonical variables, i.e.

(1) the sides a, b, c,

(j) the angles A, B, C,

(k) the circumradius R, inradius r and semi-perimeter s.
But, it is known that there exists a very simple transformation between
the sides of a triangle and three non-negative numbers (see the next
Section), so there exists a duality between all triangle inequalities
and all inequalities involving three non-negative numbers.

1. Geometry of the Duality (a, b, ¢) & (x, vy, 2)

Let us consider an arbitrary triangle ABC and its inscribed circle
(Figure 1).

A

Fig. 1.

Since tangents from an external point to a circle are equal in length,
we have
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Consequently,
(1) a=y + 2z, b=z +x, c=x+y,
(2) X =8 - a, y =s - Db, Z =s - cC.

The latter two equations imply that for any triangle ABC, the distances
of the vertices to the closest points of tangency with the inscribed
circle are three non-negative numbers x, y, z and, dually, that cor-
responding to any three non-negative numbers x, y, z, there exists a
triangle whose sides are given by (1). In form (1), the basic triangle
inequalities a, b, ¢ 20, b+ c>a, c+a2>b, a +b > c are obviously
satisfied.

One of the advantages of this duality is that we can use all the
inequalities concerning any three non-negative numbers.

In [1] a table of equivalent forms in terms of (a, b, c), (A, B,
C), (R, r, s) and (x, y, 2) was given. Here we shall give only some
simple examples. For some other examples see Chapter III.

If we use the notation

(3) T1 = IX, T2 = lyz, T3 = xyz,

then

(4) Q=2X{(d - C)2 =Xy - z)2 = 2(Tf - 31,
2 2

(5) ra® = 2T1 - 2T2,

(6) The = T2 + T
CcC = 1 o

(7) abc = Iy + z) = T1T2 - T3,

(8) 16F% = 25a%b? - 7a® = 16r%s? = t6r, T,

(9) R = <T1T2 - T3)/(4VT1T3),

(10) r = VT3/T1.

2. Transformations

Another advantage of the (x, y, z)-representation is that it is very
easy to make transformations preserving inequality. If F(x, y, z) 2 0
is a valid inequality for all non-negative x, y, z, then so is

F(x', v', 2') 2 0 where

(1) x' =F {x, vy, 2), ¥' = F,(x, v, z), z' = F3(x, Y, Z)
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and where Fl’ F2, F, 2 0. One particularly useful transformation is

3

obtained by letting F, = 1/%, F, = 1/y, F3 = 1/z, giving
T T
2 1 1
(2) TH = =%, D! ==, o=,
1 T3 2 T3 3 T3

As an application to be used subsequently, the dual, via (2), of

2 2
> i >
T1 Z 3T2 is T2 P 3T1T3.
In terms of the triangle representation, the above reads:
If F(a, b, ¢) 2 0 is a triangle inequality, then so is F(a', b', ¢') >0,
where

(1) '* a' = F2(s -a s ~-b, s-¢c) +F, (s -a, s ~b, s-2c¢),

3

b' = F3(s -a, s -b, s -2¢) + Fl(s -a, s -b, s ~-c),

c' Fl(s -a, s -b, s -c¢c) + F2(s -a, s -b, s-o0a.

In particular,

a b
T (s -Db)(s - c)

c!' = —_ ¢
T (s -a)(s -b) "

By multiplying through by 2(s - a)(s - b) (s ~ ¢) on the r.h.s., we get
a similar triangle

(3) a' = 2a(s - a), b' = 2b(s - b), c' = 2c(s - c).
Since
s' - ¢' = %»(c - a +b)(c +a-D>b) (and cyclically),
and A = 8A2A1/s**, we also get
2
AR A 2

[ [y L, ' =

(3) R A1’ r SAl, s 8A1.

We now list some other simple transformations:
* The prime on (1)' is to indicate that the latter is a dual of (1).
*% Al denotes the area of a triangle whose sides are /5} /5) /E: i.e.

4Af = 4Rr + r2 = Ibc - s2 = Ixy.

A denotes the area of a triangle whose sides are a, b, c.
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2 2 2
[ — - T , | - - L
(4) T1 T1 2 5 T T2 2T1T3, T3 T3
. 2
(letting F1 =x , F2 =y, F3 =z ).
2 2
' . T2 - 2T1T3 ' T1 - 2T2 ' 1
(4) T! = ’ T! = ’ T! = —&
1 T2 2 T2 3 T2
3 3 3
2
(F1 = 1/x", etc.).
3 3 2 3
' - | - - ! =
(5) T} =T - 3T,T, + 3T, T, =T, + 3Ty - 3T,T,T,, Ty =Ty
(F1 = x3, etc.).
3 2 3
' o T2 - 3T1T2T3 + 3T3 ' T1 3T1T2 + 3T3 . 1
(5) T = , Tl = ,  TL ==
1 T3 2 T3 3 T3
3 3 3
3
(F1 = 1/x", etc.).
2
- ' ' = -
(6) T1 2T1, T2 T1 + T2, T3 T1T2 T3
(F1 =y + z, etc.).
2T T2 + T,T TT, - T
6 o= 1 o= 2 173 o= 172 3
1 T3 ! 2 T2 ! 3 T2
3 3
(F1 =1/y + 1/z, etc.).
2 2
[ - | - [ -
(7) T1 2T2, T2 T2 + T1T3, T T1T2T3 T3
(F1 = x(y + z), etc.).
2T T2 + T T T, - T
7y o= T 1 2 - 172 3
1 T3 ! 2 T2 ! T3
3 3
(F, = (y + z)/xyz, etc.).
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2 4 2 2
[ - - [ -
(8) T1 = 2(T1 3T2), T2 Tl 6T1T2 + 9T2,
2 2 3 3 2
) — -— — -—
T3 = T1T2 + 18T1T2T3 4T2 4T1T3 27’1‘3

(F, = (y - 2)2, etc.).

3. Examples

3.1. [1] Using inequality
(1) By - % = 2007 - 3m,) >0
2
1

in the form 3(Tf + T.) € 4T, < 4(Tf + T2), we get GI 1.1.

2
3.2. [1] Using inequality

(2) (Zx)3 - 27xyz = T3 - 27T, 2 0

we get GI 5.11 and

2
(3) (4F)2 > 27T + ¢ - a)°.
3.3. [1] using inequality
2
(4) IXT(y + z) - 6xyz = T1T2 - 9T3 =0

(i.e. GI 1.4) we can get GI 1.3, 1.15, 5.1, 2.12, 5.30, 5.40, 5.41,
6.18, 6.21, 6.27.

3.4. [1] Using Schur's inequality (AI, p. 119) we get

3
- - - - >
(5) Ix{x - y)(x - 2z) T1 + 9T3 4T1T2 0

wherefrom it follows GI 1.6, 6.13 and the first inequality in 5.9.

3.5. [1] using the inequality 2Ti + 9T3 > 4T1T2 (weaker than (5)) we
get GI 1.4, 8.14 and

(6) Ti{sin B + sin C) 2 8l sin A.

3

3.6. [1] using the inequality 1OT1

2 27T, T + 27T, (weaker than (5)) we
get GI 1.5. 1 3

3
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3.7. [1] Using the inequality BTT + 27T3 > 27T1T2 (weaker than (5)) we
get GI 5.42, 6.16, 5.12.

3.8. [1] Using inequality
2 2 2
(7) xT(y - 2)" = 2(T2 - 3T,T5) 20,

we get GI 1.9, 5.5, 7.2, 10.3, 4.3, 4.6, 4.7, 4.9, 5.34, 5.46.

3.9. Of course, we can work in the opposite direction, i.e. using well
known gecmetric inequalities we can obtain inequalities for positive
numbers. For example the well known inequality

GI 2.1 % sin A < 3V/3/2

gives

27y + z)2 2 64xyz(X +y + z)3, i.e.,

2 3
- >
27(T1T2 T3) Z 64T1T

3
and these inequalities are equivalent to GI 1.12, 6.15, 5.3, 5.42, and
4,13,

3.10. A. Oppenheim [2] proposed the following problem:
Suppose that ABC is an acute-angled triangle, then

2
(8) 16 Tcos™ A + 4% cos2 B cos2 c<1,

(9) 43 cos2 B cos2 c <7 cos2 A.

Equality occurs when ABC is equilateral or right-angled isosceles and in
no other case.
Comment by M. S. Klamkin [3].

By virtue of the equality conditions, ABC should be restricted to
non-obtuse triangles rather than acute triangles.

In a personal communication, A. W. Walker has pointed out that
there is a flaw in the published solution (April, 1967, p. 441).

We now prove (9) first and then show how (8) follows from (9). By

using the identity 2 0052 A =1 + cos 2A and then making the transform-

ation A' = T ~ 2A, etc. (see Chapter VII), (9) becomes (after dropping
primes)
(10) 32 cos A2 3 + 2% cos B cos C

where here ABC is a general triangle. In terms of the sides, (10) be-
comes

(11) 3acha2c + Zb5c > 4achc3 + 22b3c3 + 6(abc)2,
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which is equivalent to

(12) T

- N

2 3 2
>
T2 + 4T1T2T3 Z 4T1T3 + 9T3.

Since (7) and

2 2 3 2
- - = - >
(13) Ly 'z  (x - y)(x - 2) T2 + 9T3 4T1T2T3 20,

are valid, it follows that (12) is equivalent to

2
(14) sty - 2)% 4 (Sxy) (Zz8(x - v)2) >0

which is obviously valid and consequently weaker than (13). There is
equality in (14) only if x = y = z or if two of x, y, 2 vanish which
corresponds to the equilateral triangle or isosceles right triangle,
respectively.

Now using (9), we will establish a stronger inequality then (8),
i.e.

(15) 1611 cos2 A+ Zc052 A< 1.

2
Since (see part VII 2): 1 - Zcos A = 2]l cos A, the latter is equivalent
to

(16) (T cos A) (1 - 8Ilicos A) = 0.

Since the triangle is non-obtuse, Ilcos A 2 0. Also, it is known that
1 2 8N1cos A. There is equality in (16) only if the triangle is equi-
lateral or if one of the angles is a right angle. This implies that
there is equality in (8) only if the triangle is an equilateral or a
right isosceles one.

Incidentally, (10) is also equivalent to the known inequality GI
6.12. A stronger related inequality is the second inequality in GI 6.13,
or equivalently

> 4T3T .

(17) T 175

= N

Tg + 2T T, T, + 9T

2
17273 3

3.11. The following result was also proved by using the (x, y, z) rep-
resentation ([4], [5]):

2

Z(ﬁEiE—:—El>t 23 for all t <0 and
3a

all t > (log %)/(log %) .

3.12. [9] Using inequalities
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zzfé_zszx<zl’i

%

we get

1
(s - a)2

2%

1 1
_— £ =K
a(s - a) r2 S 2

3.13. [9] Using inequalities

2ny22 < Zyz(y2 + z2) < ZZx4
we get
32A2<Z(a2 +b2)(b+c-a)(c +a - b) <24A2 +—;~Z(b+c—a)4.

3.14. [9] Let x, y, z be non-negative numbers such that Ix = 1. Then the
following inequalities are valid

0 < Zyz - 2xyz < 7/27.

This result was given in the XXV International Mathematical Olympiad,
CSSR, 1984. Now, Using substitutions x = (s - a)/s, etc., we get

%% s3 < (Za) (Zbc) - dabe < 2s3.

Note that many other examples can be found in [1] and [9], and that
table of non-negative forms is given in [1].

4. Some Important Non-Negative Quadratic Forms

M. S. Klamkin [8] proved the following result:
Let p, 9, r, X, y, z be non-negative numbers. Then

p > _1_2
(1) z T+ % Y? Tyz 2Zx .

For x = a2, etc., Klamkin obtained inequality

(2) 1 —B_p%% > gp2,
aq + r

where he used (1.8).

Since the expression on the right-hand side of (1) is symmetric,
we can use (1) and other identities for a triangle for generating many
new inequalities. For example, for x = a, etc. we get

P >
(3) X prrars bc 2 2r(4R + r).
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Comment by W. Janous. Since F = (bc sin A)/2, etc., (2) becomes [8]:

2
(4) § —2 _ cosec” a > 2,
q+r

which yields

for p=q =r GI 2.50,
, 2 . 2 .2
for p = sin” A etc.: 2 Y. 1/(sin” B + sin~ C),

<
2 2 2 2
for p = cos” A etc.: 2 £ £ cotan” A/(cos” B + cos  C), etc.o
We shall note that analogously (3) becomes:

(5) 5 P coseca>iBET
q+r s

D. S. Mitrinovié and J. E. Pe&arié [10] proved the following
similar results:

et p, q, r be real numbers such that p +q > 0, g + r > 0,
r +p > 0. If x, y, 2 are non-negative numbers, then

(6) g 3 E - < > Iyz - %sz,

with equality if and only if
(7) p:q:r = (y +z2 - x):(x -y +2):(x +y - 2).

Proof. Using Cauchy's inequality we get

2
p 2_1 N S S W
% P X = 2(Z(q + r))(Z e r> X" 2 2(Zx) Ix
= Lyz - é—sz.

From equality condition for Cauchy's inequality we get (7).

2
For x = a_, etc. we get the following inequality [10] and [11]:

(8) T 5 E - a® > gr?.

Equality in (8) is valid if and only if

2
(9) p:q:r = (—a2 + b2 + c2):(a2 - b2 + c2):(a2 + b2 -c).

Bil&ev and Velikova gave many special cases of (8). For example
the following inequalities are valid [11]:

Za3(s -a) 2 8F2, Za4/b 2 (Zaz)z/(Za), Za5/(b +c) 2 8F2,
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a3 S 2F

b(a + b) _ R '

2. -1

Zaz/(b + c) 2 2F/R, Z(b2 +c) > (2R2)—1.

X
They also gave the following inequality f11]:

(10) z gﬁ—r a® > 2r(4r + 1.

Equality in (10) is valid if and only if
(11) p:q:r = (~a + b + c):(a ~b +c):(a +b -c).

Of course, this follows from (6) for x = a, etc.

Remarks. 1° Proof of (6) is similar to Janous' proof of (8).

2° Tsintsifas [10] gave (8) for positive numbers p, g, r only.

3° Note that the left-hand sides of (6) and (1) are incomparable
in general.

4° In fact, Mitrinovié and Pedarié [10] proved a more general
result.

The following result was also given in [81:

Let a, b, ¢ be the sides of a triangle and let x, y, 2z be real
numbers. Then

(12) Z(9+3- 1)x2 - Z<3 -b+°>yz>o.
c b a
R 2 2 2 , .
Remark. By replacing (x, y, z) by (xl, X5 x3), i.e. if
a =x, +x b = 2 + = x, + 2
2 T ¥y ¥y v Xy ©F )

where x x. are arbitrary real numbers, we can in a similar way

17 ¥2r 3
consider inequalities for all real numbers. For such results see [1]
and [6].
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Chapter III

HOMOGENEOUS SYMMETRIC POLYNOMIAL GEOMETRIC INEQUALITIES

0. Introduction

P. J. van Albada and K. B. Stolarsky ([1], [2]) noted in 1971 that many
inequalities in GI, Chapter I, for the sides of a triangle can be re-
written in the form p(a, b, ¢) > 0 or p{a, b, ¢) 2 0 where p(a, b, c) is
a symmetric and homogeneous polynomial of degree n in the real variables
a, b, ¢ representing the sides of a triangle. They gave the general
solution for such inequalities if n < 3.

Note that the substitutions

(1) X

1 1 1
5(b +c - a), y = i(c +a - Db), z =-§(a +b -0 or

It

a y + 2, b=z +x, c=xX+Yy

transform any inequality for the positive numbers x, y, z into an in-
equality for the sides a, b, c of a triangle, and conversely ([3], [4]),
i.e. (x, vy, 2) is dual to (a, b, c) (see Chapter II). So, we can con-
sider inequalities P(x, y, z) 2 O instead of p(a, b, ¢) 2 O.

We shall also make use of the formulae

Ix = %—Za = g, Iyz = r(4R + r), Xyz = rzsr
(2)

F =rs, abc = 4Rrs

to derive inequalities for R, r, s, and F.
Further, we shall denote the elementary symmetric functions of
X, Yy, Z2 by Tl' T2, T3, i.e.

T1 =X +y + z, T2 = yz + 2x + XY, T3 = XYZ.

In some proofs we shall use the following lemma:

LEMMA. The expression XA - YVAV + 2V (X, Y, 2 real) will be non-nega-
tive for all non-negative values of A and Vv if X 2 0, 2 2 0 and

axz - ¥* > 0. 2
Proof. XA - YWiv + 2v = (VX/A - VZA) + (2/%X2 - ¥) VAV

1. General Results of P. J. van Albada and K. B. Stolarsky

As we have said, P. J. van Albada and K. B. Stolarsky gave general sol-
utions for inequalities of the form p(a, b, ¢) 20, i.e. P(x, y, 2) 20
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for n < 3.

Degree 1.
It is obvious that such inequalities must be in the form

t{a +b +c) =2t(x+y +2) 20
which is true only if t > 0.

Degree 2.
Theorem 1. The inequality

P(x, y, z) = X(sz - Zyz) + 4ulyz 2 0

holds for all non-negative x, y, z only if A 2 0, u 2 0.

Proof. P(x, y, 2z) = l?\Z(y - z)2 + 4plyz, and P(1, 0, 0) = A,
2
P(1, 1, 1) = 12u.
We deduce using formula (0.1) that

M(Za® - Toe) + u(-Ia® + 2Tbc) = 0

for all triangles only if A 20, u 2 0 [1].
The polynomials sz - Lyz and lyz are the basic (symmetric) posi-

2

tive quadratics for positive numbers, ~hilst Zaz - Ibc and -Za + 2Ibc
are the basic (symmetric) positive quadratics for the sides of a tri-
angle.

Since sz - ILyz = 52 - 3r(4R + r), we have 52 2 3r(4R + r) i.e.
GI 5.6.

Degree 3. ([1], [2], [4])
As in [4] we write

U = Zx3 - Zx2(y + 2z) + 3xyz = Ix(x - y)(x - 2)

x(x—y)2+z(y—z)2+(x—y)(y—Z)(x—y+Z),

\

1]

2 2
X (y + z) - 6xyz = Lx(y - 2)°,
W = xXyz.

When x, vy, 2z 2 0 we have U 2 0 (since without loss of generality

X 2y 2 z). This is Schur's inequality (AI, p. 119) with n = 1, and when
we use (0.1) to express it in terms of a, b, and ¢ we obtain Colins'
inequality GI 1.6 (this inequality is from 1870). Also V 2 0 and W = 0
when x, y, z 2 0. Any symmetric cubic in x, y, z can be written in the
form

P(x, vy, 2) = AU + UV + VW,
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THEOREM 2. [4] The inequality AU + W + VW 2 O holds for all x, y, z
2 0 only if A, u, v = 0.

Proof. P(1, 0, 0) = A, P(0, 1, 1) =24, P(1, 1, 1) = v,

The polynomials U, V, W are the basic positive cubics for positive
numbers. Using (0.1) we deduce that

%A[—Za3 + ZZaz(b + c) - 9abc] + u[2a3 - Zaz(b +c) + 3abc]

+ éw[—2a3 + Zaz(b +c) - 2abc] Z20

for all triangles only if A, u, v 2 0 [1].
The three expressions in square brackets in the above inequality

are the basic positive cubics for the sides of a triangle.
2
We have U = s(s2 - 16Rr + 5r) , giving one of Gerretsen's inequal-
ities 32 2 16Rr - 5r2 ([5], GI 5.14 and 5.25), and V = 4rs(R - 2r),
giving Chapple-Euler's inequality R 2 2r (GI 5.1).

Degree 4 ([21).
A real symmetric form of degree 4 can be positive at (1, 1, 1), (1, 1, 0),
(2, 1, 1) and (4, 3, 2) while negative at (1, 1, 1/2). (Note that in
the previous cases, i.e. n £ 3, from P(1, 1, 1), P(1, 1, O), P(2, 1, 1)
2 0 it follows that P(a, b, c) 2 0 ([2]).
Indeed, define a symmetric form of degree 4 by

2
P(a, b, c) = AZa4 + BZa3(b + c) + Cla b2 + DZazbc
where A = 103/34, B = -4, C =2, D = 3, Then P(1, 1, 0) = 1/17, P(1, 1, 1)

= 3/34, P(2, 1, 1) = 275/34, and P(4, 3, 2) = 1815/34, but P(1, 1, 1/2)
= - 1/544.

2. Special Inequalities

in [1], [31, [6], [8], and [9] 'special' inequalities were considered,
i.e. inequalities for which equality occurs when X = y = z, or when a =
b = ¢, i.e. when the triangle is equilateral.

Degree 2 [6].

THEOREM 3. The complete set of special quadratic inequalities is given
by ’

2
- >
A(T1 3T2) 0, x>0,

X(sz - Zyz) 20 (cf. Theorem 1).

y
Degree 3 [6].
THEOREM 4. The complete set of special cubic inequalities is given by
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AU + uv 2 0, A, u=20.
This result follows immediately from Theorem 2; in [6] the in-

equalities are expressed in the form

oT, + BT1T2 - 9(B + 30L)T3 20, a =20, R 2 ~4a.

Degree 4 [1], [6], [9].
We shall give the formulation of the result from [9]. Write

- W

A = ZX4 - Zx3(y + z) + szyz = sz(x -yV)(x - 2) =

2
= %Z(y +z - x) (y = z)2,

B = Zx3(y +2z) - ZZyzz2 = Lyz(y - z)2,
C = Zyzz2 - szyz = %Zx2(y - z)2.

Then A 2 0, B2 0, C 2 0 are special quartic inequalities for non-nega-
tive x, y, 2. In fact A2 0 and C 2 0 for all real X, y, 2; A 2 0 is
Schur's inequality (AI, p. 119) with n = 2. Any special symmetric
quartic inequality for positive numbers has the form

AA + UB + VC 2 0.

THEOREM 5. The inequality AA + uB + vC 2 0, holds for all x, vy, z 2 0
only if A 2 0, v =20, u 2 -/Av.

Proof. Write AA + UB + VWC = £(x, y, 2z), and suppose that £(x, y, 2)
0 for all positive x, y, z. Then A = £(1, 0, 0) 2 0 and v = £(0, 1, 1)
0. Also

\YAY

2 2
£(x, vy, ) = (x = P (/A - y/ W7+ 20 + /WV)xy) ;s
this expression is positive for all positive x, y only if u + YAv 2 0.
Hence the given conditions for f(x, y, z) 2 0 are necessary.

To show that the conditions are sufficient, we observe that

AA - VAVB + VC + (1 + YAV)B

f(x, y, z)

and A\A - VAVB + VC 2 0 by the lemma since

4AC—B2= 3(x +y +2)(y - 2)(z2 - x)(x —y))2>0-

Alternatively,
1 2 2
AA - VAVB + VC = 5{[(y +z - x)/A - xNI(y - 2)° =o0.

The polynomials A, B and C are the basic positive special quartics
for positive numbers. To obtain the basic positive special quartics for
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triangles, we use (0.1):

A= at - 3%ac(b + c) + 8Ib2c? - 3Ta’be),
B = %(Za4 - 2Za3(b + c) + 4Zb2c2 - Zasz),

c= %{Za4 - 2a®m + ¢) + Ia’be).
Also
A=s? o r(20R - r)s? + 4r’(AR + )2 > 0  [6, 6.5]

B = 4r((R + r)s> - r(4R + 1)%) > 0 (6, 6.7]

and

C r2((4R + r)2 - 352)

which gives v3s < 4R + r, i.e. GI 5.5.

Degree 6 [8], [9].
2
Inequalities of type s % q(R, r) where q is a quadratic polynomial, and

also various inequalities connecting the angles of a triangle, can be
reduced to special sextic inequalities in x, y, z without any terms in-

volving £x® QE_ZXS(Y +z).

Write

I 3

Zx4(y2 + zz), K = xyszB, L = Zy3z y

M= xysz2(y + z), N = x2y222, and

P=J-2K-2L +2M - 6N = (y - z)2(z - x)2(x - y)2
Q=K -M+ 3N = xyzIx(x - y)(x - z) = xyzU

T=L-M+ 3N

ryz(yz - zx)(yz - xy)

S =M - 6N = xyzlx(y - 2)2 = xyzV.

Then P2 0, 9 2 0, S 2 0, and we obtain T 2 0 if we replace x, y, Z by
yz, zX, Xy in the inequality U 2 0. Also

4F2(4R2 + 20Rr -~ 2r2 - 52) - 4r3(4r3 + r)3

e
i

F2(s2 - 16Rr + 5r2)

0
]
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T = r3(4R + r)3 - F2(16Rr - 5r2)
2
S = 4F r(R - 2r).
We can write
P = —4r2((s2 ~ 2R2 - 10Rr + r2)2 - 4R(R - 2r)3)

2
= -4r I, say;

I <0 is the fundamental inequality for R, r and s (see Chapter I).

From T 2 0 we deduce 52 < (4R + r)3/(16R - 5r), but this is weaker

2
than Gerretsen's inequality 52 < 4R2 + 4Rr + 3r°.
Any special symmetric sextic inequality for positive numbers, with

no terms involving Zx6 or Zx5(y + z), has the form
P(X, y, 2) =0P + B0 +YT + 88 2 0.
THEOREM 6. The inequality aP + BQ + YT + 8S 2 0 holds for all non-nega-

tive x, y, z only if o, B, Y 2 0 .and § > —/By.
Proof. Suppose that P(x, y, z) 2 0 for all positive x, y, z. Then

P(x, 1, 0) = xz(a(x - 1)2 + Yx), so x_4P(x, 1, 0) =» o as x - ©; hence

o 2 0. Also x—4P(x, 1, 1) » B as x » ©; hence 3 20, and P(0, 1, 1) = v;
hence Y 2 0. Since B, Y 2 0, we can write

2 2 2
P(x, v, 2) =¥ (x - ) ((x/B - v+ 2(8 + VBY)xy).
This expression is positive for all positiveonly if § 2 -/By Hence the
given conditions for P(x, v, z) 2 0 are necessary.
To show that the conditions are sufficient, we observe that
P(x, y, 2) = 0P + (B ~ VBYs + yT) + (8 + /BY)S
and
B ~ VBYS + YT 20 when B, Y20

by the lemma, since

4QT - 52 = r352(16R ~-5)p 20

because R - 2r 2 0,

3. Best Possible Inequalities

Suppose that X 2 0 and Y 2 0 are two inequalities that hold for (let us
say) all non-negative x, y, z, where X and Y are expressions in x, y, 2
and Y is not a constant multiple of X. If X 2 Y for all non-negative x,
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Y, 2, with strict inequality for certain values of x, y, z, we say that
Y 2 0 is a better inequality than X 2 O.

Two meanings can be given to the term "best possible inequality" in
a set of inequalities (see [7], [8], and [9]). ILet us say that an in-
equality is best possible in the weak sense if no inequality in the set
is better, and best possible in the strong sense (we shall write only
best) if it is better than every other inequality in the set.

These definitions can be extended to inequalities in (a, b, ¢) or
in (R, r, s) etc. Our definition precludes us from saying that kX 20 is
better than X 2 0 when 0 < k < 1,

Degree 2 [3]. 5
The only symmetric terms are linear combinations of T1 and T2. The fol-
lowing theorem is a consequence of Theorem 1.

2
THEOREM 7 (a) The best inequality of the type T1 > uT2 is

2
> .
T, > 3T,;

this is equivalent to

sx° - Tyz > 0.

(b) Within the set of all symmetric quadratic inequalities in non-

2
negative x, y, z, Ix =~ Zyz 2 0 and Iyz 2 0 are best possible only in
the weak sense, since neither is better than the other.

Degree 3.

3
Frucht and Klamkin ([3], [7]) considered inequalities of types T1 2 aT3,

they showed that the best inequalities

3
2 RT 2 vl.T. + .
T1T2 = B 3 and Tl = 112 WT3,

of these types are

Ti > 27T3 (U + 4v 2 0 or 52 P 27r2),
T,T, > 9T3 (V20 or R 2 2r)
and
T3+9T Z 4T,T (U 2 0)
1 3 172 .

We can also consider inequalities of other types; for instance, the
best inequality of type

TS > ALxS(y + z)  is  Tx0 > %sz (v + 2).

These results, and the next theorem, are consequences of Theorem 2.

THEOREM 8. Within the set of all symmetric cubic inequalities in x, y, 2,
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U220, V20and W20 are all best possible in the weak sense.

Degree 4.
THEOREM 9 [3]. The best inequality of the type

4 2 2 4 2 2
> i >
T1 z uT1T2 + VT2 is T1 + 9T2 > 6T1T2.
Note also that some other results are obtained in [3]. Klamkin also

showed that there is no best possible inequality in the strong sense in
the class

4 2 2
>
T1 2 uT1T2 + vT2 + le 3

but the following result is valid ([9]):

THEOREM 10. Within the set of all special symmetric inequalities, the
inequalities AA - VAVB + vC 2 0 (A, Vv 2 0; X, V not both zero) and
B 2 0 are all best possible in the weak sense.

Proof. This is a simple consequence of Theorem 5.

Degree 5 [3]. 5

Any symmetric polynomial of degree 5 is a linear combination of Tl’

T3T , T2T , T T2, and T.T.,. Klamkin uses the phrase "an inequality for
172 173 172 273

(I, J, K)" to mean an inequality of the type I 2 uJ + VK. He has given
a series of results for degree 5. For example, he has proved

2 2
THEOREM 11. The best possible inequality for (T1T2, T2T3, T1T3) is

2 2
- > 0.
T,T, + 3T,T, - 4T|T, > 0;

while, the best inequality for (T3T , T.T,, T T2) reduces to the best
X . 172 273 172
inequality from Theorem 8.

Degree 6.
First, we shall give the following result:

THEOREM 12. Within the set of all special symmetric sextic inequalities

in x, y, z with no terms involving Zx6 or sz(y + z), the inequalities
Bo - VBYS+ YT >0 (B, Y = 0; B, Y not both zero), P 2 0 and S 2 0 are
all best possible in the weak sense.

This is easily proved by the method of [9].

Some best possible inequalities in the strong sense, with some of
the possible seven terms: T?, T?TZ, TiTz, T;, TiT3, T1T2T3 and Tg, are
given in [3]. Here we shall give some of these results.

The best inequalities relating pairs of the above terms are well
known and are consequences of the previous pairs. An exception is
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T3) for which there is no inequality.

3 2
For (T2, T3, T

) 3 3
the pair (T2, T1

1T2T3) the best inequality is

3 2
- p1
T2 + 9T3 4T1T2T3 2 0.

4, Generalization of Gerretsen's Inequalities

Gerretsen's inequalities, ascribed to Steinig in GI 5.8 and 5.17 and in
[9] and [10], but obtained earlier in a different form by Gerretsen [5]
(GI 5.14 and 5.25) are

(1) G, = 5r% ~ 16Rr + s° > 0,

1

(2) G 4R2 + 4Rr + 3r2 - 52 2 0.

2

The first has already been obtained as a consequence of U 2 0, and the
second follows from P + 4T 2 0O (see Section 3 of this Chapter) . Gerretsen
proved these inequalities by considering expressions for the squares of
the distances of the incentre of a triangle from the orthocentre and the
centroid (these squares must be non-negative). Of course, these inequal-
ities follow very simply from the fundamental inequality (see Chapter I):

2R% + 10Rr - r2 + 2(R - 2r)/R{R = 20)

4R2 + 4Rr + 3r2 -~ ((R - 2r) -
—_ 2 2 2
- VR(R - 2r))” € 4R™ + 4Rr + 3r";

2R% + 10Rr - r2 - 2(R - 2r)/R(R = 20)

<(R - 2r) - /R(R < 2r)>2 + 16Rr - 5r2 > 16Rr - 5r°.

W. J. Blundon [11] stated incorrectly that Gerretsen's inequalities

are the best possible inequalities in the class g(R, r) < 52 < Q(R, 1),
where g(R, r) and Q(R, r) are quadratic forms with real coefficients.
R. Frucht and M. S. Klamkin [7] gave correct results. Here we shall give
the formulations and methods of J. F. Rigby ([8], [9]).

As we stated before, to investigate inequalities

2
(3) s° < AR2 + URr + (27 - 4X\ - 2u)r2,
where the coefficients of r2 has been chosen to give equality when x =y

. 2 L s .
= z, we multiply by F©' and use (0.2) to obtain sextic inequalities in
x, y, 2 of the type discussed in Section 3.
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THEOREM 13 [8], [9]. An ineguality of type (3) holds for all triangles
only if it has the form

(4) 2< 1 -0 ur? + a1 - 0 - 409)Re + (3 +80 + 50°)r) +

+ er(R -~ 2r)

where 0 S O < 1 and € 2 0.

Within this set of special inequalities, those with € = 0 are all
best possible in the weak sense.

The next result is proved in a similar way.

THEOREM 14 [8], [9]. BAn inequality of type

2
52 Z ARZ + URr + (27 - 4X - 2W)r

holds for all triangles only if it has the form

(5) s2 z (1 - wz)_i(—4w2R2 +4(4 +w - wz)Rr ~ (5 + 8w + 3w2)r2)

- ¢r(R - 2r)

where 0 S w <1 and € 2 0.

Within this set of special inequalities, those with € = 0 are all
best possible in the weak sense.

For Q = w=¢€ =0, fron (4) and (5) we get Gerretsen's inequal-
ities.

The inequalities (4) and (5) have also been proved by Frucht and
Klamkin [7]}. They also showed that these inequalities are a consequence
of the fundamental inequality.

Note that (4) and (5) can be expressed as a single set of inequal-
ities:

THEOREM 15.

(Sr2 - 16Rr + sZ)A - 4r(R - 2r)/§5 + (4R2 + 4Rxr + 3r2 - sz)v +
+ r(R - 2r)pu 2 0

for all A, u, v 2 0. 9
1f A < v we put A/v = 0%, u/(v - A) =€, to obtain (4); if A >V

we put V/A = wz, B/(A = V) = € to obtain (5); if A = V we obtain
2
4M(R - 2r)” + ur(R - 2r) = 0,
When 4 = 0, the inequality in Theorem 15 can be written as

le - 4rE/AVv + GV = 0,

2

where G, 2 0 and G, 2 0 are Gerretsen's inequalities. Also

4G1G2 - (4rE)2 = -41 2 0,
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so Theorem 15 can be proved directly from the Lemma, and we have inci-
dentally found another way of writing the fundamental inequality I < 0:

4r2E2.

\Y%

G1G2

THEOREM 16. (a) An inequality of type s < AR + Ur holds for all tri-
angles only if it has the form

s S2R + (3/3 - 4)r + a(R - 2r) + Br
where o, B 2 0, so that in this set of inequalities
(6) s < 2R + (3/3 - 4)r

is best possible in the strong sense.
(b) An inequality of type s 2 AR + pur holds for all triangles only
if it has the form

s 2 3/3r - a(R - 2r) - Br
where o, B 2 0, so that in this set of inequalities
(7) s 2 3/3¢

is the best possible in the strong sense.
These best-possible inequalities are derived in [10] and [11]. We
obtain (6) in the form

s < (2R + (3V3 - 4)r)2

by putting @ = 0, € = 12/3 - 20 in (4); we obtain (7) in the form

2

s 2 27R2 by putting w = 2, € = 16 in (5). Hence (6) and (7) are not
best possible even in the weak sense when we square them; this is be-—
cause we then consider them within a much wider set of inequalities.
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Chapter IV

DUALITY BETWEEN DIFFERENT TRIANGLE INEQUALITIES
AND TRIANGLE INEQUALITIES WITH (R, r, s)

1. Some General Considerations and Some Applications

A very useful method in proving geometric inequalities is the trans-
formation of any triangle inequality

>
(1) F(fl(ul' Vi wl), ey fn(un' Vo wn)) 20,

where (ui, Vi wi) (i=1, ..., n) are sets of triangle elements, into a

triangle inequality with (R, r, s).
For example, if the following identities hold

(2) fi(ui’ Vis wi) = gi(R, r, s) (i=1, ..., n),

then (1) becomes

(3) F(gl(R, r, S), +.., gn(R, r, s)) 2 0.

In many cases this inequality is equivalent to a known (R, r, s)-
inequality (Chapple-Euler, Gerretsen or fundamental inequality, for
example) .

Thus, corresponding identities play a very important role for
proving geometric inequalities. Some of these identities are given in
IT.3., and some others will be given in the next part of this chapter.

Of course, we can directly use any identity in order to generate
geometric inequalities. For example, assume that we have an identity
(4) f(u, v, w) = g(G(R, r), H(s))
and an inequality
(5) H(s) < T(R, ).

If g is nondecreasing in the second variable we get

(6) f(u, v, w) € g(G(R, r), T(R, r))

and the reverse inequality if g is nonincreasing in the second variable.
Similarly, if we have an inequality

(7) G(R, r) < V(s)

and if g is nondecreasing in the first variable, then



50 CHAPTER IV
(8) f(u, v, w) € g(V(s), R(s))

or the reverse inequality if g is nonincreasing in the first variable.
EXAMPLES: 1° (GI 5.14, Gerretsen):

12r (2R - 1) € Zaz < 8R2 + 4r2.

Proof. Since (II 3.10) i.e. Za2 = 252 - 8Rr - 2r2, is valid, using
the well known Gerretsen inequalities GI 5.8, i.e,

2 < 4R2 + 4Rr + 3r2

r(16R - 5r) < s
we get the above inequalities.
Remark. Of course, we can obtain very many such inequalities (see
Chapter X of the book).
2° (R. R. Janié, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat.
Fiz. No. 498-541 (1975), 183):

If a triangle is non-obtuse, then the following inequality is wvalid
(A, W. Walker, 'Problem E 2388', Amer., Math. Monthly ZgA(1972), 1135):

2 2

s~ 2 2R” + B8Rr + 3r2.

Using this inequality and

5 b+c _ s2 ~ 2Rr + r2
a - 2Rr !

we obtain

2 2
Zb + c > R™ + 3Rr + 2r
a Rr

In the same way we obtain

2
S - ac¢ R2 + 8Rr + 4r

= ’
bty 10Rr + 4r’

from the identity

ZZ ; a _ %(1 + gr(3R + 2r) )'
¢ s + r(2R + r)

Remark. For some other similar results for special triangles see
Chapter X.

Further, we shall note that inequalities of the form (3) are hom-
ogeneous, so using the substitutions

(9) X = r/R and y = s/R,

this inequality becomes
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1) [ >
(10) Fl(fl(x, V) eeer fn(x' y)) 20
l.e.
(11) F, (x, y) 2 0.

For example, we showed in II 2.3. that the fundamental inequality
can be written in the form

(x2 + y2)2 + 12x2 - 20xy2 + 48x2 - 4y2 +64x < 0.

Geometrically, this condition is described by the figure on page 10.

J. Garfunkel and G. Tsintsifas in an unpublished paper 'Inequal-
ities through R-r-s triangles' used the same condition but they worked
differently:

It is not difficult to prove the following proposition. Let C be a
conic and f(x, y) = 0 its equation, let Ml(xl' yl), M2(x2, y2) be two
17 M2 belong to the interior
27 y2) > 0.

The idea of the method will be shown by one of their examples:
For every triangle ABC

interior points of C (if C is an hyperbola M

of the same branch), then f(xl' yl)f(x

(12) Y cos A - % cos Bcos C=2 3/4.

It is known that

+ +
L cos A = R = X and Y cos A cos B = E—jEAL—— 1

(see the next part of this chapter). Therefore, (12) is equivalent to

(13) x2 + y2 - 4x - 5< 0.

Inequality (13) is true for all nonexterior points of the circle x2 + y2
- 4x - 5 = 0. But, the points 0(0, 0), D(0, 2), Alt%, Eég
on page 10) are included in that circle. Hence, our conclusion follows
immediately.

Remarks. 1° We shall note that the above inequality can be proved
by using the well known Gerretsen and Chapple-Euler inequalities:

) (see Figure 2

52 < 4R2 + 4Rr + 3r2 = 5R2 + 4Rr - r2 - (R - 2r) (R + 2r) <

< 5R2 + 4Rr - r2

which is equivalent to (13).
2° Garfunkel and Tsintsifas used their method for proving some
inequalities for special triangles, too.
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2. Some Equivalent Forms

(1) The sides of any triangle are the roots of the equation

t3 - 25t2 + (s2 + r2 + 4Rr)t - 4sRr = 0.

Proof. Using the identities

a = 2R sin A = 4R sin a cos é} s - a = r cotan A ,
2 2 2
we get
sin2 A _ ar cos2 A a(s - a)
2 4R(s - a) ' 2 4Rr v e
ar + als - a) _ 51n2 L cos2 L 1
4R(s - a) 4Rr 2 2 !

which is equivalent to

a3 - 25a2 + (52 + r2 + 4Rr)a - 4sRr = 0.

Similarly, we can prove that b and ¢ satisfy the same condition.
By using Viete's formulas, we directly obtain

(2) Ta = 2s,
(3) The = s° + 12 + 4Rr,
(4) abc = 4sRr.

Now, we shall give some other identities.

(5) ra® = 2(s? - ¥? - 4rr).
Proof. Using the identity

2 2
Ix" = T1 - 2T2,

and (2) and (3), we obtain (5).

2
(6) Za3 = 2s(s2 - 3r - 6Rr).
Proof. Using the identity

3.3
Ix™ = T1 - 3T1T2 + 3T3

and (2-4) we get (6).
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2
(7) MT(a + b) = 2s(s2 + r" 4+ 2Rr).
Proof. This is a similar consequence of the identity

My + z) = T1T2 - T3.

s2 + r2 + 4Rr

1
(8) Zg-— 4Rrs

Proof. This is a consequence of the identity

1 _
Z; = T2/T3.
1 1
(9) b = Ire

Proof. This is a consequence of the identity

sio= o so_.

vz 173
(10) Zl— - 52 -~ 4Rr + r2 2 _1
a2 4Rrs Rr °

Proof. This is a consequence of the identity

T2 - 2T, T
Zl—-= 2 173
2 2 °
X T3
(11) Za + b - s2 + r2 - 2Rr .
c 2Rr

Proof. This is a consequence of the identity

Zy+z_T12 3

(12) a *, b 7, c_1 are the roots of the equation

4srRt3 - (s2 + r2 + 4Rr)t2 +2st -1 =0,

Proof. By the substitution t - 1/t, we get (12) from (1).

Remarks. 1° Using Viéte's formulas, we can get (8) and (9) from
(12).

2° similarly, we can get several similar results (see III 3.).
(13) x, v, 2 (x = s - a, etc.) are the roots of the equation
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t3 - st2 + r{4dR + r)t - sr2 = 0.

Proof. By the substitution t - s - (s - t), we get (13) from (1).

(14) x-l, y-l, z_1 are the roots of the equation

2 2
sr t3 - r(4R + r)t” + st -1 =0.
Proof. By the substitution t -» 1/t, we get (14) from (13).

Consequences of (13) and (14) are for example:

(15) Lxy rab -~ s2 = 4Rr + r2;

(16) XYz = r2s,

which is the well known Heron formula

F=vVs(s -a)(s-Db)(s -c).

(17) sz = 52 - 2r(4R + r);
(18) Zx3 = s(s2 - 12Rr);
1 4R +r
(19) Zx - sR !
(20) =
¥y
1) 1o _tr+n®-2?
2 2 2 !
X s r
(22) T a - 4R - 2r ;
s - a r
2
(23) 5 a _ 4s(R - r) ;
s - a r
c _ 2(4R + 1) .
(24) (s ~a)(s - b) sr '
2
c _4(R + 1)
(25) Z(s - a)(s - b) r
(26) sin A, sin B, sin C are the roots of the equation

2
4R t3 - 4Rst2 + (52 + r2 + 4Rr)t - 2sr = 0.

Proof. If we put a = 2R sin A, etc., (1) becomes (26).
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i =5,
(27) ¥ sin A = z
52 + 4Rr + 2
(28) Y sin B sin Cc = =1 2RE T ¥ .
2
4R
(29) T'sin A = E£§ ;
2R
2 2
(30) S sinZa=S_ TA4RE-r
2
2R
2 2
(31) T sin3 A = s(s” - 6Rr - 3r")
4R3
2 2
(32) M(sin A + sin B) = & ¥ r3 + 2Rr) |
4R
4 2, 2 2 2
(33) 5 sin4 A = s - (8Rr + 6r )Z + r“(4R + 1) ;
8R
(34) cos A, cos B, cos C are the roots of the equation

4R2t3 - 4R(R + r)t2 + (52 + r2 - 4R2)t + (2R + r)2 - 52 = 0.

. . A
Proof. By summing the equation a = 2R sin A and s - a = r cotan 5
A
2

2RV/(1 - cos BA) (1 + cos A) + pffCos B _

1 - cos A

and expressing sin A and cotan by cos A, we get

wherefrom by squaring we get

4R2 cos3 A - 4R(R + 1) 0052 A + (52 + r2 - 4R2) cos A +

+ (2R + r)2 - s2 = 0.

Similarly we can prove that cos B and cos C satisfy the same condition,
too.

(35) T cos A=2tL,
R
2 + 2 _ 4R2
(36) T cos AcosB=—_F8 "X .

2
4R
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(37)

(38)

(39)

(40)

(41)

(42)

(43)

(44)

(45)

(46)

(47)

(48)

(49)

CHAPTER IV

2 2
Ilcos A = s - (@R+x)
= > ;
4R
5 S2 A= 6R2 + 4Rr + r2 - 52 i
co = 5 ;
2R
3 2
X cos3 A= (R+r) =-3sx 1;
3
4R

2Rr2 + r3 + 52r

{cos A + cos B) = 3
“ 4R

~

cosec A, cosec B, cosec C are the roots of the equation

25rt3 - (52 + r2 + 4Rr)t2 + 4Rst - 4R2 =0.

Proof. By the substitution t - 1/t we get (41) from (34).

éz + r2 + 4Rr
Y cosec A = —F———— ;
2sr

)
r

I

Y cosec B cosec C =

(52 + r2 + 4Rr)2 - 1652Rr .

452R2

2
Y cosec” A =

. . 2 2
sin A + sin B _ s+ xr - 2Rr

sin C 2Rr !

sec A, sec B, sec C are the roots of the equation

2
(2 - (2R + )3 = (82 + 2 - R t? + 4R@R + 1)t - 4R% = 0;

52 + r2 - 4R2
2

L sec A = 5
s" - (2R - 1)

H

+
Y sec Bsec C = 4R (R r)

H

52 - (2R + r)2

2 2 2.2 2 2
5 secz a = (s + r” - 4rR")° - 8R(R + r) (s (2R + 1) );

(52 - (2R + r)2)2



DUALITY BETWEEN DIFFERENT TRIANGLE INEQUALITIES

2 2 2
(50) ZcosA+cosB=(R+r)(s +r —4R)_3;

cos C R(52 - (2R + r)2)

sin A + sin B _ s |
<1 HcosA+cosB_r'
2
(52) sin2 %, sin g, sin2 %—are the roots of the equation
2
16R t3 - 8R(2R - r)t2 + (52 + r2 - BRr)t - r2 = 0.

2

57

Proof. Since cos A =1 - 2 sin %, by the substitution t » 1 - 2t

we get (52) from (34).

. 2A _ 2R -r
(53) I sin = 3R ;
2 2 2
(54) 2sin4%=—————8R B
8R
.2A , 2B 52+r2-8Rr
(55) T sin 7 8in 5= ———s—;
16R
(56) 0052 %, 0032 g, cos2 % are the roots of the equation
16th3 - 8R(4R + r)t2 + (s2 + (4R + r)2)t - 52 = 0;
2 A 4R + 1
(57) ¥ cos 5= "3p ¢

2 B 2 C 52+(4R+r)2
2

(58) L cos” Fcos F= - p—;
2 2
16R
(59) cosec2 —?, cosec2 g, cosec;z % are the roots of the equation
263 = (52 + r? - 8Rr)t? 4 BR(ZR - 1)t - 16R% = 0;
2 A 52 + r2 - 8Rr
(60) ¥ cosec” T = ——r——;
2 2
r
R(2R -
(61) z cosec2 —2— cosec2 %— = —8——(——7——11 ;

2 g— are the roots of the equation

A
(62) sec X, sec %' sec
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s2t3 - (52 + (4R + r)z)t2 + 8R(4R + r)t - 16R2 = 0;
2 2
(63) 5 secz A_s + (4R + 1) ;
2 2
s
2 A 2B _8RMAR + 1)
(64) Y sec 5 sec 5T i
s
2 2 2
(65) 5 cos 2A = 3R+ 4Rr2+ r -s_
R

Proof. This follows from (38), since cos 2A = 2 cos2 A - 1.

(66) I sin 2a = 4Tsin A = 222
R
2 2
(67) Il sin 2a = 8l sin Al cosA=Sr(S —£2R+r )
R
(68) cotan A, cotan B, cotan C are the roots of the equation

2srt3 . (52 - r2 - 4Rr)t2 + 2srt + (2R + r)2 - s2 = 0.

. A .
Proof. If sin A and cotan 5 are expressed in terms of cotan A, then

A
2R sin A + r cotan 7 = s becomes

2 /.
R +r1+cotan2A=s-rcotanA.
;1 + cotan A

After squaring and simplifying we get that cotan A is a root of the
above equation. The same is valid for cotan B and cotan C.

32 2 - 4R
(69) Y cotan A = R . ;
2sr
2 2
(70) T cotan A = _s__;%zf.i ;
sr
2 2 2
(71) T cotan a =S - r - 4RH) .
2 2
4s r
R2
(72) Il{cotan A + cotan B) = — ;
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2 2 3 2.2 2
(73) 5 cotan3 A = (s r - 4Rr) 48s R r ;
33
8sr
(74) tan A, tan B, tan C are the roots of the equation
2
(S2 - (2R + r)2)t3 - 2srt2 + (52 - 4Rr - r )t - 2sr = 0.

Proof. By the substitution t - 1/t we get (74) from (68).

2
(75) ZtanA:——z———-—S—r—-————z;
s - (2R + r)

52 - r2 ~ 4Rr
(76) Y tan A tan B = ———— " ;

52 - (2R + r)2

2
(77) I tan” A = as’y? - 2(s”- +* - arn)(s° - 2R 4+ 0)?)
2 i
(s” - (2R + r)2)2
22 2,2 2
(78) S tand a = 8SE(sTr - 3R7(s” - (2R +1)7)) |
(52 - (2R + r)2)3
2
(79) I(tan A + tan B) = — 8sR r s
(s - (2R + 1))
2 2
(80) T cotan 2A = >—= Z -~ 4Rr + sr2 S
. (2R + 1)° - s
2 2 _ 2 2 2.2
(81) I cotan 2A = (2s - (2R +r) -~ r - 4Rr) - l6s r
168r(52 - (2R + r)2)
A B C .
(82) tan 27 tan 50 tan 5 are the roots of the equation
st3 - (4R+r)t2 + st -r =0.

Proof. If in 2R sin A + r cotan = s the functions A -» sin A and

N

A
A = cotan % are expressed in terms of tan o5 after simplifying, we find

that tan %is the root of the above equation. The same is valid for

B
tan 5 and tan 3

A _ 4R + r
(83) Ztang— S ;
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(84)

(85)

(86)

(87)

(88)

(89)

(90)

(91)

(92)

(93)

(94)

(95)

(96)

(97)

II tan

i

A_=rx
2 s

A B 4R
I (tan 5 + tan EJ =3

(4R + r)2 -

CHAPTER IV

2
2s

I tan

A
2 2
S

(4R + r)3 - 12s2R .

z tan3

(Y-

3
s

A
cotan 5

rt3 - st2 + (4R + r)t

Proof. By the substitution

A

¥ cotan

N

Z cotan %—cotan 5

B
cotan S5 cotan

A
= Il cotan 5

are the roots of the equation

[N IKe}

1
0

= 0.

o
$

1/t we get (88) from (82).

~

Kln

C_4R + r

’

r

52 - 2r(4R + r)

z cotan2

N
[\

3na
Z cotan 5 3

A B 4sR
Il (cotan > + cotan EJ =5
r
Ta sin A = Zaz _ 52 - r - 4Rr
2R R !
A B A B
. a B Ztan 0 + tan §-= Zcotan §-+ cotan §~= 4R - 2r )
s-a t < otan 154 r '
an cotan 3
Za tan % = 2(2R - r) (V. Bobancu, Gaz. Mat. (Bucharest) B 20
(1969), 482);

ra, rb, rc are the roots of the equation
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t3 - (4R + r)t2 + 52t - szr =0,

Proof. From elementary geometry it is well known

If we put

(98)

(99)

(100)

(101)

(102)

(103)

(104)

(105)

(106)

(107)

(108)

(109)

Some

(110)

a}
a}

a E . -1 a
— = ’ i.e. X = — .,
r s - a rs

this expression in (14), we get (97).

-1 -1

-1
o L r, are the roots of the equation

szrt3 - 52t2 + (4R + r)t - 1 = 0;

Zr = 4R + r;
a
2
ZrbrC =5 ;
Nr = szr, i.e.
a
F = VrHra;
Zrz = (4R + r)2 - 252:
a
Zr~ = (4R + r)3 - 1252R;
H’(rb + rc) = 4s R;
gLt
X X
a
zlr =£‘.2_t_£,.
rb c s r

2
1 S - 2r(4R + r)
2 2 !
s r

interesting consequences are

rZrbrC = Hra;

that

61
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(111) 4R2rbrc = H(rb + rc).
r +r
(112) =2 =32 c,
s - a r
a
(113) ha, hb’ hc are the roots of the equation

2Rt3 - (52 + r2 + 4Rr)t2 + 452rt - 452r2 = 0.

Proof. From the equality aha = 2F = 2sr we get a = 25r/ha, i.e.

ha = 2sr/a, so from (12) we get (113).

(114) h;l, hgl, h;l are the roots of the equation
4s2r2t3 - 4s2rt2 + (52 + r2 + 4Rr)t - 2R = 0;
1 2 2
(115) Zha = EE(S + r  + 4Rr);
(116) Sh h = 2s°r/R;
hb c = 28 1/R;
(117) Th = 252r2/R,
i.e.
1
(118) F = 3 RITh_;
2 2
(119) Zh™ = —l—((s2 + r2 + 4Rr)2 - 16s Rr);
a 2
4R
1 1
(120) ZE—*—; ;
a
(121) Zhj = —ig((s2 + r2 + 4Rr)3 - 2452Rr(52 + r2 + 4Rr) + 4852R2r2);
8R
2
s’ r
(122) Mth, +h ) = —==(s" +r + 2Rr);
b c 2
R
2
1 s + r + 4Rr

(123) X =
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2 2
(124) ZEE. E__:_EE_%_EBE )
h 2s r
a
(125) e S SR S
ha 2Rr '

1 1
(126) Z;— = ZH_ .
a a
h +h
b c sr
(127) == ;
b +c¢ 2R2
(128) rZhbhC =]Tha;
h +h
b +c¢ b [e]
(129) X 2 =7 h ;
a
2 2
(130) MW = ——tORES

a 52 + 2Rr + r2

Remark. For some other similar identities, see XI.1.
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Chapter Vv

TRANSFORMATIONS FOR THE ANGLES OF A TRIANGLE

1. Some Applications of Pexider's Functional Equation in Geometry

In this chapter we shall give some results about transformations of the
angles of a triangle or polygon. First, we shall give the following
result:

THEOREM 1. Real continuous functions A - Al(A)’ B - BI(B)' C - C1(C) are
the solutions of the equation

(1) A1 + B1 + 01 =T

with condition
(2) A+B+C=m
if and only if they have the following form

(3) A1=kA+>m, Bl=kB+u7T, c1=kc+\m

(k + X +u +v=1).

Proof. From (1) and (2) we get

(4) Al(ﬂ—B—C) =W—B1(B) —cl(c).
If we put
(5) £x) =A (T -%), gx) =3 -8B (X, hx =7 -c ),

(4) becomes
(6) f(B +C) = g(B) + h(C),

which is the well known Pexider functional equation, the general con-
tinuous solution of which is

(7) f(x) = ax + c1 + c2, g(x) = ax + cl, h(x) = ax + cz.
So,

™
(8) Al(A) = a(m - A) + c1 + c2, Bl(B) =5 aB - c1,
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3

Cl(c) =35 - ac - Cyr

and using the substitutions

= -k, c, + ¢

T
1 , *tam= AT, 7 7 ¢ = Mm, 3¢ = VT,

from (8) we get (3).
The following result of Z. Madevski ([1]) can be proved similarly.

THEOREM 2. Real continuous functions A - A, (A), B-> B, (B), C - C, (C) are
. 1 1 1
solutions of the system

(9) Ay

with condition

(10) A, B, C20, A+B+C=m,

if and only if they have the form (3) with condition

(11) A, M, k + X, k +u 2 0; A+u, k+X +u<i1.
Remark. From (11) follows the condition -1/2 < k € 1.

In the above theorem we considered the class of all triangles. For
this class we shall use the notation K, i.e. we can put

(12) k={(@®, B,C) :Aa B C20, A+B+C-=nm}
or
(12") K=1{(a B:Aa B>0, A+B<T.
For the class of acute triangles we shall use the notation KO' i.e.
(13) k) =1{(a, B, ©0: 0<a, B CS1/2, A+B+C=r},
or
(13") kK, ={@a, B:0<a B2, a+B>7/2},

and Kc for the classes of non-acute triangles with non-acute angle C:

(14) Kc={(A,B,C): o<aA, BEST2, Cc2T7/2, A+B+C-=T}
or
(14") KC={(A, B): A, B=>0, A +B< 7/2}.

Similarly we have

K, = {a, B, c): 0<B,c<7/2, A27/2, A+B+C=nm}
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or

K, = {(a, B :a>27/2, B20, a+8BZ<n},
and

k, ={(&, B, C): 0<a c<m/2, B>7/2, A+B+C=ml
or

KB={(A,B):A>0, B2 T7/2, A +BE< T},

In OAB coordinate system the classes K, KO' KA' KB and KC are given

by triangles OAB, PQR, APR, PB), ORQ, respectively, as it is shown in
Figure 1.

4B /
B(0,7r)
KB
Q(0,7r/2) P(m/2,7t/2)
K Ky
0 Aoz ™ 0 R(7/2,0) A A
Fig. 1.

Similarly we can prove the following result:

defined by (3), transform K. in K if

LEMMA 1. (i) Functions Al' B 0

1l cll

+u 2 0; X, A +uU, k+A +pu<1,

(15) Ao, >

ro| =

(ii) Functions A,, B

17 Byr C

defined by (3), transform K in K. if

1’ 0

(16) A, 20; O0<k+A, k +u< %7 SA+u, k+A+u<i,

N

THEOREM 3. Functions Al’ B C defined by (3), transform K. in K in

17 71 0
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one~to-one way if and only if k = -2, A = y=v =1, i,e. if and only if

= - = - 2B, = - .
(17) Al m 2a, B1 ) B C1 ™~ 2C
Proof. We have from (3)

1
(18) A= EA

So, using Lemma 1 we see that (15) must hold and

A u 1 - A 1 -y 1

-2 _E>90. < < 2.
(19) P x> 0; 0 < X , " > i

1 A+ 1 - X -

lg- k“, : <.

If X, U> 0, then from the first inequalities in (19) we get k < 0, and
(19) becomes

(19") X + A+, A, U2 1; k+A+u<t.

2

N
+
>

N =
+
=
V.
fun

From (19') and (15) we get the condition §-+ A+u=1, i.e. k =2(1 - A
- U). From % + A 2 0 we get U € 1, what with (19') gives u = 1. Similar-
ly we get A = 1, and therefore k = -2.

If A =0 or Yy = 0 the systems (15) and (19) have no joint solution.

LEMMA 2. (i) Punctions Al' B C1, defined by (3), transform K in K _ if

1’ C

(20) A, U, k + A, k +u 2 0; )\+u,k+)\+u<%;
(ii) and KC in X if

(21) oo, %

+ U= 0; A+ oy,

[T
+
>

ST

+ A +us1.

THEOREM 4. Functions Al' Bl' o] defined by (3), transform one-to-one K

1’
in K. if and only if k = 1/2, X = u =0, i.e. if and only if

(22) A1 = A/2, B1 = B/2, C1 = (C + m/2.

Proof. Using Lemma 2 (ii) and (18) in the case A, U > 0, we get
A, U > 1/2, what is in contradiction to (20). Similar results we get in
the cases A = 0, >0, and A > 0, u =0, so, we must put A = 4 = 0. In
this case from Lemma 2(ii) we get k > 1/2, what with (20) gives k = 1/2.

LEMMA 3. (i) Functions Al, Bl' Cl' defined by (3), transform KO in KC if
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k k k 1
(23) A, U, §A+ A, F+u 2 0; 7+ A+uU, k+A +uUSs 5i
(ii) and X_ in KO if
k k 1 1 k
< = = < = - < =
(24) O\A,u,2+)\,2+u\2, 2\2+>\+u,>\+u.

1 defined by (3), transform KO in Kc che-—

to-one if and only if A =y =1/2, k = -1, i.e. if and only if

THEOREM 5. Functions Al’ Bl' (o4

(25) A=-§-—A, B=%—B, c, =7 -cC.

Using a generalization of Pexider's equation we can analogously
extend Theorem 1:

THEOREM 6. Real continuous functions A - A (A ) i =1, ..., n, nz=23)
are solutions of equation

n
(26) L A'=(n-2)m,
, i
i=1
with condition
n
(27) L A, =(n-2)m,

if and only if they have the following form

. = - i =
(28) Ai(Ai) = kOAi + ki(n 2)m (i 1, ..., n) and

k. =1.
o J

I o5

3

Now, we can prove the following theorem about transformations of
the angles of polygons:

THEOREM 7. (i) Real continuous functions A - A (A )y (1 =1, ..., n) are
solutions of the system

n
(29) 0< Ai < 2m (i=1, ..., n z Ai = (n - 2)m,
i=1
with condition
n
(30) 0 < Ai < 27 (i=1, ..., n), z Ai = (n - 2)m,
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if and only if they have the form (28) with condition

(31) 0 < ki(n - 2) < 2, 0 < 2k0 + ki(n -2) <2 (i=1, ..., n).

(ii) Real continuous functions Ai - Ai(Ai) (i=1, ..., n) are
solutions of the system

n
(32) os<a'<T (i=1, ..., n), £ A'= (n-2)m,
i . i
i=1
with condition
n
(33) 0< Ai < (i=1, ..., n), z Ai = (n - 2)m,
i=1

if and only if they have the form (28) with condition

(34) 0 < ki(n -2) <1, 0 < ko + ki(n -2)<1 (i=1, ..., n).

Remarks. 1° Theorem 7 (ii) for n = 3 becomes Theorem 2.

2° Of course, we can also give the solution of system (29) with
condition (33), or the solution of system (32) with condition (30).

3° Of course, it is possible to consider more general transform-
ations. For example, Z. Madevski [1] considered the affine transform-
ations:

(35) A, = glA + E2B + 530, B, =n

1 A + ﬂzB + ﬂ3C,

1
cC, = clA + C2B + §3C

with the following condition imposed

£1 g2 53
(36) Ny Ny Ny # 0.
Ly Ty Iy

Note that from the conditions

(37) ZA1 =mT™ and IA =T
we get
(38) Ei *ng,tLy = 1 (i=1, 2, 3),

so, (36) becomes
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& & &
(39) N My Ny # 0.
1 1 1

4° Note that the following result is valid (see [2]):

. 2 .
The angles A .r An of simple closed polygons in E” satisfy 0 <

1'
Ai < 2T and EAi = (n - 2)7. If numbers Ai with these properties are

given, then a polygon with the Ai as angles in the given order exists.

2. Some Applications

The above transformations play a very important role in geometry. Here
we shall give some applications from [1, pp. 28-32]:

2.1. If A, B, C are angles of a triangle, then A1 = (m - A)/2, etc. are

also angles of a triangle. Using this transformation we have:

A
L sin A<§2§ (GI 2.1) = I cos —2—<32£ (GI 2.27),
GI 2.8 = GI 2.28
. A 1
GI 2.23 = Il sin Egg (GI 2.12).
2.2, 1f A, B, C are angles of a triangle, then A1 = A7/2, B1 = B/2,

C1 = (m + C)/2 are angles of a triangle from class Kc. Using this trans-
formation we get:

GI 2.2 = 0 < sin % + sin §~+ cos % <1 + /7,

. A .
GI 2.4 = sin = + sin

+ cos
2

Nt
N A

2 sin A + sin B - sin C,

2 2

B 2
+ cos 5 ~ cos

GI 2.21 = 0 < cos §-< 2.

N

2.3. If A, B, C are angles of an acute triangle, then A, = 7 - 2A, etc.

1
are angles of a triangle. Using this transformation we get

GI 2.27 = GI 2.2 (2),

GI 2.1 = 0<7Z sin 23 <

’

3/3
2

GI 2.4 = ¥ sin 2A + I sin 4A 2 0 (& I sin 3A cos A > 0),
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GI 2.56 = (%L cos A)2 < I sin2 A,

2.4, If (A, B, C) € KC' then A1 = 2A, B, = 2B, C,= 2C - T are angles of

a triangle, so we have

GI 2.9 = 1< sin A + sin B - cos C <

’

N w

GI 2.14 = %—S sin2 A + sin2 B + cos2 c<1,

GI 2.27 = 2 < cos A + cos B + sin C < é%i

’

1

GI 2.24 = - §-< MTcos 2a < 1,
2.5. If A, B, C are angles of an acute triangle, then A1 = g—— A,
B1 = g-— B, C1 = m - C are angles of a triangle from class K_, so we
have

GI 2.8 = 0< cos A cos B sin ¢ < égg ,

GI 2.2 =2 0<cos A +cos B+sinc<1 +/2,
2.,6. If (A, B, C) € K then A, = & - A, B, = % - B, C, =T~ C are

U ro T e’ 12 At L

angles of an acute triangle, so we have
GI 2.2 = 2< cos A + cos B + sin ¢ < =%2 ,

2
GI 2.3 = 2< cos” A + cos2 B + sin2 Cc <

NI

GI 2.24 = - = < sin A sin B cos ¢ < 0,

@®f =

GI 2.30 = cotan A + cotan B - tan C > 3/3.
Remark. For some other examples see for instance I.3. Of course, we

gave only some applications of transformations of angles of a triangle.
Very many other results can be found in [1].

3. On the Obtaining of Analytic Inequalities from Geometric Ones

3.1. If a triple (x, y, z) defines the angles of a triangle, we shall
write A(x, y, z).

Let x(t), y(t), z(t) be three real valued functions such that
Ax(t), y(t), z(t)) for every t in [a, b]. Then obviously, if R(A, B, ©)
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is a relation between the angles of a triangle, then R({x(t), y(t), z(t))
will be a relation on [a, b] (see [3]).

EXAMPLES. 1° A(A1 cos t + %(ﬂ - cos t), A, cos t + %(ﬂ - cos t),

2

1

AB cos t + E(” - cos t)), Xl, Xz, A3 >0, ZXI =1, o< t < 42,
From GI 2.1 and GI 2.16 we get

sin E—:—§9§—E bX cos(>\1 cos t) + cos E—:—ggi-E X sin()\1 cos t) €
3V3
S
m-cos t ., M - cos t s
cos ————— X cos()\1 cos t) - sin — X SLn(A1 cos t)
<3

m - cos t

3 and the second by

multiplying the first inequality by sin
T - cos t

3 we get by addition

cos

z cos(A1 cos t) < 3 cos(%—cos t),

with equality for Al = Xz = A3 = 1/3.

2° Replacing cost in 1° by 3 arccos t (1/2 < £t € 1), the same
procedure yields

X cos(3>\1 arccos t) € 3t (172 <t < 1).
Remark. In [3] many other examples are given.
3.2, Let £(2z), z = x + iy, be a complex-valued function defined on a
domain D of the plane Oxy; also let K be denoted by (12'), where the
components A, B of the number A + iB and C, where C = m - A - B, are the
numerical values of the angles of a triangle.
Then if f(z) maps D into IntK, i.e. £(D) < IntK, then the following
correspondence
(&, B, C) = (Re £(2), Im £(z), T - Re £(z) - Im £(2)),
(x, y) €D,

makes it possible to derive from every relation R(A, B, C), valid for
angles of a triangle, a new one R*(x, y) valid on D, i.e.

R(A, B, C) = R(Re £(z), Im £(2), m -~ Re f(z) - Im f(z)) &

e R*(x, y).
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EXAMPLE: 1° The function 1/z maps

. 2 2
D="{(x,y): x>0, y>0, m(x" +y) > x +y}
into IntK, i.e. £(D) € IntK. The correspondence in question is as follows

X X +
(AI B, C) = ( 2 2 2 L 27 ™= —2~—§,7 >I (xr Y) € D.
x" +y x +y x° +y

From the inequality of GI 2.16 we get

x y X +y
1<cos—2~—7+cos————2 5 L S
X +vy x +y x +y

!
Q
[¢]
[
N

W

or, for y = x

cos (1/2x) sin2(1/4x) 1/8 (x 2 1/m);

the equality holds for x = 3/2m7,
Remark. For some other examples see [3].
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Chapter VI

SOME TRIGONOMETRIC INEQUALITIES

0. Introduction

In the book [1] one finds that almost all triangles inequalities are
symmetric in form when expressed in terms of the sides a, b, ¢ or the
angles A, B, C of a given triangle. No doubt that also assymmetric tri-
angle inequalities play a very important role in geometric inequalities.
It should be noted that many of these inequalities are still valid for
real numbers A, B, C which satisfy the condition

A +B + C = pT,
where p is a natural number (which has to be odd in some cases). This

also applies to the inequality of M. S. Klamkin [2] which can be
specialized in many ways to obtain numerous well known inequalities.

1. Asymmetric Trigonometric Inequalities

1.1, Let us consider real numbers A, B, C and a positive integer p such
that A + B + C = pm. Then, for every positive integer n and for any real
X, ¥, 2, the obvious inequality

2 2
{x + (-1)pn(y cos nC + z cos nB)} + (y sin nC - z sin nB)~ 2 0
may be translated to the more suggestive form

2 1
(1) IxT 2 2(—1)np+ Xy cos nA,

with equality if and only if
(2) X + (—l)pn(y cos nC + z cos nB) = 0 and
y sin nC - z sin nB = 0,

or, equivalently, if, and only if,

2

(3) 2(—1)np+1yz cos nA = y2 + 22 ~ x
2(—1)np+1xz cos nB = 22 + x2 - y2

2 2

2(—1)np+1xy cos nC = x2 +v -z
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The above equivalence becomes obvious by squaring both relations in
(2) and adding the results, after noting that

2 2
{x + (—1)np(y cos nC + z cos nB)}  + (y sin nC - z sin nB)

2
{z + (_1)np(x cos nB +y cos nA)}  + (x sin nB - y sin na)

2 2
{y + (—1)np(z cos nA + x cos nC)}~ + (z sin nA - x sin nC)".

(3) shows that x, y, z cannot be completely arbitrary real numbers if we
wish to have the equality case in (1). Indeed, as noted by G. R. Veldkamp
in a private communication, we get from (3)

Iy + 22 = x%1 < 2lyzl

and two similar inequalities.
Hence

2 2
-2lyzl < y2 + 2z - x < 2lyzl, or

2

(ly! - |zl)2 <x7 < (lyl + lz|)2.

But this is equivalent to
Iyl =zl < Ixl € Iyl + lz].

So, we have proved: If equality occurs in (1), then there exists a

(possibly degenerate) triangle XYZ with x|, lyl and lzl| as its sides.
Let us now suppose that equality occurs in (1) and that moreover

p =1 and A, B, C are positive. Then we have, apart from AXYZ, a second

AABC. We get from AXYZ (A the triangle)

(4) 2lyz! cos X = y2 + 22 - x2

and two similar relations for cos Y and cos Z.
(3) and (4) lead to

(4") (—1)n+1yz cos nA = lyzl cox X,

1

n+l1
(-1) zx cos nB = lzxl| cos Y,

(—1)n+1xy cos nC = Ixy!l cos Z.

As the cases in which AXYZ is degenerate lead to no valuable insights, we
may assume

Hyl = 1211 < Ixl < Iyl + |zl etc. and (xyz)° > 0.

In order to discuss (4') it now arises very naturally that we should
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distinguish the signs of xy, yz and zx and the parity of n. Let, e.g.,
yX, yz and zx be positive. Then AABC is unambiguously determined in its
shape if and only if n =1 or n = 2. For n = 1 we have A = X etc., i.e.
ABABC ~ AXYZ. If n = 2, we get A = %—— %—etc., i.e. AABC is similar to
the triangle having the excenters of AXYZ as its vertices.

Remarks. 1° M. S. Klamkin [2] extensively studied the various
possibilities for the signs of x, y, z and the parity of n.

2° For n = 1 we obtain an extended version of the Barrow-Janidé in-
equality (GI 2.20); i.e. if x, y, 2z are real numbers such that xyz > O
and A, B, C are reals with A + B + C = ptm (p € N), then

(5) (-1)P*ix cos A< T 32’—2

(for xyz < 0 the inequality has to be reversed).

For p = 1 and A, B, C > 0 inequality (5) becomes GI 2.20. But this
case appeared much earlier as a problem in [3, p. 69].

3° If sin nA, sin nB, sin nC # 0, (2) can be written in more
suggestive form

(2') X/sin nA = y/sin nB = z/sin nC.

If for example sin nA # 0, we can also use (2'), but, in this case we
shall understand equations of the form A/B = C¢/D as AD = BC.
If sin nA = sin nB = sin nC = 0, we get some trivial identities for

(x +y = z)2, and we shall eliminate these cases from our consideration.
With these conventions we shall write (2') instead of (2) further on.
The same conventions are valid for all related results.

Further, from the obvious inequalities similar to (3)

{x + (_1)pn(y sin nC + 2z sin nB)}2 + (y cos nC - z cos nB)2 >0
and
pn : 2 . 2
{x + (-1)* (y sin nC - 2 cos nB)}” + (y cos nC - z sin nB)” 2 0
we obtain respectively

x2 + y2 + 22 > 2(-1)pn(yz cos nA - zx sin nB - xy sin nC)

and

2
x 4+ y2 + 22 Z 2(—1)Pn(yz sin nA - 2zx cos nB + xy sin nC),

where A, B, CER, A +B +C =pm (p € N). The cases p = 1 and A, B, C
> 0 were given in [4].
Note also that the following equivalent form of (1) is wvalid:
n
Let x, v, 2 €R, p, n € N, Pl' cens pn € N with i§1 pi = pn, Ai' Bi' Ci

€ R, Ai +B, +C, =pm, i=1, ..., n. Then
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n

(1) 2 2 2(-1)P" 5z cos( 5 )
i=1 *
with equality if
n n n
2'" x/sin( L A,) = y/sin( I B,) = z/sin( I C.).
. 1 . 1 . i
i=1 i=1 i=1

This follows from (1) because

n
A= (I A))/n, etc.
, i
i=1

satisfy the conditions for this inequality.
Remark. O. Bottema and M. S. Klamkin [5] proved the well known
Neuberg-Pedoe inequality (GI 10.8) by using (1') for p = 1 and n = 2.

1.2.x,v,2€R, n€N, (:=1{0,1,2, ...})), pEN, podd, A, B, C €R,

0
A+B+C=pT
= x> 2(-1)"* P/ 2l5g; g 3“2—+1— A
with equality if
x/cos ggii—l-A = y/cos EEEi—L B = z/cos Eﬂii_l C.

Proof. This follows from (1) with n replaced by 2n + 1 and A by
(pm - A)/2, etc.
Remark. The casen =0, p =1, A, B, C>0x, y, 22 0 is given in

[71.

1.3. X, y, Z2€R, p, n €N, A, B,CER, A+B+C= pm =
(6) G 20°% > tyz sin® na

with equality if
x/sin 2nA = y/sin 2nB = z/sin 2nC.

Proof. This is also a consequence of (1) if we put n - 2n and use

cos 2nA =1 - 2 sin2 nA, etc.
Remark. This result in the case p = 1, A, B, C > 0 is given in [4].
The case n = p = 1 is also given in [5] and [8].

1.4. x, vy, Z€R, p, g€N, g<2p,gqodd, n €N, A, B, C, A, B,, C
€ R 0 1 1 1
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A+B+C=pm, A +B +C =qm=

ntp=(@H)/2p oo 20k Lo A

7) 7x2 > 2(-1) >

proof. Since Z(2A - Al) = (2p - g)m and 2p - g is an odd natural

number, this inequality follows from 1.2,
Remark. For p=q =1, A, B, C> 0 and A, = B, = C, = T/3 we get
— 1 1 1
from (7)
1° for n = 0 the result from [19],
2° for arbitrary n the result from Janous's unpublished solution
of the problem from [19].

1.5. p € N, p no multiple of 3, A, B, C€ R, A +B +C =p7, X, vy, 2 €R
with xyz > 0 =

(8) -1yP3lyy gna< Bz
2 b4
with equality if and only if
. . . 1 1 1
sin A : sin B : sinC=c¢cos A : cos B :cosC=—:=1:—-.
X vy z
, 2pm
Proof. Putting A, = ==— - A, etc. (then A, + B, + C, = pm) and
. 1 3 1 1 1
using (5) we get
2 2
(—1)p+1Zx(cos —%E cos A + sin —%I-sin A) =
(—1)p+12x(— é—cos A +_§§(_1)p—3[p/3]+1 sin a) £ ¢ %E

wherefrom we obtain (8).
The condition for equality follows from 1.1,
Remark. For p = 1, A, B, C > 0, (8) becomes

(9) ¥x sin A <

N':ﬂ

zz—z (xyz > 0).

This inequality was proved by P. M. Vasié [9] and generalizes GI 2.1.
M. S. Klamkin [10] improved (9) in the case X, y, z = 0 to

. 1 /f§—1—§~:_§ V3 _ yz
<+ ~r ST I
(10) Ix sin A S 5(Jyz) XYz 7 Tk -

He also gave another generalization of (9) in the case x, y, 2 2 0 (see
(41
(11) |¥yz sin nAl < ég sz

with equality if and only if sin nA = sin nB = sin nC = %
Z.

V3
2
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Here we shall give the following generalization of the above
results:
let x, y, 220, p, n €N, A, B, CER,A+B+C=pnmand 0 Sr <2,
Then

(12) Tyzlsin nal® < (% 5x) 5 (zyz) 270 /2
or equivalently
(2-r)/2
(12') sxlsin nal® < (& gyz)¥ XY *2)
2 r/2
(xyz)
For r = 1 we have also
(13) IZyz sin nAl < fyzlsin nal < -%-Zx(Zyz)l/2 < gg sz
or equivalently
(13%) |Zx sin nAl € IxlIsin nal < %(ny)v——i;§Ei~E-< gi z %E .

Proof. That (12) and (12') and (13) and (13'), respectively, are
equivalent we can see if we put yz -» x, zx -y, Xy = Z, and reverse.
Further, using the inequality for weighted means, we get

1/r o

(Zyzlsin nAlr/Zyz) < (Iyz sin2 nA/Zyz)l/z.

Using now 1.3, we arrive at (12). Let now be r = 1.

The first inequalities in (13) and (13') are obvious, so we must
only prove the third inequalities. Here, we shall give Klamkin's proof
of the third inequality in (13') (i.e. the proof of the second inequal-
ity in (10)):

/3r Y% > Zyméi;tle;E,’
x

XyZ
This inequality is equivalent with
2 2
3(Zy 22) 2 xyz(Zx)(Zyz)z.
Letting x = 1/u, y = 1/v, and 2z = 1/w shows that this is equivalent to
3(2ud)? > (Zu) (Zvw)

what is the third inequality in (13). Since

1 . 2\2 1 4
(g-Zu ) >(§ Zu)

by the power mean inequality, it suffices finally to show that



80 CHAPTER VI

1 2 1
(-3- Zu) 2 3 ZVW,

and this is equivalent to I (v - w)2 2 0.
Let us restate (12) in the equivalent form: for x, y, z > O,

(12' ) (Zyzlsin al%/5yz) /¥ < % Tx (Zyz) 172

for any A, B, CER, A +B +C€ 1z, if 0< r < 2. (2 is the set of all
integers.) The following problem is posed in [36]:

What is the number

u(x, y, 2) = sup{r > 0l (12'') holds for any A, B, C € R, IA € 71z},
(for fixed x, y, z > 0, of course)?

C. Tandsescu communicated to us the following answer to this prob-

lem:
For x, y, 2z > O, inequality (12'') holds for any A, B, C € R with
YA € mZ, if and only if

r € I(x, v, 2)
where

[(0,2), if x, y, z are the sides of a nonequi-
[ lateral triangle,

TRy -
Ix, y, 2) = (0,2 log Zxy - log x(y + 2))\

0 > }, if x>y +z
log Ixy - 10g6§ Ix)

or X =y =2z and

§§'<,_Q§912_,< 1,

(Zyz)l/2

L (0,+°), otherwise.

T&ndsescu also noted the following consequence of the above result:
The 'universal' upper bound
u*: = sup{r > 01(12'') holds for any %, y, z > 0 and any A, B, C € R,
TA € mz}

easily reveals to be

Remarks. 1° (W. Janous) Substitution of sin A = a/2R etc. yields
(from T&ndsescu's result) for triangles

(Zyzar/Zyz)l/r < RZx(Zyz)-l/2

if and only if r € I(x, y, 2z). It is a generalization of GI 5.28.
2° Of course, we can give several similar results.

X, Yy, 220, n€ NO, p €N, podd, A, B, CER, A +B + C = pT,
2

1.6. x,
0SS r <
2n+ 1At g (% 5x) T (syz) /270 /2,

= Tyzlcos 5
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Moreover, for r =1,

2n + 1 2n + 1

|Zyz cos 5 Al < Zyzlcos >

1
Al € %—ZX(Zyz) /2 «

S‘%z Zx2.

Proof. This is a simple consequence of (12) and (13), respectively,
because for n - 2n + {1 and A -» (pm - A)/2, etc. we have
Isin(2n + 1) Bﬂ?:—él = |cos Eﬂii_l Al, etc.

1.7. %, ¥, 2z, ¥, vy, 2) >0, p, @, m, n€EN, A, B, C A, B,C

1 € R

1

= + =
A +B + C = pT, A1 + B1 C1 qm

= |Ixx, sin nA sin mA, | < Zxxllsin nAllsin na, | <

1 1 1
v,z
< l,z ¥z 5 VI
4 X x1

2 2 2
Proof. For yz » x , zx 2y , Xy = 2, 1.3 becomes

vz,2
X

sz sin2 nA < %(Z

It now follows from Cauchy's inequality that
2 2 2 2
Zxxllsin nA sin mAll < (sz sin nAZx1 sin mAl)l/

Y%

*

<=1p ¥y

]
]

Remark. For n =m=p =q = 1, A, B, C, Al’ By, C; > 0 we get

Klamkin's two-triangle inequality from [11]. Klamkin also proved a
similar m-triangle inequality. Of course, we could also give an anal-
ogous generalization of this result.

1.8. %, y,2>0,p, n€EN, A B,CER, A+B +C =pn=

- 2 (x+y+2) /2
(14) T lsin nal¥® < ( (Qyz) )

dxyz(x +y + 2)

Proof.

(Mlsin nAlX)l/(X+y+Z) < (Zx sin2 nA/Zx)l/2 <

< ((Cyz)?/axyz (7x)) 12,
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where we used 1.3 and the power-mean-inequality with weights.
Remark. For x =y = z = 1, (14) becomes

(15) IT sin nal < 3/3/8
what is given without proof in [12] (for p = 1).
The following similar result is given in [13]:
The maximum value of P = I sinx A, where A, B, C are the angles of

a triangle and x, y, z are given positive numbers is

P _ { x(x +y +2z) \x/2
max lx +y)(x + z)f

AN

Proof. (W. Janous). The function P(A, B, C) 1is continuous and non-
negative over the compact set

(16) A+B+C=m, 0<AaA, B, CS<m,
and vanishes just on its boundary. Consequently, P attains a maximum
value at some interior point of the region (16), where 0 < a, B, ¢ < 7.
We use the method of Lagrange multipliers to find this maximum value.
Let
F(a, B, C, A\) =P(A, B, C) -~ A(A +B +C = m.

Then, since 3F/3A = 0, the maximum value of F will occur when

OF _ Px cos A 4 _ OF Py cos B 4 _
a7n 9A  sin A A=0 98  sin B A=0,
OF _ Pz cos C _ A =o0.

3¢~ “sin C

We show that cos A cos B cos C # 0. If cos A =
A =0, so alsocos B=cos C=0and A +B +C
Now, from (17),

0, for example, then
= 37/2, a contradiction.

P _tan A _tan B _tanC I tan A _
A#0 and (X) T ox y Tz T x =k say.

Since I tan A = II tan A, we therefore have

kIx = k3xyz,

SO k2 = (IXx)/xyz and

(18) tan2 A = EEE , etc.
vZ

2 2 .
Finally, from sin A = /éan A/(1 + tan” A), etc., we obtain

X(x +y + 2)

sin & = (x +y)(x + 2)

, etc.
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and so

P [ x(x +y + 2) }x/2

max 1(x + y) (x + z)

Remark. 1° The proposer of this problem, M. S. Klamkin, noted that
a closely related problem appears without solution in [14]. This problem
asked the reader to show that (18) holds when P is a maximum.

2° For x, y, 2z > 0 there holds

. . ( (Zyz)z >(x+y+z)/2
max = \4xyz(x +y + z)

Proof. This inequality is equivalent to
b} 2
Tty + 2) ™ _ (ya)
My + z) = 2
Axyz (Ix)

By the weighted A-G-inequality and the convexity of f(t) = t2 we get
2
Mx(y + z)x/zx S Ix“(y +2)/Ix = 22x2(y +z)/iy + z) <

< 2(Sx(y + 2) /3y + 2))° = 2(Tyz/Ix) 2.
As also II(y + z) 2 8xyz, the claimed inequality follows.O
1.9. X, vy, 220, p€EN, podd, n € Ny» B/ B, C €R, A+B +C =pT

X+y+2

2 2
2n + 1 b4 . (Zyz)
- T - < B
= Illcos 3 al” < {4xyz(x — ,

and for a triangle T[cosx %

<P , where P is given as above.
max max

1.10. %, vy, z € R, yz € zx € xy, xy > 0, A, B, C are angles of a tri-
angle, =

(19) vz + zx - xy < Iyz cos A.
Proof. Using GI 2.16, i.e. L cos A > 1, i.e.
1 +cosC>1 -cosA+1-cosB
we have
xy(l + cos C) > xy(1l - cos A) + xy(l - cos B) 2
2 yz(1l - cos A) + zx(1 - cos B), i.e. (19).

1.11. If the conditions of 1.10 are valid, then
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A
vz + zx - xy < Jyz sin 7 -
1.12, If the conditions of 1.10 are valid, then

(20) vz + zx < Iyz cos % .
Proof. Using GI 2.27, i.e. I cos % > 2, we have
Xy cos %—> xy(l - cos %) + xy(1 - cos g) 2 yz (1 - cos %) +

+zx(1 - cos By, i.e. (20).

1.13. If the conditions of 1.8 are valid, then

Xy > TyzZ sin2

N
N
N

and yz + zx < Iyz cos

1.14. x, y, z € R, a, b, c are the sides of a triangle with area F, then
([61):

rax, 2 ped

(21) (Ziro Z T e

with equality if and only if

X v _ z

2
ab + c2 - a2) b(c2 + a2 - b2) c(a2 + b2 - cz)

Actually this result corresponds to the special case n = 2 of 1.1.,
of course in the case A, B, C 2 0. To effect the conversion, just let
ax = X, by = Yy €z = Zyr and note that

c2a2 sin2 B,

2
4F = a2b2 sin2 C=Db ¢  sin A
. 2
cos 2t =1 - 2 sin t.

Another form equivalent to (21) is

2 2
(22) (zx)°R% > Tyza
where R is the radius of the circumcircle of a triangle. The latter is

due to Kooi (GI 14.1). It reduces to (21) by substituting R = abc/4F,
etc. Another equivalent version is

(22") (Zxaz)2 2 16F2Zyz.

This form and the corresponding equality conditions are stated without
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proof by Oppenheim [15] who also remarked that it would be an interest-
ing exercise to see how many triangle inequalities could be deduced from
it.

Now we shall give an interesting example of the above results.
Letting yz = 1/a1, zx = 1/b1, Xy = 1/c1 in (22), we obtain (see also 1)
in XII.5.12:

2
(Xa )2R 2
1 a
5 2z T
#1°1% 1
The latter inequality in which al, bl' c1 are restricted to be the sides

of a triangle was proposed by Tomescu [16] as a problem. For other
examples see GI 14.1, [2] and [17].

R. Z. Djordjevié [18] gave a refinement of a special case of
Barrow-Janicé', i.e. Wolstenholme's inequalityv (5). His result is con-
tained in IX.4.6. (1).

1.15.

Ibc cos A > O ([26]).

2. Some Trigonometric Identities

In this Section we shall give some trigonometric identities for real
numbers A, B, C which satisfy the condition A + B + C = p7 (p € N).

2.1.n € No, p odd, then

n+[p/2]H cos 20+ 1

Y sin(2n + 1)a = 4(-1) oS s A.

Proof. Denote k = 2n + 1. Then

sin kA + sin kB = 2 sin k A ; B cos k A ; B .
_ , pT - C A-B _
= 2 sin k 5 cos k 5 =
A...
= 2(_1)[kp/2] cos ke cos k B ’
2 2
sin kC = 2 sin kc cos ke = 2 sin k Eﬂ_:_gi_i_gl cos k¢ =
2 2 2 2
= 2(_1)[kp/2] cos k EL%§J§ cos gg».

Hence

Y sin kA = 2(_1)[kp/2] cos gg-(cos k A ; B + cos k é—%—§> =
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= 4(-1) [kp/2]TI cos —EA

[kp/2]_ (_1)n+[p/2]

Since (-1) , the identity follows.

2.2. n € N, then

I sin 2nA = 4(—1)np+1]'[ sin nA.

2.3. n € NO' p odd, then

n+[p/2]n sin 2n + 1

Y cos(2n + 1)A =1 + 4(-1) 5

A.

Proof. We shall also use the notation k = 2n + 1. So we have

+ -
2 B sk 228,

coskA+coskB=2coskA 5

cos kC = cos(kpT - k(A + B)) = —cos k(A + B) =

=1—2coszk§—;——]§,

A + B A - B A + B

coskC=1+2cosk—2—(cosk 5 ~ cos k 2)—
- PT - Cyp KB in KB
=1+ 4 cos k 5 s:.n251n2
-1 4 a-n™Hp/2]y sin];—A.
2.4.n €N

= Y cos 2nA = 4(—1)nPH cos nA - 1.
2.5. n €N,
= I tan A = I tan A.
Proof. This follows from
tan nA = tan(pnT - n(B + C)) = -tan n(B + C) =

tan nB + tan nC
1 - tan nB tan nC

2.6. n € N,, podd

0’

2
= % cotan —92—+—1‘A = 1 cotan E%t—l A.
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pm - A

Proof. This follows from 2.5. if we put A - 5

, etc.
2,7. n €N,
= 7 0052 nA =1 + 2(—1)an cos nA.

Remark. This is equivalent with 2.4, because

2
cos 2nA = 2 cos nA - 1, etc.
2.8. n €N,

= % sin” nA = 2(1 - (~-1)"P7 cos na).

2.9.n € NO, p odd

= ). cos

2o afs e oMl g 20 e Ly,

2.,10. n € NO’ p odd

2
2n + 1 A n+[p/2]H cin 2n + 1 a

= ¥ sin 3 1 - 2(-1) 5 .

2,11, n €N,

(_1)pn+

. . X 1
= sin nA/sin nB sin nC = (cotan nB + cotan nC) .

Proof.
sin nA/sin nB sin nC = sin n(pm - (B + C))/sin nB sin nC =

(-1)pn+1 sin n(B + ¢)/sin nB sin nC

(—1)pn+1(cotan nB + cotan nC).

2.12. n €N,

n+1
= sin nA/cos nB cos nC = (—1)p

(tan nB + tan nC).
2.13. n €N,
= X cotan nB cotan nC = 1.

2,14, n € NO’ p odd

2n + 1 a 2n

= X cos 5 AT cos 2n + 1 (A + B) =

2n +
4T cos —B-—1%pﬂ - A).

87
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A

proof. This follows from 2.1. if we put A - BEE:L—», etc.
2.15. n & NO’ p odd
= % sin 2“—2+—1A = 4T sin 29—41—1(;\ +B) + (-0)".
2.16. n € Nyr P odd
= X tan 2n+ 1 B tan 25_:;1_C = 1.
2 2
pr - A

Proof. This follows from 2.13., if we put n -» 2n + 1, A -

r
etc. 2

2.17. n € N,

nC
. . cotan — if n and are odd
sin nA + sin nB _ °© 27 p !
cos nA + cos nB nC ) .
- tan 5 if n or p is even.

2.18. n € N,

= % tan nB tan nC = 1 + (~1)P™*11 cec na.
2.19. n € N,

pn+l

= ¥ cotan nA = ][ cotan na + (-1) 1T cosec nA.

+1
= (sin2 nA - sin2 nB) /sin n(A - B) = (—1)pn sin nC.

pn+l

2
= sin nA + (-1) sin nB sin nC cos nA =

)pn+1

2 .
sin” nB + (-1 sin nC sin nA cos nB

+
sin2 nC + (—1)pn ! sin nA sin nB cos nC.

2.22,. n €N,

= I cos nA/sin nB sin nC = 2(—1)np+1.

Proof.

cos nA/sin nB sin nC = cos(npT - n(B + C))/sin nB sin nC =
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pn . ) _
= (-1) cos n(B + C)/sin nB sin nC =

= (—l)Pn(cotan nB cotan nC - 1),

SO

cos nA

__cos na  _ _qyPR - - _
Sin 5B sin nc (-1)* (I cotan nB cotan nC 3) 2(-1)

where we used 2.13.

2.23. n € N, then

+1
(—1)pn cotan nA + sin nA/sin nB sin nC =
n+1
= (—1)p cotan nB + sin nB/sin nA sin nC
pn+1

(-1) cotan nC + sin nC/sin nA sin nB.

Proof. This is a simple consequence of 2.11.

2.24, n € N, then

II(cotan nA + cotan nB) = (—1)n+1H cosec nA.
2.25. n € N, then
IZ(cotan nA + cotan nB)/(tan nA + tan nB) = 1.

Proof. Since (cotan nA + cotan nB)/(tan nA + tan nB) =
cotan nA cotan nB, the result follows from 2.13.

2.26. p odd, then
n(1 s (=0 [P72) oy %) -2 4 2(-1 1P/2]y tan 2

Proof. This is a simple consequence of tan (A + B + cy/4 =

2
(_1)[p/ ].
2.27. n € N, then

Z sin nA cos nB cos nC = I sin nA.

Proof. Using the identities
sin A cos B cos C = %{sin(A + B +C) +sin(A + B - C) +

+ sin(A - B + C) - sin(B + C - A)),

89

np+1
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1 .
sin A sin B sin C = Z{sin(A + B -C) +sin(B +C - A) +

+ sin(C + A - B) -~ sin(A + B + C))
we get for arbitrary real numbers A, B, C
L sin A cos B cos C = sin(A + B + C) + Il sin A.

Now, using the substitutions A - nA, B » nB, C - nC, where A, B, C are
real numbers such that A + B + C = pm, we get 2.27.

Similarly using the substitutions A - gﬂii—l A, etc. (A +B +C =
pT), we get
2.28. n € NO, p odd, then
2 sin 2n + 1 A cos __2n +1 B cos ______2n + 1 C = (_1)n+[p/2] +
2 2 2
+ II sin Egl—i—i A.
2
2.29. n € N, then
. . np
L cos nA sin nB sin nC = 11 cos nA - (-1) ©.
2.30. n € NO, p odd, then
2 2 2
Z cos —Eij;l-A sin —251—3 B sin EEE:;E-C = I cos —E§:~£ A.

Remarks. 1° The above results are generalizations of some identities
from 1207, [21] (see also [2] and [22]).

2° Some of the above identities were obtained using other identities
and the transformation A - EEE:—A . etc. for angles. Of course, using
other transformations we can get series of similar results (for example,
generalizations of some other identities from [20]).

3° Identities 2.27 and 2.30 are the same as 2.5 and 2.6, respective-
ly.

3. Some Applications

3.1.n, pEN, A, B, CER, A+B +C = pT, then

(1) -1 < (-1)™* cos na < 178,

Proof. For x =y = 2z = 1, 1.1 becomes

(2) (_1)np+1z cos nA < 3/2
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. +1
and since (—1)pn cos nA 2 -1 etc., we also have a trivial companion
inequality to (2)

(3) (_1)pn+1z cos nA 2z -3,

Now, using (2) and (3) with n - 2n and 2.4 we get (1).
Remark. The above statement for p = 1, A, B, C > 0 was proved in
[2]. If in addition n = 1 we have GI 2.24.

3.2. n € NO’ p €N, podd, A, B, CER, A +B + C = pT

n+[p/2] . 2n + 1
I sin ———

= -1 < (-1) 5

A< 1/8.

In the case p = 1, n = 0 for a triangle the '-1' can be replaced by '0’'.
Proof. Putting n -» 2n + 1 in (2) and (3) and using 2.3 we get the

above result.

The modification for a triangle is just GI 2.12,

3.3. Note that the inequality
(4) IT sin nal < 3/3/8

is a consequence of 2.2 and 1.5.(13), in the case x = v
Similarly, the inequality

1]
N

(5) T cos ZEEi—L A< 3/3/8  (p 0dd)

is a consequence of 2.1 and 1.5.(13).
3.4.n € Nyr P €N, podd, A, B, CER, A+B+C=pm, a, b €R, b>2a

2 2n + 1 n+[p/2]H ein n + 1, ¢

(6) 3a - b € al sin 5 A + Db(-1)

< (6a + b)/8.

For b < 2a the inequalities 'are reversed. If n =0, p =1, and A, B, C
are the angles of a triangle, the constant '3a - b' in the first in-
equality can be replaced by 'a'.

2 2n +1

Proof. Using 2.3 and sin 5

(6) becomes

A= (1 - cos(2n + 1)An)/2, etc.

-3(b - 2a) € (b - 2a)Z cos(2n + 1)A < 3(b - 2a)/2

which is true for b > 2a (for the second inequality see 2.3 and 3.1).
Of course, for b < 2a, the reverse inequalities are valid. Similarly, we
can prove the case n = 0, p = 1 for a triangle.

Remarks. 1° In the case a =1, b = 3, p = 1 from the second inequal-
ity in (6) we obtain one result from [23].
n2 2n + 1

2° For b = 0 the first inequality reads 3/4 < I si 5

A. It
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generalizes GI 2.14.
3,5.n, p€EN,A, B, CER, A +B +C = pT. Then
|Z sin nA cos nB cos ncl < 3/3/8.

Proof. This is a simple consequence of 2.27 and (4).
Remark. For n = p = 1, A, B, C > 0, the following result is valid

(cf. [211)
0<% sin A cos B cos C < 3/3/8.

3.6.n € NO’ p€N, podd, A, B, CE R, A + B + C = pT. Then

%(H 0052 gﬂai_l A)1/3 <

n+[p/2]z sin 2251—1 A cos 2n2+ ! B cos 2n2+ ! c <

w|w©

< (-1

For n =0, p=1, A, B, C> 0 the left bound can be improved to
3 1/3
max{1, (1 cos’ A/2) /3} (c£. [2]).

Proof. These inequalities follow from 3.7 upon letting A -
(pmT - A)/2 etc. and n = 2n + 1.
Remark. For n = 0, p =1, A, B, C > 0 this inequality reads

max {Il sec % , E(H sec =)

3.7.n, pEN,A, B, CER, A+ B+ C =pT. Then

2 1/3 < (_1)pn+1

%(H sin” na) % cos nA sin nB sin nC < 9/8.

Proof. The right inequality is a simple consequence of 2.29 and 3.1.
Using 2.29 and 2.8 we obtain

np+1z cos nA sin nB sin nC = (I sin2 na) /2

(-1)
hence the left inequality follows by the A-G-inequality.
Remark. For p = n = 1 this inequality implies the result of [31].

3.8.n €N, pEN, podd, A, B, CER, A +B + C = pTl. Then

o’

2n + 1 . 2n + 1 . 2n + 1
IS cos A sin B sin ————

<
5 5 > cl < 3/3/8.

3.9.n, pEN,A, B, CER, A+B+C=pT, k2 -1. Then

(7) M1 + k cos2 nad) = k2H sin2 nA.
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This inequality, due to C. T&nisescu, generalizes results from [25]
and [36].

3.10. n, p €N, A, B, CER, A+B +C=pT, k2 -1. Then

/ 2
1 + k cos nB>33m'

(8) Z Isin nAl

This is a generalization of results from [24] and [36].

3.11. n € NO’ p €EN, podd, A, B, CER, A +B+C=pm, 0 ER,

If tan 2251;1.3 tan 22~%—l C +u=> 0 etc., then
2 -
T (tan “2+ ! 5 tan 2“2+ Lerw® <30 4 s,

where 0 < a < 1.

For & < 0 or o > 1 the inequality is reversed.
pProof. Let 0 < o < 1. Using Jensen's inequality for the concave

function f(x) = xOL and 2.16, we get

¥ (tan 2n2+ 1 B tan 2n2+ 1 Cc + u)OC <

< 3((Z tan 2“2+ ! 5 tan 2”2+ Levw/m® =31 + m®.

Similarly, the other cases are proved.
Remark. The above result generalizes GI 2.37.

3.12. n, p € N, A, B, CER, A+ B + C =pT. Then

.2 .
sin” (nC/2), if n or p is even,
(9) sin nA sin nB < 9
cos” (nC/2), if n and p are odd.

Proof. sin nA sin nB = (cos n(A - B) - cos n(A + B))/2 < (1 -
cos n(pm - C))/2 = (1 - (—1)np cos nC)/2 which is equivalent to (9).
Remark. The case p = 1, n = 2, A, B, C > 0 is given in [27].

3.13. n € NO’ p €N, podd, A, B, CER, A+ B + C = pm. Then

(10) IT tan 2“—2‘“—1—A| > /3.

proof. If we let u = tan EEE:;E-A etc. then 2.16 reads Zuv = 1.
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From

2
Tu” 2 Iuv (which is equivalent to Z({u - v)2 = 0)
we obtain

Zu2 Z 1.

2 2
This and the identity (Ju) = Iu + 2Zuv finally yield (10).
Remarks. 1° This inequality generalizes GI 2.33.
2° By the general mean-inequality we obtain from (10) for r 2 1

2n2+ 1 Alr > 31—r/2'

(Compare this with GI 2.35 (r = 2) and GI 2.36 {(r = 6).)

¥ ltan

3.14. n, p €N, A, B, CER, A +B + C = pT. Then
(11) L cotan nal 2> /3.

Proof. Using the identity 2.13 and the idea of the proof of 3.13
the result follows.

Remarks. 1° This inequality generalizes GI 2.28.

2° (11) and the general mean-inequality for r 2 1 imply

lcotan nal® > 31—r/2'

(Compare this with GI 2.39 (r = 2) and GI 2.65 (r € N).)

3.15. n € NO' p €N, podd, A, B, CER, A + B + C = pT. Then

(12) X cotan2 Zgii—l-A 2 ¥ cotan 2251—£

A I cotan(2n + 1)A.
Proof. We can use the idea of the proof of GI 2.44 and identity
2.5.

3.16. n € Ny» P €N, podd, B, B, CER, A +B+C=pm, rx €R, r > 0. Then

2n + 1

1-xr/2
5 .

(13) 7l sec alf » 2%

Proof. This follows from 3.3, inequality (5) and M 2 M, for r > 0.

Remark. For n = 0, p = 1, A, B, C angles of a triangle (13) is GI
2.48.

3.17.n, pEN, A, B, CER, A+B +C=pT, r €R, r> 0. Then

(14) Tlcosec nal® > 2F31 /2,
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Proof. This follows from 3.3, inequality (4) and Mr 2 MO for r > 0.

Remark. For n = p = 1, A, B, C angles of a triangle we get from
(14) GI 2.49 (for r = 1) and GI 2.50 (for r = 2).

3.18. n E-NO, p EN, podd, A, B, C €ER, A +B +C =pT

(15) 24T cos(2n + 1)A < I cosz(Zn + 1)(B -C).

Proof. We can use the idea of the proof of GI 2.26.
Remarks. 1° This is a generalization of a result from [37].
2° Letting A = (pm™ - A)/2 etc., we obtain from (15)

24(-1)

2
n+[p/2]n sin —Eii—i A< Y cos2 n + 1 (B - C).

2

This inequality generalizes the result from [32].
3° The following refinement of the last-stated inequality (similar
to Klamkin's inequality [32]) also holds:

(B-c) 21+ 162l 201,y

2 2n + 1
s p)

%L co 5

> 24¢-)*P/21p oy —21‘—2—’1 A

Proof. Because of 3.2 the second inequality follows immediately.
For the first one we start from Klamkin's triangle-inequality [32]

(16) 5 cos’ B—;—g > 1 + 161 sin% .

Using 2.1 and 2.3 we get

Z cos2 B-c. l-(3 + 2 cos(B - C)) =

= ={3 + 2 sin B sin C + % cos B cos C) =
=26 + HE sinm? - 5 sin’ A+

+ (I cos A)2 - X cos2 ah

3 1 A2 . 2
=7 Z{(4H cos E& + (1 + 41 sin 2)°}.
Therefore, (16) reads equivalently

A 2
(17) (Il cos 50 + (Il sin %)2 > %—H sin

N
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If A, B, C are angles of an acute-angled triangle, A - m - 2A etc.
transforms (17) to

2
(18) (I sin B)  + (Il cos A)2 > % T cos A.

As Tl cos A € 0 for non-acute triangles, (18) is valid for all triangles.
Next we show that (18) holds for all A, B, C € R such that A + B + C = pT.
Indeed, let A = um + Al' B =vT + Bl' C = wrm + Cl, u, v, w €2, 0 < Al’

<
Bl' C1 X T

Then there are the following three possibilities

(a) A1 = B1

(b) ZAI = 7. Then (18) is equivalent to

= Cl. Then (18) is equivalent to 1 2 %(-1).

I A
cos 1

[ SRS

2
(I sin Al) + (I cos A1)2 2

which holds true on grounds of (18) for triangles.
(c) ZAl = 2T. Putting A1 =T - A2 etc. and noting that ZAZ =,

the validity of (18) follows as in case (b).

For the general case we only have to substitute in (18) A -» (2n + 1)A,
B- (2n + 1)Band C » (2n + 1)C - (2pn + p - 1)T.

Thus,

N[

(19) (I sin(2n + 1)A)2 + (Il cos{2n + 1)A)2 2 I cos(2n + 1)A.

Putting here A - (pT - A)/2 etc., we finally obtain

(H cos gﬂii_l A)Z + (H sin 2251;1-A>2 2

7 2
> 5(—1)n+[p/2]ﬂ sin —E%zt—l A

which is equivalent to the first inequality at the beginning of 3°.O
4° It should be noted that (19) is equivalent to

% cosz(2n +1)(B -C) 21 + 16lcos(2n + 1)A.

Because of 3.1, this inequality is better than (15).
For p = 1, n = 0 this inequality improves GI 2.26.0

5° Inequalities (17) and (18) are equivalent to the following tri-
angle-inequalities (believed to be new)

A 2 7 A
== > — =
(II cotan 2) + 1 2 > II cosec 5

and
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(1T tan A)2 + 12 Tl sec A.

N

6° Here we shall quote the following triangle-inequalities which
are of a type similar to (16) (see [33], [34] and [35], respectively).

B-C

(i) 3 + I cos 2 47 cos A,

(ii) z sin2 %—? 1 - %—H cos B ; ¢ or equivalently
- A
I cos B 5 ¢ > 8 II sin 5o
(iii) I cos 2-C< T cos A+l sins<3.

3.19. It should be noted that very many inequalities of [28] and [29]
are still valid if the assumptions that o, f, Y, (in these papers) be
angles of a triangle are replaced by A, B, CE€ R, A + B + C = pm and

p € N (where sometimes p has to be odd). We now give three examples from
[29].

(30) now reads: p, n € N, A, B, CER, A +B + C = pm. Then

%9 il sin2 nA < % sin2 2nA.

(Its proof follows from 2.2 and the Ml—Mz—inequality.)

(54) now reads: n € NO' p €N, podd, A, B, CER, A +B + C = pm. Then

16 22n + 1
— II cos” —4——

3 5 AS I sin2(2n + 1)A.

(Its proof follows from 2.1 and the Ml—Mz—inequality.)

(80) now reads: p, n € N, A, B, CER, A + B + C = pT. Then

4% sin4 nA < 9% cos2 2nA.
(Its proof - entirely different from the one in [29] - is as follows.
Since sin4 nA = (1 - cos 2nA)2/4, the claimed inequality becomes
2
3 < 8% cos” 2nA + 2% cos 2nA.
This inequality is valid on grounds of 2.4, 2.7, and 3.1.)

3.20.n, pEN, A, B, CER, A+B+C=pn, r €N, r=22. Then

max: 2 (%) é-, 3 <s,:=1% sinzrnA + cos2r nal| < 3.
r\r 2 r-1 2r

4 2
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Proof. Starting from the formulae

2r r-1
sin x _ 1 ‘ r-k({2r 1 2r>
{cos x} = =7 ) (;1) ( k) cos 2(r k)x + ;5; ( r

2 k=0
we get
S = ! rgl (Zr\ cos 2{(r - k)nA + 3 (2r\
2r 22r—1 =0 k) 22r—1 r
k=r (mod 2)

By 3.1, inequality (2) it follows that
Y cos 2(r - k)nA 2> =3/2.

Therefore,

r-1
s> {(5) - 2, COF
r ,2r 0
=r (mod 2)

2r

2y
As the last sum equals (2 -1 ( r

))/2, we have

Since Mr(sin2 na, cos2 na) > Ml(sin2 na, cos2 nA) = 1/2, etc., the in-
equality

S r-1
Szr 2 3/2

follows.
Remark. This inequality is similar to a possible generalization of
the problem from [30], which reads

5/2 < %[sin® A/4 + cos® a/4a] < 21/8,

where A, B, C are angles of a triangle.

4. Open Questions

4.1. Let 0<r <1 and A, B, C € R such that A + B + C = pm, p € N.
Give best lower bounds for

2n + 1
nZt ™2

(a) Z|ta 5 A|r, where n € N, and p odd.

0
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(b)

4.2.

Zlcotan nAlr, where n € N.

Improve the lower bound of S, from 3.20. The one given in 3.20 is

2r

not very sharp if r becomes great.
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Chapter VII

SOME OTHER TRANSFORMATIONS

0. Introduction

Section I.3 contains results concerning the existence of a triangle the
sides of which are obtained as elements of any given triangle. Therefore
we can use these results for generating many other inequalities, i.e.
using any known inequality for the sides of a triangle

(1) I(a, b, ¢) 20,
and any result from I.3, we get the inequality

c,) 20,

(2) I(a,, b, ¢

where al, bl’ ¢, are the sides of a new triangle given as in I.3.
Of course, we can give many such examples, but here we shall give
only a few.

EXAMPLES. 1° For acute triangles [1]

(3) (ra)? > 2745,

Proof. Using I.3.2, u = a2, v = b2, w = c2 are sides of a triangle,

so (3) is equivalent to
(Zw)I(v + w - u) >0

which is obvious.

2° Using I.3.12 we have for A 2 2 [2]:
GI 1.1 = 3%(cos ?»cos %)x < (Z cosx(%))2 < 47 (cos % cos %)X;

AA L2

GI 1.19 »-%(Z cos (XJ) <z cos2A A ARy, 2

(Xﬁ < %{Z cos (XO) , etc.

3° Using I.3.32 we get for an acute triangle ([2]):

2 2

GI 1.1 = < IBC < 1;—;

plﬂ

Wz 2 ﬂz
GI 1.19=>3—< IA <2—; etc.
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. 2 2 2 , . .
4° Using 1.3.33, a ha’ b hb, c hC are sides of a triangle. For this
triangle we have F1 = 4F3 (see [3]), so

GI 4.4 > Za4hi > 16F3/_.

Of course, there exist many other transformations which include
other elements of a triangle. Some of these transformations will be con-
sidered in this Chapter.

1. Square-Root Transformation

This transformation is a consequence of I.3.1 for the function
x = f(x) = /;, i.e. there exists a triangle with sides a' = %;,
b' = vb, ¢' = /c. Note that [4]:

16r'2 = 2500 2 (/2 - 5(va)? = 25bc - Ta® = 4r(4R + 1), i.e.

1 a'b'c! /SR
= ' = =
F 5 Vr(4R + r), R I R T’

V2b + 2¢ ~ a,

1]

r'

N =

(4R +1)/(L/a), h' = /(4R +1x), m' =
a a a

so, if we have an inequality of the form

I(a, b, ¢, F, R, T, ha' hb, hc' m oo, mc) 20,

then there exists its dual inequality
1(/a, /b, Ve, ¥', R', x', h!, B!, !, m!, m), m)) > 0.
EXAMPLES. 1° [4] GI 5.13 = GI 5.1,
G 4.7 =s + /3r(AR + 1) < B/be < 2(5s + /AX(4R + 1)) .
2° [4] From GI 10.8 it follows the first inequality in

1) = 4/3FF1.

Zal(—a +Db +c) 2 4/rr1(4R + r)(4R1 +r

This is an interpolating inequality for a result from [5].

3° Using the square-root transformation we can show that inequal-
ities (3) and (10) from Section II.4 are consequence of inequalities (2)
and (8) from the same section, respectively.

4° A very important inequality is the following inequality of
0. Kooi (GI 14.1):

If x, y, 2z are real numbers, then
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(1) (zx) 2R? > Tyza®.
2
If we put x » yza , etc., we get
2.2 2
(Zyza )7R2 2 (abc) “xyz (Ix) .
If A = xyz(Zx) 2 0, we get

(2) |Zyza2l 2 4FV/A.

Remark. Note that the following equivalent forms of (1) and (2) are
valid

(") (Zyz)zR2 2 xyszaz,
2" ITxa’l > AFYTyz  (Ivz 2 0).

For inequalities (1) and (2') see Chapter VI (inequalities (22) and
(22")).
The square root duals of (1) and (2) are

2 SR
—== >
(3) (IZx) IR 1+ T Tyza,
(4) IZyzal 2 2/Ar (4R + 1) (A 2 0).

Note that we can also work in the opposite direction. This method
will be given in the following example:

EXAMPLE. 5° [6] If a, b, c denote the sides of a triangle, then

(Fa) Fa2) > o> + ¢ - a2y /M + ¢ - a)

with equality if and only if a = b = c.
Proof. If ABC is non-acute, the r.h.s. is < 0 and the inequality is
trivial. For acute triangles, the inequality can be rewritten as

2 2
4F° 2 9r1 where F denotes the area of ABC and r1 the inradius of the

triangle A1 of sides a2, b2, c2. Since 4F2 = 4R1r1 + rf (see [6], since
a = va , etc.), the inequality reduces to the well known one, R1 > 2r1,

for triangle Al. Thus the proof is complete.

Note that the following inequality for R' is given in [7]:

(5) R'2 2 2abc/(Za)2,

and that for F' the well known Finsler-Hadwiger inequality (GI 10.3)

(6) ar'? > V3F,
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is valid.

Of course, we can use any transformation several times. For such a
generalization of (6) see a next result. Some further generalizations
and some applications are given in the next section.

7. Mitrovié [8] considered a sequence of triangles Tn (n =0, 1,

2, ...) where the sides of Tn are equal to the square roots of the sides
of T , i.e.
n-1
-n -n -n
2 2 2
a =3y bn = b0 ’ c, =%y and

We shall write R, r, s, A, F, h, 4 = F/R, k instead of Ror Yor Sy A,

oo e [e)

h 4., Zn, respectively.

! T

F

!

Mitrovié proved the following results:

Rk < Rk—lR ; sk < sk_ls ; rk > rk—lr ;
n 0 n 0 n 0
sink A 2 sink_1 A sin A_; Fk 2 Fk_lF ;
n 0 n 0
o2k s r e < /F)k/2 <SR /R; A > & 1a
ay a, 0 n 0 n 0

with equalities if and only if T, is equilateral.

0

2. Generalizations of the Finsler-Hadwiger Inequality and Applications

A very important inequality is the Finsler-Hadwiger inequality of
GI 10.3 (see the previous section). The following generalization of this
inequality is given by A. Oppenheim [9]:

(a) If ABC is a triangle of sides a, b, c¢ and area F, there exists

1
a triangle of sides al/p, bl/p, c /p, (p > 1) and area Fp such that

(1) (4Fp//§)P > 4r/V3.

Equality holds only if a = b = c.
In other words, (4Fp//§)p is an increasing function of p (bounded

2
of course by {(abc) /3).
The corresponding circumradii satisfy the ineguality

(2) (Rpfa)P < R/3.

(Rp/ﬁ)p is a decreasing function of p, bounded below by 1.
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Proof. To facilitate the writing, suppose that ABC has sides ap,

bp, cp so that the second triangle has sides a, b, c¢. It is then a
question of proving that

(3) E = 0° - 3P PP - 5P

where U = 22b2c2 - Za4 has minimum O, attained for a = b = c.

Since E is homogeneous it is enough to determine stationary values
subject to abc = const. Partial differentiation and Euler's theorem on
homogeneous functions yield the conditions

m_ m_ _%E_4
8% TP %3 T3P
whence
(4) 302 (0% + c - aH)y Pl Z 3PP %P, 2P %P | o

and two like equations (5), (6) by cyclic permutation of a, b, c.

One solution of these three equations is plainly a = b = ¢ for
which E = 0. If a different solution exists we may suppose by symmetry
that

a>c2b or az=c>b.

From (4) and (5) by subtraction,

7 @2 - b2y (@% + b2 - APl o PR | %) (%P, 2% | (2P

Eliminate Up_1 between (6) and (7), we find that

(a° = b2)E = PP (a%P 4 P - %P (a2 (a%P2 | 2P2)

2p-2 . 2p-2

+ b2 (e - p°P7%))
which shows that E > 0.
Thus (a) follows: equality holds only for equilateral triangles.
A. Oppenheim gave as conjecture a further generalization of the
above results. C. E. Carroll proved this conjecture, i.e. he proved the
following result [10]:
(b) Suppose a, b, c are the sides of an acute or right triangle,
f(x) > 0, log £(x) is a convex function of log x, and

0 < log(f(x)/£(y))/log(x/y) < 1,
where x and y are distinct positive numbers. Then
G{f(a), f(b), £(c)) 2> £(G(a, b, c))

where
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faw\T 7
fAFNL /2
G(a, b, ¢) = \7?/ =

- <(a +b+c)(-a+b+c)la-b+clla+b-oc)\l/4

3 )

with equality if and only if a = b = c.

Here we shall give an application of Oppenheim's result. Similarly,
one can use the result of Carroll.

Let an inequality of the form

I(FI R, a, b, C) >0

be given. If I is non-increasing in the first variable and non-decreasing
in the second, then the following inequality is also valid:

V3 (aF\t/2 1 1/p 1/p 1/p 1/p>>O > 1)
1(4 <7§> ,ﬁR/i) ,a T, ¢ (p .

A similar result for two or n triangle inequalities is also valid.

EXAMPLES. 1° [11] 1f 0 < t € 2, and x, y, 2z are real numbers, then

(8) Tyza® < %(Zx)z(R/i)t,
(9) |Zyzat| > /ﬁ(%)t/z (A = xyz(Zx) 2 0).

These inequalities are generalizations of (1) and (2) from the
previous section.

2¢ [12]7,(30]. et p, g, r be real numbers such that p + g > 0,
g+r>0, r+p>0.1f 0<t <4, then

P t o 3(4F\t/2
(10) z g +r a 2 A5 .

This is a generalization of Tsintsifas' inequality (8) from Section
11.4.
3° Let p, q, r be non-negative numbers. If 0 < t < 2, then

t t 3/4F \t
P >
(i q+rb0/27§)-

This is a generalization of Klamkin's inequality (2) from Section
II1.4.

3. Some Trigonometric Transformations

We shall now give some further examples in the case when f, g, h are
three real functions such that if A, B, C are angles of a triangle, then
£(a), g(B), h(C) are sides of a triangle. The first such example was
given in 0, but we shall now give examples involving other inequalities
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for a triangle (not only inequalities for the sides of a triangle). All
examples from this section are given in [2] and [3].

3.1. The result from I.3.3 says that a triangle A1 whose sides are

a1 = sin A, b1 = sin B, c1 = sin C, exists. In this case we also have
A, = A, etc s --lZsinA-2Hcosé F—iﬂsinA
Y . 12 B 27 12 ’
1 A . X
R1=§, r1=21'[ s:.n-z-,ha = sin B sin C, etc.,
1
r =2sin§—cos—cos—,etc.
a1 2 2

so we can use all inequalities of the form

i{(a, b, ¢, A, B, C, s, F, R, ¢, ha' hb’ hc' T T rc) 20
for generating new inequalities with angles of a triangle.
EXAMPLES.

B C

GI 1.20=2>1 <% tanEtan§</§;

GI 5.1 = GI 2.12; GI 5.20 = GI 2.29;

GI 6.28 = sin® -1;—> 611 sin % ; etc.
3.2. The result I.3.4 says that a triangle A2 whose sides are a, = cos %

B [¢] . .
b2 = COSs 3. 02 = Ccos 0 exists. In this case we also have

il A 1 A
A2—2 2,etc. Fz—EHcos2,
1 -
52=§‘ZCOS—=2Hcos 4A,
s, - a -—(cos-—+cos—-—cosé) =
2 272 2"
~2cosTr_AsiTY—Bsinﬂ_C
2 S 7
R=-1— r—(]'[csé)/Zcosé
22" 27 °s 3 2 -

EXAMPLES.

GI 5.3 = GI 2.27;
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4

GI 4.10 = X cos 2

2 4llcos

’

N
o

GI 5.1 = % cos % 2 4llcos % , etc.

Comment by J. F. Rigby. A2 is an acute triangle, so any inequality

for acute triangles can be used here to yield an inequality for all tri-
angles.

3.3. The result I.3.5 says that a triangle A3 whose sides are a, =

3
cos 2 L , b, = 0052 E-, c, = c052 ¢ exists. In this case we also have
2 3 2 3 2
_ 1/2 A _ 1 -1/2
Sy = ull cos 7 F3 = (uv) T cos 5 R3 = 4(uv) ,
PR V- S
r3 = (v/u) 1T cos 5
where
A A
= = =1 - .
u Y tan 5 v tan 5
EXAMPLES.
GI 1.3 =GI 2.12;
GI 1.15= L tan%? ol tan% ;

GI 5.11 = (X tan %)3 > 27]'[tan% ;

GI 5.12 = (% tan %)3 Z %Z 1 sec % ; etc.

3.4. 1f 0 <A, B, ¢ < 7/2, then a triangle A4 the sides of which are

a4 = sin 2Aa, b4 = sin 2B, c4 = sin 2C exists (see I.3.6). In this case

we also have

By

T - 23, etc. F =

1 X
4 3 I sin 2a, R

iny
N

Tg

2llcos A, etc.
Note that this result is a simple consequence of 3.1 if we use the
substitution A » T - 2A, etc. (see proof of 1I.3.6). Of course, we can
get similar results from I.3.7 and I.3.8 (see proofs of these results).
Remark. For an interesting application of 3.4 see X.2.3.
Comment by J. F. Rigby. It should be emphasized that when a triangle




SOME OTHER TRANSFORMATIONS 109

inequality is applied to A4, we obtain an inequality for acute triangles

only. Also, this transformation is the opposite of 3.2.

4. The Median-Dual Transformation and Its Generalizations

4.1. We obtain an important transformation as a consequence of I.3,13.
This result shows that the triangle A whose sides are m ' mb m exists.
In this case we have that if

(1) I(a, b, ¢, F, R, r, ha' h h, m, mb, mc, ra,

r , r
b’ ¢ a b’ "¢’

Wor W w.) 20

is any inequality involving the stated elements of triangle ABC, it is
equivalent to the following inequality, called the median dual of (1)
[13]1:

where
Im
3 a 3F 3
=>F, R =—2, = == = >— .
P 4 m 3F m T 2im Ha 2 » ote
a a
ﬁa = %-a, etc., fa = 3 +3i e etc.,
My c “a

E

1
5 = E;_:—E; /mbmc(mb + mC - ma)Zma, etc.

EXAMPLES. 1° [12] Let p, q, r be real numbers such that p +q>0,
gq+r>0, r +p>0. Then

(2) 5 —P m4>—2—F
with equality if and only if

2
p:q:xr = (5a2 - b - c2):(—a2 + 5b2 - c2):(—a2 - b2 + 5c2),

and if 0 < t < 4,

P t t/2
(3) zq+ra /"F)

These inequalities are the median-duals to II.4.(8) and VII.2.(10).
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2° Let p, 4, r be non-negative numbers and 0 < t < 2. Then

(4) I g b m;mz > %(/iF)t.

This is the median-dual to VII.2.(11).
3° [11] ret x, y, z be real numbers and let 0 < t < 2. Then

(5) 3(/3F) tZyzmz < (Ix)2 (Hma)t,

6) lZyzmz! >/A0n Y2 O = xyzx > 0).

These inequalities are the median-duals to VII.2.(8) and (9).
2
4° [13], [14] GI 4.7 = 12F/3 + 3Ja” < 8Im m < 4F/3 + 57a°.

5 For t =2, x =a, y=b, z =c¢, (5) becomes
2
Tbem’ < (2Mm_/31)2,
a a

which was obtained by E. A. Velikova and S. J. Bil&ev [13]. Similarly
we can get some other of their inequalities. Note that Velikova and
BilSev gave in their paper about a hundred geometric inequalities and
their median-duals. We shall quote some of their examples:

1) GI 4.1 = 12F € min(b2 + c2 + 4a2, c2 + a2 + 4b2,
2 2
a +b + 4c2);
3 2
2) GI 4.14 = (/3F)~ < (Tm_)";

2 2
3) 8mbmc <4a” +b + c2 = s(s -~ a) < mi;

4) I1/m_< 1/r Ibc € 2RIm_;
a a

5)

Wik

Im < Za2/m =-§ Ta < Zmz/a;
a a 4 a
2 2
6) I(m -m)m -m)a >0=I(a-Dblla-cm >0;
a a c a

7) Z(mb + mc)/a < (T[ma)z/F3 = T(b + c)/ma < 9R2/F;

8) Egi-é Z(b +c - a)_2 = %2

< Z(mb +tm, - ma)—z;

FNvY
o~

9) (Zma)z/BZa/(mb + mc) P 3§3F = Zma/(b +c) 2
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which is the conversion of 10.9.

2.-1

10) (Hma)22(4a2 + b2 + c) > F2 = GI 6.7;

o|w©

11) 9FZama < 18F2 + (4Hma)(Zma) (for acute triangle)
= Im /h_ < 1 + R/x;
a'a
T > > /2s;
12) | ma)(Za/ma) 6s = Zma/a 3(Zma),28,

‘13) GI 4.2: 2> 3p/3 » GI 8.4: (Zma)2 > 9r/3.

Note that the triangle A has the following two properties (see
[15] ana [16]): n

14) r < — 3ab§ —
m 4(a + b + c)
a2 + b2 + 2
15) R 2> 2 *rhb *tco .

m 2{(a + b + <)

Furthermore, if Am, Bm’ Cm are the angles of a triangle Am and if

a>b > c, then [28]:
<
a < o Am < B < Cm’ a> Ay A > B’

B>aA4A, c<c, c<sB, B<cC.
m m m m

For some other properties of Am see [29].

4.2. Let Cqr Cpr S denote three cevians of a triangle dividing the

sides in the ratio v/u where u + v = 1. Then (see I.3.14) Ca’ c., cC

b c
form a triangle A . If we now let F', R', r', h', ¢!, respectively,
c a a

denote the area, circumradius, inradius, altitude and cevian to side
ca (with the same u, v), of the triangle Ac' it can be shown (see

Klamkin's solution of a problem from [17]) that:

IIc
= (1 RNV B o2 - wF
F (1 uv)F, R 0 - wF r o ,
a
2 2 2 2
L - 14 - -
ha 2(1 uv)F/ca, etc., cl ucC + vcb uvca , etc.

Then corresponding to any triangle inequality
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I{(a, b, ¢, F, R, ¢, ha' h hc, e r Cpr cc) =20

b’ b

for ABC, we also have the dual cevian triangle inequality

I(ca, c F', R', ', h;, hé' hé, c', ¢!, cé) 2 0.

b’ Sc’ a’ b

EXAMPLES. 11° GI 6.1 = /§an 241 - uv)Fchl, which is Klamkin's
generalization of a problem of A. Bager ([17]).
4.3. A generalization of the median-dual transformation has been given

by I. Gindev [18].
Let D(Xl’ Xy x3) be a point in the plane of a triangle where x

1’
>
x2, x3 are its barycentric coordinates, i.e. OD = ledi, le = 1, where
0 is an arbitrary point in the plane. If €, C,r C, are its cevians,
then
+ + +
L %2 TR , 3% R T
& T T x Ca’ bt = XX °p’ R e
273 371 172
are the sides of a triangle Aé, and for this triangle we have
F' = Fr/|lx, | v
/ x b r 2F/(Z|x1x2 + x1x3|ca),
o= + x / '= +
R IH(XZ 73)|(Hca),4F|Hx1|, ha 2F/calx1x2 x1x3|,
' =
el a/lxlx2 + x1x3l, etc.

. -1
5. Transformations T , T and T
e e2 e

Here, we shall consider three transformations which are connected with
I.3.55.

5.1. In I.3.35 we noted that a; = a(s - a), b1 = b{(s - b), c1 = c(s - c)
are sides of a triangle (say AT Y. S. J. Bil&ev and E. A. Velikova [19]
e2
noted that for this triangle we also have
- _ _ _FR _
s, = r{4R + r), s1 ay = -5 F1 = FrvVr(4R + r),
/¢ Va3
e T T

r, = (s — a)yr(4R + 1), ha = 2Frv@(4R + r)/a(s - a).

1 1
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and they called this transformation the T 5 transformation. They also

T 9 * T 2 e
noted that a L e, Fra, etc., i.e. using the transformation T 5 * T 5
we get the initial result (symbolically IT +q = Tor ¢ ©
T 2 2
e2 e e
I I
T 2).

EXAMPLES. 1° [19] GI 4.7 & GI 5.51,

GI 5.5 & $a = I(b - ¢)° < 4s / §«4R +r).

2° [11] If %, y, z are real numbers and 0 < t < 2, then

Zyzat(s - a)t S-%(ZX)Z(FSRZ/(4R + r))t/2,

Izyzat(s - )% > VAR(16r2r (4R + £)/3) % (0 = xyz(Ex) > 0).

These results are the T 2—duals to VII.2.{(8) and (9).

e
3° Let p, g, r be real numbers such that p +q > 0, ¢ + r > 0,
r +p>0. 1f 0 <t £ 4, then

1 —P B - ot s 3eried R + )/ A

q+r 2

This is the T 5" dual to VII.2(10).

e

5.2. Of course, since a(s - a), etc. are the sides of a triangle,
a, = (a(s - a))1/2, b2 = {(b{s - b))1/2, ¢, = (c(s - c))l/2 are also
sides of a triangle (say AT }. Bil&ev and Velikova [20] noted that for

this triangle we have e

R, = VRr, F, = F/2,

2 = F/(LVa(s - a)),

o)

h, =F/(as -an'?, a = m-m/2 B, = (m-B)/2,

C2 = (m - C)/2,

and they called this transformation Te— transformation.

It is obvious that this transformation is in connection with the
transformation given in VII.3.2.

Blso, if we apply these transformations n times, we get a new
triangle with the angles
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(1) A =

This result is connected with XII.2.1. A generalization of the Te—
transformation is given in [22].

EXAMPLES., 4° [20] GI 4.5 = Z(bc/rbrc)l/z > 2/3,

GI 6.1 and 5.22 = /6/3 < T ‘2—<3/2—R,

GI 7.5 = Zaz - % - c)2 < 16Rr + 4/3F/9,

- 2F
GI 10.8=>Z—E-b——:—2——_i——a>;—' ’
1 17 % 1

GI 4.4 = GI 4.7I.

5¢ [11] If %, y, 2z are real numbers and 0 < t < 1, then

Syza(s - a)* < %(Zx)z(Rr/B—)t,

Isyzat(s - a)tl = /et

il

xyz (Ix) > 0).

These inequalities are the Te— duals to VII.2.(8) and (9).

6° Let p, g, r be real numbers such that p +q > 0, g + r > 0,
r+p>0. 1f 0 <t <2, then

p t,_ . ts 3 t
Zq+ra(s a) /2(2F//§).

This is the T - dual with VII.2(10), and a generalization of some
results from [30].

7° Using (1) for n = 3 and GI 5.22 we get {21]:

L sin %)—1 > V6 - 3v/2.

T((/2 + 1) cos 3

5.3. The inverse transformation to the Te—transformation was also con-
. . A -1 ) , , .
sidered in [20]. This is the Te ~transformation, and it gives a triangle

. 2 )
of sides a3, b3, c3, such that a = a3(s3 - a3), etc. The following

relations are valid for this triangle [20]:

2 2,2 2 2
a =2R inoa = a (b +c¢c -a) 2F

3 a 4Fd ! 3 a '
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2

R
sy - ay = d tan A, A3 =T - 2A, R3 =g ry = 4,

2F 2Frd

F3 = 2F, r = a—-cotan A, h == .
43 83  R” sin 2a
2 2 2 L ., X
where d =s - (2R + r) . Of course, it is obvious that the triangle

ABC of sides a, b, ¢ must be an acute triangle.
EXAMPLES. 8° [20] oI 5.1, 5.11, 5.12 =
2

T cos A € 2F 7 < E 7 <
27R 6V3R

N

1
5 -

It is obvious that this is valid for all triangles.
9° [11] If x, y, z are real numbers and 0 < t < 2, then for acute

triangles the following T;i-duals to VII.2.(8) and (9) are valid:
2
Lyz sint 2A < %{Zx) (/372)t,

[Zyz sin® 2al > /§X(2Fd2/R4/§)t/2.

2
10° [20] GI 2.56 = 2R + 8Rr + 3r° < s
This inequality is due to A. W. Walker (see Section X.2.3);

4F2
2
R

GI 5.7 = szc2 > (13R2 + 8Rr + 2r2 - 2s2).

Remark. Of course, we can combine the above transformations, i.e.
if we first use the Te and later the T 5" transformation we get the
e
Te * T 5~ transformation. Bil&ev noted that using this transformation
e
from the known inequality

V3% cos A 2 ¥ sin 2A
we get

I +c - a)Ya 2 4r (4R + r)3/2/(3Rs)1/2.

6. Parallelogram Transformations

In the papers [23], [24] and [25] the parallelogram transformations were
considered. For example, let ABC be a given triangle and let CM = mc. If

we extend this median an equal length, we get a triangle ACC1 with sides
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AC1 = a, AC = b and CC1 = 2mc, i.e. we get the parallelogram transform-

ation with respect to side c: PT(c). This transformation implies that if
we have an inequality

I(a, b, ¢, F, mC' R, r, ra’ rb' rc, ha, hb, hC) 20

then, using PT(c) we get the inequality

[
I\a, b, 2mc, F, ¢c/2, ame/ZF, 2F/(a + b + 2mc),
2F/(b + 2mC - a), 21?‘/(2mc +a->b), 2F/(a + b - 2mc), ha' hb'

\
F/mc} > 0.

2

EXAMPLE. 1° GI 4.4 = 3a2 + 3b2 - ¢c” > 4F/3, (see [26]),

GI 4.10 = 5a7 + 5b% + c? + 8a%0? - 4b%c? - ac%a® > 1682,

GI 4.12 = 2a4 + 2b4 + 5a2b2 - b202 - c2a2 2 16F2.

In each example there is equality only if a:b:c = 1:1:/3.
Of course, we can combine several parallelogram transformations
(see [23]), or parallelogram transformations with some other transform-
ations (for example with the median-dual transformation: MDT as in [24]).
So the following transfbrmations are also valid:
(1) Using the PT(c) * PT (b) ~transformation we have:
I(a, b, ¢, 7 > 08} = 1(a, (6a2 + 32 - 269172,

\

2m P) Z0

CI
with equality if and only if a:b:c = 1:v/3:/7.

EXAMPLE. 2° GI 4.12 = 20a4 + 6b4 + 2c4 + 23a2b2 - 7b202 - 13c2a2 2 16F2.

(2) Using the PT(c) * PT(b) * PT(a)-transformation we have
I(a, b, ¢, F) 20 {E} > I((15a2 + 10b2 - 6c2)1/2,

(6a2 + 3b2 - 2c2)1/2, 2m , F) 2 0

c
with equality if and only if a:b:c = /3:/7:/19.

EXAMPLE. 3° GI 4.12 = 131a4 + 56b4 + 20c4 + 173a2b2 - 67b2c2 -

- 1O3c2a2 2 16F2.
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(3) Using the PT(c) * MDT (or MDT * PT(c))-transformation we have

I(a, b, ¢, F) 2 0{E} = I(ma, m 3¢/2, 3F/4) 2 0
with equality if and only if a:b:c = /7:/7:1.

EXAMPLE. 4° GI 4.4 = a° + b> + 13c> > 12F/3.
(4) Using the PT(c) * PT(b) * MDT-transformation we have

%{—4&2 + 5b2 + 20C2 1/2,
\ >
3c/2, 3F/4/ 2 0

I{(a, b, ¢, F)y 2 0 {E} > I<ma,

with equality if and only if a:b:c = V19:/13:1.

EXAMPLE. 5° GI 4.4 = —5a° + 7b> + 31> > 12FV3.

Some other combinations and further generalizations of the paral-
lelogram transformations were given in [24]. We shall give the following
results:

Let be M € AB such that AM:MB = m:n. We extend the cevian AM to the
point C, such that AC1”BC. Then we have

I(a, b, ¢, F) >0 = I(% a, b, %((m + 1) ma® + nb%) - mnc?)/?,

A\’

E}.='>,>/O.
n

EXAMPLE. 6° GI 4.4 = m(2m + n)a2 + n(m + 2n)b2 - mnc2 > 4mnF/3 .

7. A Transformation for Acute Triangles

We now return to I.3.2, i.e. if f, g, h are the sides of an acute tri-

angle, then g2 + h2 > £2 etc.; if we write f2 = a, g2 = b, h2 = ¢, then

a, b, c are the sides of a triangle. If £, n, ¢ are the angles of this
acute triangle, then ([27]):

2

(1) cos [ 2

2

2
0% + 1% - £2)2/45°n% = (b + ¢ - a)°/4bc =

i

2
x /(x +2z)(x +y).

In this way we can derive inequalities for the sides and angles of an
acute triangle from inequalities for positive numbers x, y, z (see

Chapter III).

EXAMPLE. [27] For what values of A, U, V is the inequality
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(2) 64T cos2 £ + 16Ul cos2 n cos2 z + 4VI cos2 £ -
- (A + 30 +3v) 20
satisfied for all acute triangles? Using (1) we reduce (2) to
(3) (V - A=3WP + (4V - 4X - 12U)Q + (4V = 4A + 4T
+ (4v - 12X - 4u)s 2 0,

where P, 9, T, S are given as in Theorem III.6. Using this theoremn,
necessary and sufficient conditions for the validity of inequality (3)
are

4V - 4A - 12U = 492 (say) ,
2
4v -~ 4X + 4u = 4w~ (say),

4v - 12X - 4u = -40w + 282 (say),

where O, w 2 0. Thus (2) is a valid inequality if and only if it can be
written in the form

62(16H c052 £ - 4k cos2 n cos? T + 2% cos2 £ ~1) +
2
+ 4w2(4ﬂ cos & + I cos2 n cos2 T+ % cos2 E~-1) +

+ (-20w + 82)(—16H cos2 E -1z c052 £ +1) 20,

where O, w 2 0. Oppenheim's inequalities (GI 11.18) are given by 0 = 1,

w =0, €2 =land by 0@ =1, w =0, 82 = 2., Kooistra's inequality (GI

2.24) i.e. L sec2 £ 212, is given by 0 = 0, w = 1, €2 = 4,
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Chapter VIII

CONVEX FUNCTIONS AND GEOMETRIC INEQUALITIES

1. Jensen's and Related Inequalities and Geometric Inequalities

1.1. That convex functions play an important role in generating in-
equalities for the triangles was apparently first noticed by M. Petrovid
in 1916 (see [1-3]) who obtained the first general inequalities which
include a convex function and the sides of a triangle:

THEOREM 1. If £:{0, 4+©) » R is a convex function and a, b, c are the
sides of a triangle, then

(1) 3f(2s/3) € If(a) € £(0) + 2f(s).
M. Petrovié proved (1) using
(2) 3f(s/3) < If(x) € £(s) + 2£(0),

where s = (a +b + ¢c)/2 and x = s - a, etc. The first inequality in (2)
is a special case of Jensen's inequality, and the second one of the
Petrovié inequality for convex functions (see for example AI, pp. 12 and
23) . As an example of (1), M. Petrovidé gave GI 1.16, 1.17, 1.19, 1.20,
and several other results are also consequences of these inequalities.
But it is clear that using Jensen's and Petrovié's inequalities we can
get several similar results for other elements of a triangle. On the
other hand, these results are consequences of majorization (see part 2),
so here we shall only give a simple method of generating inequalities
from identities.

Suppose the following inequality holds:

where ¢, ®1, ey @n are real functions defined on U < R™. Then by
Jensen's inequality for the convex functions F:[a, b] » R (®(x), @k(x)

€ [a, b], Vx €U, 1Sk <n),

n 1
(3) L F(d ) 2 nF(=0).
k=1 k n

If F is concave, the reverse inequality is valid.
If F is convex for x 2 0 and if F(0) = 0, then by Petrovidé's in-~
equality,
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n
(4) X F(<I>k) S F(9).
k=1

Again if F is concave, the reverse inequality holds.

Now we give some applications of (3) and (4) to triangle inequal-
ities.

1° From 5 =—2

- 1
= 1, we get ZF(E—E—3> > 3F(§0 if F € C, (the cone
of convex functions), and the reverse inequality if F € Cv (concave

s -
S

functions). If additionally F(0) = 0, x > 0, then LF( 8y < F(1) if

F € CX and the reverse if F € Cv.

For F(x) = 1/x and F(x) = /%, respectively, we have GI 1.15 and
1.20.

To avoid constant repetition, it will be assumed in each of the
following cases that we have the same conditions for F as in 1°, i.e.,
in the first inequality F € CX and in the second inequality, we addition-

ally have F(0) = 0, x = 0. Also if F € C_, then the two inequalities
are reversed. v

o _JE__= r > _1_ x <
2 z " 1 [4] = ZF(ra> 3F(3) and IF ra S F(1).

a
For F(x) = 1/x we have the left hand side of GI 5.41. Also, since
r ha -r ha -r 1 ha -r
—_— —_— > — _ K
P T [5], we get ZF<h - ) 2 3F(3) and ZF(h T ) S F(1).
a a a a a a a

Remark. Since (s - a)/s = r/ra, examples 1° and 2° are equivalent.

30 z%=1 [4]=ZF(-;—)>3F(1) and ZF<r—><F(1).

3 h
a a a
For F(x) = 1/x, we have GI 6.2.
ra ra 1
o = —_— > floll
4 b il [4] = ZF<4R = r) > 3F(3) and

r
E y a <
ZF(——'—-—"4R n r> & F(l).

For F(x) = x°, (n > 1, n € R), we have Zr;‘ > 3<4R3J>“, which is better

than the following result from [7]: Zr: > 3(R + )",
. 2 A 2R - r 2 A 2R - r
50 == = = i =y = sl

I sin > R IF(sin n) >4 3F< ER ) and

ZF(sin2 é) < F<EB§§—£).
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1 a2 a2
R T [6], we have I P 4R - 2r =
b c b c

2 4R - 2r a2
ZF<—+§~———> > 3F(———————) and ZF(~——————> < F(4R - 2r).
r +r 3 r, +r
b (¢} b c

These results are improvements and extensions of results from [e].

, . 2
Since sin

N

6° Y sin A =

Wl

; > S i <FE
= LF(sin A) 2 3F(3R) and IF(sin A) F(R).

n

l1-n s .
~— . Since
n

For F(x) = < (n > i, n € R), we have: I sin” A > 3

o

s > 3r/3 (GI 5.11) we get a result from [7]:

n 71+%' n
¥ sin A 2 3 (%) (n > 1, n €R).
0 B < _ B Sy s 3pd
7 . tan 5 tan 5 = 1 = ZF(tan 5 tan 2) 2 3F(3) and

IF (tan % tan %) < F(1).

For F(x) = xn (n 2 1,n real), from the first inequality we get a result
from [8].

1.2. In Section 1.1, we started out with a knownidentity. Here we start
out with a known inequality

o > 0.

(5)
1 k

U =]

k

Also, we write F € A, F € B, F € C, F € D to denote that F is a function
which is convex non-decreasing, convex non-increasing, concave non-
increasing, or concave non-decreasing, respectively, in the domain in-
volved.

It now follows immediately from Jensen's inequality that if F € A
and if (5) is wvalid, then

2 1
(6) L OF(® ) 2 nF(;‘@).

Analogously, (6) is valid if the reverse inequality in (5) holds and
F € B; the reverse inequality in (6) is valid if (5) holds and F € C;
and finally the reverse inequality in (6) is valid if the reverse in-
equality in (5) is valid and F € D.
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We now apply these results to give extensions to a sample of known
inequalities in GI. The reader can do the same with respect to other in-
equalities in GI and elsewhere.

8° GI 2.3 = Z}?(sin2 A) < 3F(%), (F €D, x> 0).

By specializing the function to x - F(x) = xk/2 (0 <k <2), and

x - log x, we immediately obtain (for k < 0 we can use the inequality
for means)

(7) Mk(sin A, sin B, sin C) € V/3/2 (k € 2)

which is better than GI 2.6 (and also contains GI 2.5, 2.7 and 2.49).

Note that the same method and the weighted version of Jensen's in-
equality was used in Chapter VII, where a generalization of (7) was ob~
tained.

9° @I 2.33 = TF(tan &) > 3F(/3/3), (F €A, x> 0).

2
2 6 \ .
For F(x) = x , x , we obtain GI 2.35 and 2.36, respectively.
r+r
. A a a
Since tan - = = , we also have
2 b +c r +r
b c
r+ra\ a
_ %) = — =
ZF(b s ) ZF(rb S rc) 2 3F(/3/3), (F €A, x> 0).

This generalizes an inequality in [6].

10° GI 2.41 = SF(cotan %) >3r(/3), (FEA x>0).

2
For x = F(x) = x , we obtain GI 2.43.

r +r \1/2

X A a c\

Since cotan = = = , we also have
2 r, -« r, - r /]

a rb +r \1/2
m(——) = ZF((————E> >> 3F(Y3), (F €A, x> 0).

Y - r r -
a a

This generalizes some of the results in [6].

11° GI 4.5 = IF(bc) > 3F(4A/V3), (F €A, x>0, A= area).

2
For F(x) = x , we have GI 4.12,

GI 4.6 = YF(bc) = 3F<§% + %), (FEA x>20,0=730 - c)2).
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2
For F(x) = x , we get

2

sp2c’ > 16A° + 40Q/V3 + 92/12

which is an improvement on GI 4.12.

12° GI 5.29 = ZF(ra) 2 3F(s/V3), (FERA x>0).

2
For F(x) = x , we have GI 5.34.

13° GI 6.28 = ZF(ra/ha) 2 3F(1), (FERA x>0).

For F(x) = <" (n 21, n € R), we have a result which was given in
Remark 1 of GI 6.28.

14° A simple application of Jensen's inequality is GI 2.37, i.e.
its generalization from VII 3.10. For some other applications, see
Chapter VII.

Remark. The previous results were given by J. E. Pelarié,
R. R. Jani¢ and M. S. Klamkin. Now, we shall note that using weighted
version of Jensen's inequality we can give the following generalization
of (3):

n
' >
(3") ) ka(Cbk/pk) PF(%/P),
k=1
where
n
P = kil Py CI>k/pk € [a, b] (k =1, ..., n).

For some applications of (3') see part XI.4.1. Here we shall only
give an example of D. MiloZevié:

2 A S 2
2

h) é cos = —— = Ja“ sec %—2 12Rr/3.

Comment by V. Mascioni. Note that

M2(sin a) € V/3/2
(see Example 8°) is equivalent to

M2(a) < /3R

1
and, since R = 5 Za/r sin A, to

/3 My (@)
2 M2(a)

Ml(sin A) <
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2
Using cotan W = (Za ) /4F (w - the Crelle-Brocard angle), one sees
further that

M, (sin A) < V3/2
is also equivalent to

8 .

5 I sin A € tan w

which is due to D. P. Mavlo (Problem 639, Nieuw Arch. Wisk. (3) 30
(1982), 116 and 31 (1983), 87-89.
Inequality GI 4.12 which is used in Example 11°, is equivalent to

M_,(a) < V3R.

The remark above implies then that inequality (7) also contains GI 4.5.
Note also that inequalities GI 4.6 and 5.29 which are used in Examples
11° and 12°, respectively, are equivalent.O

Comment by W. Janous. Mitrinovié, Pefarié and Janous (see VI.l1.Remark 1°)
have shown that

M (a) < R/3  (k = log(9/4)/log(4/3) > 2).

Hence
M, (sin a) <-§ Ml(a) a]
1 T2 M (a)
k

Comment by J. F. Rigby. Examples 10° and 13° for F(x) = xk (k > 1) be-
come J, cosk %-2 3(/3)k and Z(ra/ha)k > 3. But %‘Z cotank %.>

k
(1 cotank %) /3 > (3/§)k/3 = (/§)k for k 2 0 (using GI 2.42). See

A
5 14

also GI 11.8 (put o = g -
(H(ra/ha)k)1/3 Z 1 (GI 6.27) for k Z 0.

A =7 - 20), Also, % Z(ra/ha)k >

Note that (7) also contains GI 4.5 (it is equivalent to M 1(a) <
V/3R) .0 -

n

1.3. Ifm< f'"(x) £Mand S = L % (x, - x,)z, then x - u X2 - f(x)
n 2,0 i j 2
n i,j=1
i<3

m 2 .
and x -» f(x) - E-x are convex functions and Jensen's inequality gives

[9]:

m 1 n o M
(8) E-S <= ¥ f(x,) - f(—- z x.) & =S .
n .- 1 L 2
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We shall now give some applications of (8) to geometric inequalities
from [9].

15° R 2 2r exp(%z-Z(B - C)2).

Proof. Consider the function x - f(x) = log sin x on (0,T). We

have M = -1. In (8) put n = 3, %y = A/2, X, = B/2, Xy = C/2; we get
A 1 1 2
in - < = - — -
M sin 5 S8 exp( 54 (B C) )
and since Il sin % = EE we get 15°,
The following examples were proved similarly in [9]:
6e B>y sinax3B_lie- ol
2 2 2
o£>l_.1_ - 2
17 >3 3 (B - C)".

Comment by V. Mascioni [24]. Since

27 1 2 1 2
zL < - = - < - -
3 ABC S 1 5 (B C) < exp( 3 L(B c))

(it is easy to prove this with the multiplier method), the following in-
equality of V. Mascioni (see IX.6.58):

2r < (i) 3ABC
R b

is stronger than the one proved in Example 15°.

2, Majorization and Geometric Inequalities

That majorization can play a role in generating geometric inequalities
was noted by Steinig [10, 11] and Oppenheim [12]. In the well known
book [13] (denoted further in the text by MO), Chapter 8 considers these
inequalities with respect to majorization.
We shall now give some definitions and main results on majorization:
1) A vector y = (yl, ceey yn) is said to be majorized by a vector

X = (Xl' cees xn), in symbols x >y or y < x, if after possible re-

ordering of its components so that X, Z ... 2 X and Y, Z ... 2 y, we
have

k k
I x 2 I Yo, for k=1, ..., n-1, and
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But, if we have

k k
T x 2 Iy for k =1, ..., n
r r

r=1 r=1

W ite <x or x>Y.
e wr ¥ =y wy

2) A real-valued function F defined on a set A C Rn is said to be
Schur-convex on A if

Xx <yonA=F(x) 2F(y).).

If, in addition, F(x) < F(y) whenever x <y but x is not a permutation
of y, then F is said to be strictly Schur-convex on A. Similarly, F is
said to be Schur-concave on A if

x <yonA=F(x) <F().,

and F is strictly Schur-concave on A if strict inequality F(x) > F(y)
holds when x is not a permutation of y.
Of course, F is Schur-concave if and only if -F is Schur-convex.

3) Let I € R be an open interval and let F:1" - R not be continu-
ously differentiable. Necessary and sufficient conditions for F to be

n . . n . .
Schur-convex on I are: F is symmetric on I and for all i # 3

NG B_F_> >0
(Xi XJ)\aXl BXJ .

n
4) A real-valued function F defined on a set A c R satisfies

x < yon A=F(x) <F(y)

if and only if F is increasing and Schur-convex on A.
We shall now give some important classes of Schur-convex functions:
(i) If I < R is an interval and g:I - R is convex, then F(x) =

n

Y g(x,) is Schur-convex on In.

i=1
In this case the inequality F(x) € F(y) from the definition of

schur-convex functions gives the well-known majorization theorem for

convex functions.

(ii) A function F:In - R is convex if

F(Ax + (1 - N)y) S AF(x) + (1 - MF(y)

for all A € [0, 1] and %, y. € ",
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If F is symmetric and convex, then F is Schur-convex. Consequently,
x <y implies F(x) € F(y).

. n . . . .
(iii) A function F:I = R is said to be quasi-convex if

F(Ax + (L - Ny) S max(F(x), F(y))

for all A € [0, 1] and x, vy € I".

If F is symmetric and quasi-convex, then F is Schur-convex.

(iv) Denote by x - Tk(x) the kth elementary symmetric function of
x1, .oy xn. That is

To(x) T2(x)

i
-
]

-
E
n

e l=]
]

"
|56
ld
b
%

T, (%) % X XXy veeeey T (x)
3 i<j<k T K n i

[0}
[ r==]
"

R R R n
The function T, is increasing and Schur-concave on R+ (R+ = [0, +0)).

k
Ifk>1, Tk is strictly Schur-concave on R2+ (R = (0, +)).
1
(v) The function x - F(x) = (Tk(x)) /% is concave and increasing

(in fact, strictly concave if k > 1) in x € R?; hence F is Schur-concave

(strictly Schur-concave if k > 1) and increasing, k = 1, ..., n, for

x € r".
+ 1/p
(vi) If 1 S p € k € n, then Fk P(x) = (Tk(x)/Tk_p(x)) < is a con-
r
cave function of x, for x € R2+. Hence, Fk is Schur-concave on R2+,

1 <p <k <n. '
Remark. All the above results in 2 are given in MO.

2.1. Inequalities for the Sides of a Triangle and Polygon

In what follows we shall use the following notation
(A) = for all triangles,
(Aa) ~ for acute triangles,

(AO) - for obtuse triangles.

First, we shall give some results for the sides of a triangle:

2s 2s 2s
1) (T'T'T><‘a' b, c) < (s, s, 0), (4),
<§,§,§)<(x, v, z) < (s, 0, 0), (A).

These basic majorizations for the sides of a triangle yield gener-
alizations of (1) and (2) to Schur-convex functions.

EXAMPLES. We shall give some examples from MO, pp. 199-20%1.
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2 2
1° 1/3 < za /(Za)” < 1/2 (A) (GI 1.9)

2° 174 < Zbc/(Za)2 < 1/3 (A) (GI 1.1)

3° For a real number d 2 O,

40 - 2d) 52 < Za2 -4 Ma < 2s2 (A)
27 s

3° for d = 36/35 is an extension of GI 1.2.
4° For 4 2 0,

3(3d + 2) ds + a 5d + 4 ,
< =
7 I 5T o < 5 (A) (a 0 gives GI 1.16)

5° /s< /s - a</3s (A (GI 1.20)
6° IVa(s - a) € /25  (A) (GI 5.47)

70 174 <T(b + c)/(Za)° < 8/27  (b)

8° 9/s < I(s - a)'l(A) (GI 1.15).

In MO, p. 199, the following results were also given:
(@, b, ¢) < (s, s/2, s/2) and (x, y, 2) < (s/2, s/2, 0) (Ao);

but V. Mascioni has shown that these results are not valid (the same is
true for several examples which are consequences of these results).

However, C. Tdndsescu communicated to us the following corrections
of these results:

((2/2 - 2)s,(2 - /2)s, (2 - /Y2)s)< (a, b, ¢) (A).

(/2 = )s, (/2 - s, (/T - 1)%s) < (x, v, 2) ).

He also gave the following examples for these results:
2 2 2 2
Za®/(Za)” 2 2(/2 - 1)%;  Ibe/(Za)” < (4/2 - 5)/2;

T(b + ) /(Za)° < (2 - /2)/2;  Ts/(s - a) 2 5 + 4/3;

2

ra® - S 1a 2 4(/7 - 1)2(2 - (V7 - 1)d)52;

0 [

T(@s +a)/(b +c) 2 ((2 +5/2)d + 2(5/2 - 4))/4;
Ws —a< (V2 -1 + 22 - 1)/s;

Wa(ls - a) € (V2 ~ 1) (Y2/2 - 2 + 2§§)s.
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In fact, T&nisescu proved the following result: If a 2 b 2 ¢, then
for all obtuse triangle, if degeneracy (in any sense) is also allowed,

((2vV2 -~ 2)s, (2 - V/D)s, (2 -V2)s) < (a, s - a/2, s - a/2) <
<(a, b, ¢) < (s, s -¢c, c) <

< (s, s, 0),

((V¥2 - 1)s, (V2 - 1)s, (V2 - 1)25) < (a/2, a/2, s - a) <
< (x, y, 2) <
<(s -¢, ¢, 0) < (s, 0, 0),

but it is evident that only the first majorizations are valid only for
obtuse triangles, i.e. the other results are valid for all triangles.

a+b b +c c + a\
2) ( 2 ’ 2 ’ 2 / < (ar bl C) (A) .
EXAMPLE. 9° (MO, p. 201) 8lla < N(b + c) (GI 1.4).

3) (a, b, ¢) < (2%, 2y, 22) (A) .
Here we shall give examples from MO, p. 202,
EXAMPLES. 10° 8xyz < abc (GI 1.3).
11° 2xyz/(Zyz) < abc/(Ibc),
12° 32xyz(Iyz) € abc(Zbc).
We shall now give some similar results for the sides of a polygon.
4y I1f al, ceer @y are the sides of a polygon with perimeter p and
if a; s, i=1, ..., n, where for some integer k, p/(k + 1) < s < p/k,
then

1
H(p, ..., P) < (a,, a

1 o1 ey an) <

< (8) «v.y 8, P —-ks, O, ..., O).
\—\/——/;\/—/
k n-k-1

This result is a generalization of Theorem 1 (in the case of Schur-convex
functions, of course). A particular result in the case p = sk for convex
functions is given in [14], but as a consequence of Jensen's inequality
and its conversion of Lah and Ribari& (see for example [14]). A simple
consequence of this result is GI 16.5.

Note that for every polygon the following is valid

1
E‘(P: ceey P) < (alr ey an) < (SI S, or ey O)r
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where s is semiperimeter of the polygon.
Remark. This result contains the following inequality of

T. Popoviciu:

m-1

1« (za "/ (za]) < n m>1, m €R).

The following two results are generalizations of (2) and (3) (see

[14]).

5) If a a_  are the sides of a polygon with perimeter p =

17 et
(n - 1)s and if a; <s (1 €£i<n), then

(al’ e an) < ((n - 1)(s - al), veer (n = 1)(s - an)).

EXAMPLES. 13° lla, > (n - (s - a).

The latter result has been obtained previously by D. D. Adamovié as
answer to a problem of D. S. Mitrinovié (AI, p. 209). For n = 3 we get
10°. Of course, this is a special case of the following result:

k
o > - - =
14 Tk(a) 2 (n 1) Tk(s a) (a (al, ceer an)).
This inequality follows from the Schur-concavity of Tk(x).
° > - - -
15 Tk(a)/Tk_l(a) Z (n 1)Tk(s a)/Tk—l(s a).

This inequality follows from the Schur-concavity of Tk(x)/Tk 1(x).

k+
o > - mT - -
16 Tk(a)Tm(a) (n 1) k(s a)T (s a).

6) Under the same condition as in 5) (see [14]):

a, a
n
(agr wvera) < (s TEoTT v e ST T 1).

EXAMPLE. 17° (n - a)“na1 <Tp - a)).

For n = 3, this is 9°, i.e. GI 1.4.
7) Again under the same conditions as in (5), we can get the fol-
lowing results for a triangle and quadrilateral (see [14]):

+ a + b +
(pz Ip2 rp2C><(P_alp_blP'c)r

p+a+b P +b +c p+c +d p+d+a
2 ’ 2 ’ 2 ’ 2 =<

<{P-ap-b, p-c, p-4d.
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2.2. Inequalities for the Angles of a Triangle and Polygon
We shall begin with some basic results for a triangle.
1) (n/3, /3, w/3) < (a, B, C¢) < (m, 0, 0) (4,
(n/3, mw/3, m/3) < (a, B, C) < (n/2, /2, 0) (Aa),

(n/2, m/4, w/4) < (A, B, C) < (m, O, 0) (8-

These results were given by A. Oppenheim in [12], but he used them only
for convex functions. Of course, if we use them for Schur-convex func-
tions as in MO, pp. 193-198 we get more general results.

We shall now give some examples from MO, pp. 194-198 with some ex-
tensions.

EXAMPLES. 1° The function x - sinkx is convex for k < 0, concave for
0 <k <1 on [0, 7], and convex for k = 2 on [0, T/4], so the following
results are valid:

(a) for k <0, T sinfa>3M/2% n) ana
x sink AZ21 + 21—k/2 (Ao);
() for 0 <k <1, 0<73sin®a<3®2,8 (),
2 < 5 sinta < 31tk/2 )k ),
0<% sinfa <1 + 217K/2 (AO);

(c¢) for k <0, 3/2k <z sink(A/2) (A,

27X/2 2(—2—'£>k <5 sin®

N

5 (Ao);

(@ for 0< k<1, 1<75 sin®(a/2) <325 (),

217K/2 ¢ v cink(aze) < 3/2% b)),

1<5 sin® Bg27K/2 2/~2—'—£>k )
2 \ 2 o

i

1-k/2

(e) for k> 2, 3/25X< 7 sin®(a/2) < 2 8.

2° The function x - log sin x is concave on (0, T) so the following
inequalities are valid
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0 <1I sin & €3/3/8 () (GI 2.7, 2.8),

0 <1 sin A £ 1/2 (Ab)’
0 <1 sin a/2) <1/8 (Aé) (GI 2.12).

3° Let Mk(x, y, 2z) be the mean of order k of positive numbers x, y,

z. Then from the above results in 1° and 2° we get for kX <1 and k # ~®
(see MO, p. 196)

0 < M (sin A, sin B, sin C) < V3/2 (),

1-k/2

0 < Mk(sin A, sin B, sin C) € ((1 + 2 )/3)1/k (Ao).

For 0 < k € 1 we have
1/k , . . <A
(2/3) < Mk(51n A, sin B, sin ¢) <€ V3/2 (Aa),

(not for k € 1 as in MO, p. 196).
For k = -», the following results are valid (they are trivial)

0 < min(sin A, sin B, sin C) < V/3/2 (A,
0 < min(sin A, sin B, sin C) < v2/2 (AO).
4° The functions x - coskx is convex for k < 0, concave for 0 < k <

1 on [0, 7/2], and concave on [0, 7/4] for 0 < k < 2. So the following
results are valid:

(a) for k<0, 3/25< 75 coska ()

®) for 0< k<1, 1<5% coskac< 328 (8);

14k/2 0K <5 cos®(as2) (A), and

,k/2 2(/2 + /2

k k
5 ) < I cos (A/2) (AO);

(c) for k<O, 3

1+k/2/2k Wy, and

2<% cos®(as2) < 27¥/2 2<~3—%;12>k (b_):

(d) for 0< k<1, 2<% cos (a/2) < 3

1+k/2 .k

(e) for 0< k<2, 1+27%2< 5 cos®fay) < 3 2.

(f) Using the method of 1.2 we get 3/2k <3 cosk Afork=2 (A)
(V. Mascioni). °



CONVEX FUNCTIONS AND GEOMETRIC INEQUALITIES 135

5° The function x - log cos x is concave on (0, w/2), so the fol-
lowing inequalities are valid (MO, p. 197):

0< T cos(a/2) € 3/3/8 (A)  (GI 2.28),
1/2 < T cos(a/2) < 3/3/8 (4)) (eI 2.28),
0< 1 cos(a/2) € (L +V/2)/4 (Ao).
6° The function(a, B, C) = T2(sin(A/2), sin(B/2), sin (C/2)) is
Schur-concave, so the following inequalities are valid (MO, p. 195):
0 < ¥ sin(B/2) sin(c/2) < 3/4 Ay,
1/2 < ¥ sin(B/2) sin(c/2) < 3/4 (Aa), and
0 < 5§ sin(B/2) sin(c/2) < (2 - V2)/4 + /(2 = /2)/2 (8) -
7° The function x - tank x (k 2 1) is convex on (0, m/2), and the
function x - log tan x is convex on (0, m/2) so we have (MO, p. 197):

1+k/2 k 1-k/2

3 < I tan A (Aa), 3 ) tank(A/Z) (A,

0 < T tan(a/2) < /3/9 (A) .

8° In the previous examples we considered the trigonometric func-
tions of the angles A, B, C and A/2, B/2, C/2. Of course, we can gener-
alize the above results in a very simple way to the angles A/r, B/r,
C/r. For such results see for example [15] and [16]. Here we shall only
give results from [16]:

sin(m/r) < ¥ sin(a/r) € 3 sin(m/3r), (1 <),
2 + cos(m/xr) < £ cos(a/r) £ 3 cos(m/3r) (2 € 1),

tan(m/r) > I tan(aA/r) 2 3 tan(mw/3r) (2 <r).

Note that for r = 4 we have sin(m/4) = cos(m/4) = /5/2, sin(m/12) =
(V&6 - V2)/4, cos(n/12) = (V6 + V2)/4, tan(mn/12) = 2 - /3,
9° (W. Janous) The function x - log Ei%;EE-, 0 < t< 1, is concave

on (0, m). So we have
(i) for t =1

0< T sinac< (3vV3/2m°Ta  (A)
2/m2ma < 7 sin a < (3V372m °Ta ()

0 <1 sin A < (16/72)Ta ).
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(ii) for t = 1/2

(1/4m)TA < T sin(a/2) < (3/2m)°Ta (M)
(1/7%)1a < T sin(a/2) < (3/2m) 1A )
(1/4m)Ta < T sin{a/2) < (8(¥2 - 1)/ﬂ3)HA @) .

Remarks. 1° We can get, from these inequalities, refinements con-
cerning (A), (Aa), (AO) of the results of IX.6.58 and IX.7.11 holding in
any triangle.

2° We can get several interesting results using the following ident-
ities from [6]:

r + r\k a k r - r\k x
z( a) = z( ) = z(—fi-——- = I tan (A/2),
b +c rb + rc a }

> tanzk(A/Z),

™
N
Rl &

o |
+| 1
K| R

N
-

1

(4R)%5 sinZX(a/2),

]
TN
2
o
+|o
[\$)
K
(o]
—
w
]

. /Ms)k -
\r + r,

2 k
1 Z(” a \ _
¥

L
X

b cos2k(A/2).

2) Let ABC be any triangle with A € B < C, and let PQR be any tri-
angle such that P 2 C 2 Q > B, then A > R and (see [17]):

(P, 9, R) > (A, B, C).
In his answer to the problem from [17] Klamkin gave only the result for

convex functions. It is obvious that for Schur-convex functions we have
a more general result.

EXAMPLE. 10° Let ABC be an acute triangle of Bager's type II (see X.2.1),
ie. /6 S ASBSK /3 <C< 7/2. Then ([17]):

> XEE:_l i

w|H

Proof. Since x - log sin(x/2) is a concave function on (0, m), we
have

T sin(A/2) 2> sin(w/4) sin(m/6) sin(w/12) = (/3 - 1)/8,
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so the above result follows from the identity r/R = 41 sin(A/2).
Remark. Using other Schur-convex (concave) functions, we can get
several similar results:

T sin A = /3/4, T cos A2 (1 + v3)/2, etc.

3) There exists a number s, 0 < s <2, such that [11]

(coss(A/Z), cosS(B/Z), coss(c/2)) <

/2 (sin®(a/2), sin®(8/2), sin®(c/2)).

s
<3
Using this result for Schur-convex functions, we have a generalization
of a result from [11], where a result is given only for convex functions
(see the result (i) for Schur-convex functions). As a special case
J. Steinig gives the following result:

(9 /§Mr(sin(A/2)) < Mr(cos(A/Z)) for r < s;
@Mr(sin(A/z)) > M_(cos(a/2)) for r > s.

The inequalities are strict unless A = B = C = 7/3, when equality holds
for all r.

Remark. Steinig also proves several similar results. We shall give
some of them:

1. There exists a number t, 0 < t < 1, with the property that

3Mr(tan(A/2)) < 2Mr(cos(A/2)) for r < t,

and the reverse inequality for r > t; the case of equality is the same
as for (9).
2, There exists a number u, -1 < u < 0, such that

Mr(cotan(A/Z)) < 2Mr(cos(A/2)) for r < u,

and the reverse inequality for r > u, with equality as in (9).
3. There exists a number v, -1 < v < 0, with the following property

/3‘Mr(tan(A/2)) < 2M_(sin(a/2)) for r < v,

and the reverse inequality for r > v, with equality as in (9).
Comment by V. Mascioni. Some of Steinig's results may be improved using
CebySev's inequality (AI, p. 36). For instance, if k > 0 we have

. a\ . Mk(cos %& S (4R\1/3 a
Mkcoanz/*——z-\-)—/;— MkCOSZ

M_k(51n 3

(for k < 0 these inequalities are reversed). For k > O this is better
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than Steinig's results since (4R/r)1/3 > 2.
We shall now give two similar results for polygons.
4) Let Al’ cees An be the angles of a convex polygon. Then

(m =~ 2m/n, ..., T - 27/n) < (A A ).

17 e n

EXAMPLES. 11° [18] % sink A <n sinX(ZW/n) for 0 < A €1, and the re-

verse inequality for A < 0.

12° 1 sin A, < sin" (27/n) .

13° 1 cosA(Al/Z) <n sink(ﬂ/n) for 0 < A € 1, and the reverse
inequality for A < 0.

14° 1 cos(A1/2) < sin™(m/n) .

A
15° [19] T tan (a,/2) 2 n cotanx(ﬂ/n) for A = 1.
5) Let Al’ ceey An be the angles of an arbitrary polygon. Then

(M/n, ..., ™/n) < (A, /(n=-2), ..., A /(n - 2)).

EXAMPLES. 16° ¥ sinA(Al/(n -2)) <n sinA(ﬂ/n) for 0 < A €1, and the

reverse inequality for A < 0.
17° 1 sin(a,/(n - 2)) < sin™ (1/n).

18° % cosX(Al/(2n - 4)) £n cosk(ﬂ/2n) for 0 < A <1, and

the reverse inequality for A < 0.

19° 1T cos(Al/(2n - 4)) < cosn(w/Zn).

20° I tanA(Al/(2n - 4)) Zn tank(ﬂ/2n) for A2 1.

Equality in all examples holds only for regular n-gons. Note that 19° is
given in [19] only for convex polygons.

2.3. Majorization for Other Elements of a Triangle

1) The following results are valid for exradii and altitudes:

1
(-—.I—_l‘)<(h_l )i

a b c a b c

L

A

|
HIH
H}H
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and as consequences of these results in MO, pp. 203-205, we obtain the
following results: GI 6.8, 6.16, 6.18, 6.19, 6.20, 6.21, 6.22 and a re-
sult from Remark 1 from 6.28.

2) For each t 2 1 (MO, pp. 206-207):

t t
/3/2)5 ", Y, 5 < f, 5, 15
w a b c
to t t
EXAMPLES. 1° (¥3/2) fa < Zra, t =1,
The case t = 1 is GI 5.29.
o tot t t ot ot S
2 (/3/2)Mk(a T R O T

3° From the Schur-concavity of Hxi, Xy > 0, follows GI 5.35.
3) For t > 1 (MO, pp. 207-208)

t t t
, m) < (r , r
C w a

t _t t
(ma, m b’ rc).

b

t
t,rc),k>1,t>1.

t t t t
EXAMPLE. 4° m) <M
XAMP Mk(ma’ My c) h k(ra’ Ty

2.4, Majorization and Isoperimetric-Type Inequalities

For a class C of plane figures, isoperimetric inequalities are often
stated in one of these two forms:

(i) of all figures in C with perimeter p, the figure G has the
greatest area.

(ii) Of all figures in C with area F, the figure G has the least
perimeter.

These are dual theorems; a particularly simple proof of the equiv-
alence is given by Kazarinoff [20, p. 43].

In MO, pp. 208-214, it is shown that for plane figures possessing
certain properties the area is a Schur-concave function of the parameters
of the plane figure. Consequently, the area is maximized when these
parameters are equal, from which the isoperimetric result follows, and
therefore the corresponding inequality for the area of this figure fol-
lows.

Here we shall give without proof some of these results (MO, pp. 208-
212) :

1) The area of a triangle with one fixed side is a Schur-concave
function of the other sides.

2) The area of a triangle is a Schur-concave function of the sides.
Remark. We note that a consequence of this result is GI 4.2.

3) The area of a quadrilateral inscribed in a circle is a Schur-
concave function of the sides.
Remark. We note that a simple consequence of this result is GI 5.3.

4) Let H be a polygon of n sides al, O an with vertices Al’ ceey
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A , inscribed in a circle of radius r and containing the center O of the
n

circle. The area of H is a Schur-concave function of the central angles
@1, . On subtended by the arcs A/ A, A Ay, ..., AR, of the sides,
and of the altitudes h

1
ARy hn from O to the corresponding sides.
Remark. As a consequence of (4), the area of a polygon containing O is
maximized when the polygon is regular.

5) The area of a polygon of n sides with fixed perimeter inscribed
in a circle is a Schur-concave function of the lengths of the sides.

3. Applications of Some Other Inequalities for Convex Functions

3.1. First, we note that the well-known Levinson inequality for 3-convex
function (AI, p. 363) has the following simple consequence:
(1) If f is a 3-convex function on [0, 2s], then

1 o2\ L _ gf4s
3 ~f(a) f(3 / < 3 L2E(b + ¢) f<3 /.

Remark. If a function f is three times differentiable, then it is 3-con-
vex if and only if f'''(x) 2> O for every x € (0, 2s).

EXAMPLE. 1° The function x -» f(x) = x/(2s ~ x) is 3-convex, so the fol-
lowing inequality is valid

b +
) S.r—2—>
a b +c

N o

(2) If £:[0, ©/2] - R is a 3-convex function, then for every tri-
angle

(10) Zf(TT > A> - Zf@) > 3f(13T-> - 3f(%>.

If £ is strictly 3-~convex, equality in (10) holds only for equilateral
triangles.

Proof. In the proof we shall use the generalization of Levinson's
inequality from [21, 22]; i.e. the following special case of this
generalization:

Let £:{0, 2a] - R be a 3-convex function, X € [0, 2a) (i =1, 2,
3) and

(1) X, Xy < 2a, %, < a,
then
1 1
12 - — < -~ - _ =
(12) Zf(xl) 3f(3 le) < IZf(2a Xl) 3f (2a 3 le).

If f is strictly 3-convex the equality in (12) holds if and only if

X1 =X2 =X3.

Let A, B, C be the angles of a triangle such that A 2 B, C. Using
the substitutions a = 7/4, X = aA/2, X, = B/2, X3 = /2, from (12) we
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get (10), since the conditions (11) are fulfilled.

EXAMPLES. 2° The function x - tank x is 3-convex on [0, /2] for
k € (0, 1) U (2, +»), so the following inequality is valid

31+k/2 1-k/2

3 cotan®(a/2) - % tan®(a/2) > -3
For k = 1, we get ¥ cotan A = V3 (GI 2.38), since cotan(A/2) - tan(A/2)
= 2 cotan A. For k = 2, we get the first inequality in

x cotanz(A/Z) 28+ 1 tanz(A/2) > 9,

The second inequality is GI 2.35. These inequalities are a refinement of
GI 2.43.

3° The function x - coskx is 3-convex on [0, /2] for k € (-x, 0)
U [1, 21, so the following inequality is valid

1+k/2 _ k

T cosf(a/2) - ¥ sinf(a/2) < (3 3) /2%,

For k € (0, 2/3] we have the reverse inequality.
For k = 2 we get I cos A < 3/2, i.e. the second inequality from
GI 2.16. For k = -1, we get the first inequality in
I cosec(A/2) 2 6 - 2/3 + I sec(a/2) = 6.

The second inequality follows from Example 4° (c) of (1) in 2.2. For
k = -2, using GI 2.48, we get the following refinement of GI 2.52

T coseCZ(A/2) 28 + 1 secz(A/Z) > 12.

4° The function x - log sin X is 3-convex on [0, 7/2], so the fol-
lowing inequalities are valid:

T tan(A/2) < V3/9 (GI 2.34), 1 cotan(a/2) > 3/3 (GI 2.42).

Remark. In all examples equality holds only for equilateral triangles.
3.2. The following result is a simple consequence of the well-known
Popoviciu inequality for convex functions (AI, p. 174):
If £:[0, m] » R is a convex function, then

3£(n/3) - 2zf<1T > Bl s ze@) 2 0.
EXAMPLES .
1+k/2 , .k k . k 20, for k<0
o - ’
5 3 /2 2% cos (A/2) + T sin A{ <0, for 0 <k <1, (A)
k k k 20, for k<0
° 2" - 2% si ' '
6 3/ Y sin (A/2) + I cos A{ <0, for 0< k< 1, (Aa)
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33

7° 5 I sin AST cos (a/2) Ay,
ge L 2) (A
5 cos A ST 51n (a/2) 2l
g° 31+k/2 - 2% cotank(A/Z) + 7 tank AZ20 for k 2 1 (Aa).

Comment by V. Mascioni. Example 7° may be extended: by Steinig's (9),
there is an s, 0 < s < 2, such that

/Ehr(sin A/2) S Mr(cos A/2) for r < s.

Then, by CebyZev's inequality (AI, p. 36), we have

A)<2—‘/:M2(cos%), (0 < k< s),

M (sin &) < 2Mk(sin %)Mk(cos 5

k

which directly implies 7°,
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Chapter IX

MISCELLANEQOUS INEQUALITIES WITH ELEMENTS OF A TRIANGLE

1. Inequalities Involving only the Sides of a Triangle

1.1. 3(50e/c%) - (fad) (1/a%) > 0. {E}

A. W. wWalker and L. Carlitz, 'Problem 774', Math. Mag. 43 (1970),
226 and 44 (1971), 172~173. -

b2 b2 + c2 a2
2> > e .
1.2. Zcz/B/Z s . {E}

M. S. Klamkin, 'Asymmetric Triangle Inequalities', Univ. Beograd.
Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 357-380 (1971), 33-44.

1.3. abcl P Za3 + Zab(b - a). {E}

|G
IR N}

(9}

M. S. Klamkin, The same reference as in 1.2.
1.4. 3%b/c 2 faZl/a. {E}

M. S. Klamkin, The same reference as in 1.2.

1.5. $(2a - ) (b - c)2 > 0. {E}

This inequality is equivalent to GI 1.6 and to the first inequality in
GI 5.8 (the well-known Gerretsen inequality).
V. N. Murty and W. J. Blundon, 'Problem 708', Crux Math. 9 (1983),
49~50., -

1.6. £ 2/9 + 6/3 are the largest and smallest permissible values of k
in inequality

Za3 2 3abc + klI(b - ¢).

M. S. Klamkin, D. J. Newman, C. C. Rousseau, and D. Shanks, 'Prob-
lem 71-78', SIAM Review ié_(1972), 656-657.

1.7. 3Za2b > 9abc + ZaZaz. {E}

1.8. (Fa)> > M(2b + 2¢ - ay. {E}
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Remark. 1.7 and 1.8 are due to L. Goldstone.

2
1.9. 8(Za3)2 > 9ll(a” + bc). {E}
H. S. Hall and S. R. Knight, Higher Algebra, London (1940), p. 521.

a 3lla

1.10. e TS

This inequality is better than the second inequality of GI 1.16.
D. D. Adamovié¢ and I. Paasche, 'Problem 152', Mat. Vesnik 6 (21)
(1969), 472. -

1.11. Let X > 0 be a real number. Then

psrlas oy 33 (m)
S — a

This inequality is due to W. Janous. A = 3 yields:
C. J. M. Swinkels, 'Problem 2799', Nieuw Tijds. Wisk. 1973, No. 4.

a->b 1
.12, g &=l < =(8/2 - .
1.12 A 5(8v2 5/5)
D. S. Mitrinovié and W. Janous, 'Problem 1080', Crux Math. 12
(1986), 11. -
1.13. 1 2-b¢o.
s - b

S. G. Guba, 'Problem 674', Mat. v. Zkole 1969, No. 5, 76, and 1970,
No. 4, 78.

1.14. Let a € b € ¢ be sides of a triangle. Then

1 € min(a/b, b/c, c/a) * max(a/b, b/c, c/a) < %&1 + 5y,

with equality at the left-hand-side for isosceles triangle; the right-
hand-estimate is the best possible one.

E. S. Langford, D. Singmaster, and G. Singmaster, 'Problem E 1705',
Amer. Math. Monthly Zl'(1964), 680.

n
n §+1 n
n 27« 3 n abc\2
> - - >
1.15. ra 2 T 3 (s + ( < ) }, n=>1. {E}
22 + 32

This is a generalization of GI 1.2.
B. Milisavljevidé, 'Problem 448', Mat. Vesnik 2 (15) (30) (1978),
294-295., -

A
1.16.(a) a'(a -b) 20, Ax>o0. {E}
For A < 0 the reverse inequality is valid.
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) sa'b@ -b) 20, A>2. {E}

(a) is due to M. S. Klamkin (the same reference as in 1.2), and (b)
is given in
V. Cirtoaje, 'Problem 0:473', Gaz. Mat. (Bucharest) 91 (1986), 138.

1.17. Conjecture:
2s(Ivs - a) € 3(Zvbc(s - a)).

W. Janous, 'Problem E 3146', Amer. Math. Monthly 21_(1986), 299,

1.18. Let A £ 1 be a real number. Then

T +b-2)2 <2 -0 (&)

This inequality due to W. Janous generalizes the results of
H. S. Hall and S. R. Knight, Higher Algebra, London, 1940, 523.
I. Stojanov, 'Problem 3', Matematika i Fizika 13 (1982), 334.
M. Selby and L.-W. Yip, 'Problem 233', The ColTege Math. J. 15
(1984), 272-273. -
B. Prielipp, E. M. Klein, and H. S. Lieberman, 'Problem 580', Pi Mu
Epsilon J. 8 (1984), 43 and 8 (1985), 193.

1.19. abcfbc 2 32xyz¥yz and  abclyz 2 2xyzIbc.

A. W. Walker, S. Reich, and M. Goldberg, 'Problem E 2284', Amer.
Math. Monthly 78 (1971), 297 and 79 (1972), 183-184.

c(a + b) > 2(a + b + c¢)

1.20. a+b-c abc

NM(-a + b + c). {E}

N. Pantazi, 'Problem 8969', Gaz. Mat. (Bucharest) B 19 (1968),
372 and B 20 (1969), 228,

1.21. M(-a + b + c)2 2 H(~a2 + b2 + c2).

A. W. Walker, 'Problem 300', Nieuw Arch. Wisk. (3) 19 (1971), 224.
J. Wolstenholme, A Book of Mathematical Problems on=§hbjects In-
cluded in the Cambridge Course, London and Cambridge, 1867, 56.
Generalization. The functions appearing in 1.21 are special cases of the
general function

_ X X X
Dn,s(x) = T ( sa1 + a, + ...+ an),

where s and x are real. Although Walker qave 1.21 for real a, b and c,
here we consider only results for positive values of al, . an. For
example the following results are valid:

(1) « (1))2 > 3D, ,(2).

Dy 1 4,1



MISCELLANEOUS INEQUALITIES WITH ELEMENTS OF A TRIANGLE 147

We remark that (1) becomes an equality if we set a, = a, = a3 and take
the limit as a4 - 0. If we let a, = 0 and then use the elementary in-
2 2 2
equality 3(a2 +b" +c’) 2 (a+b+c), we get 1.21.
2 + >
(2) D3,1(X)D3,1(y) > D3’1(x v) (x, vy > 0),
with equality if and only if a, =a, = ay.
+
(3) Suppose af+y a; Y, a§+y are the sides of a triangle. If x and

’
y are positive and s € 1, then

D S(x)D3

2
3, S(y) > 2(1 - s) D3,S(x +y).

’

C. E. Carroll, C. C. Yang, and S. Ahn, 'Some Triangle Inequalities
and Generalizations', Canad. Math. Bull. 23 (3) (1980), 267-274.

1.22. 22> Lia(s 1—>1/2.
c” 2 \ 52

Proof. If  denotes a Crelle-Brocard point of a triangle ABC, then
B? = (2R sin w)b/c etc. Since also

2 2
Z(bc) = 4F /sin2 w,
the given inequality can be rewritten as
2780 > 4(ra)FR/Nla = Ia.

The latter inequality is now an immediate consequence of the basic tri-
angle inequality, since for any point P, BP + CP > a, CP + AP > b,
AP + BP > c.

J. Brejcha and M. S. Klamkin, 'Aufgabe 771', Elem. Math. 31 (1976),

99, and 32 (1977), 97-98. =

Comment by W. Janous. The right-hand-sides (RHS) of 1.4 and 1.22 are in~
comparable in general. Indeed, if a = b = ¢, then RHS(1.4)/RHS(1.22) =
2/V3 > 1. On the other hand, if a =1, b = ¢ - ©, then RHS(1.4)/RHS(1.22)
- 2/3< 1.

(a + b)Vab 2s\3/2
1.23. % ¥/ e 2 6(§—> . {E}

This inequality is due to W. Janous.

1.24. If %, y, z € R, then

Zaz(x -y)ix - z) 20.

J. Wolstenholme, A Book of Mathematical Problems on Subjects In-
cluded in the Cambridge Course, London and Cambridge, 1867, 24.
M. S. Klamkin, The same reference as in 1.2.




148 CHAPTER IX

2
1.25. Ix = 0= fayz < 0.
J. Wolstenholme, The same reference as in 1.24.

2
1.26. L 3—-= 0 and £x > 0 = xyz < 0,

W. J. Greenstreet and H. W. Curjel, 'Problem 11433', Math. Quest.
and Sol. from Educ. Times 59 (1893), 37.

1.27. 0<as<b<c=

4 < (Za)z/(bc) <9 ({E}, 8K< (Za)z/(ac) < 400,

9 < (Za)z/(ab) < 40 {E}.

L. Ratz and G. Bach, 'Aufgabe 696', Elem. Math. 28 (1973), 76 and
29 (1974), 73-74. =

1.28. (b + c)2(a +b-c¢)(a+c ~-Db) K 4a2bc.

V. Tifui and B. Tudor, 'Problem 18368', Gaz. Mat. (Bucharest) 19_
(86) (1981), 386. o

1.29. F=1=s 2/(s -Db(s - ¢) + v/be

with equality if b = c.
L. Pirsan, 'Asupra problemei E 2955', Gaz. Mat. (Bucharest) B 20
(1969), 139-140.

1.30. If k 2 1, then

5 a 3

>
k(b +c) —a 2k -1 {e}

M. S. Klamkin, 'Solution of Problem 689', Crux Math. 8 (1982),
308-309. B

1.31. Zaz(b + c) 2 48M(s ~ a).

K. Cimev, 'Problem 1', Mat. i Fiz. (Sofija) 5, 4 (1961), 59.

1.32. Za4 + 5abc(Za) 2 Z(Zbc)z.

S. Bil&ev, 'Problem 3', Ob. po Matematika (Sofija), 1984, No. 3, 55
and 1985, No. 3, 59-60.

1.33. (7(Za)2 - ].B(Zbc))3/2 + 9(Za)3 + 54abc 2 36(Za) (Ibc).

S. Bil&ev and D. Mihov, 'Problem 3', Matematika (Sofija) 1984,
No. 5, 38, and 1984 No. 10, 31.
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a b - 4c
1.34. Let g(a, b, ¢) = I T+ B b T a6

. Then

-5/3 < g(a, b, c) € -1,

W. Janous, 'Problem 1079', Crux. Math. 11 1985), 250.
1.35. 2772 2773 L hma® 4 202" 4 Dabeza P >

3

> 2" %me - 2" - %" moen.

This inequality is due to S. J. Bill&ev.

2. Inequalities for the Angles of a Triangle

2.1. Bager's Graphs

Here we give Bager's two graphs of goniometric inequalities. One vertex
in each graph is the constant function 1, the other letters represent
certain normalized symmetric functions of (A, B, C) (a function of (A,
B, C) is called normalized if it takes the value 1 at (w/3, 7/3, ©/3)).
The arrows are numbered and represent the inequalities. For instance,
from the first graph

1

a —> Db

denotes the inequality

(1) %—Z cotan g-cotan <

1]

é»H cosec % .

In each inequality stated equality occurs if and only if A = B = C.
The first graph is from [1]}. Of course, we give a modification of

this graph because the conjectures from this paper were proved in [3]

and [4]. The second graph is given in [2]. Of course, every inequality

from the graphs can be found somewhere in the given references [1-7].

The letters representing normalized symmetric functions for Bager's
first graph are:

1 B o 1 a

a=3y L cotan E—cotan 5o b = 5 1T cosec 5

c = —E»Z cotan A, a = g—E-H cosec A, e = —§~Z tan 2 ,
3 8 3 2
3v/3 A 2 . A 1 A

f = 5 T sec 5 g = §~Z sin 7, h = E—Z cosec 5

. 1 B C . .
i= T—~Z cosec E—cosec 5 j = 8I sin ,
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k:%zsingsin—g, L = 81l cos A, m=%2cosBcosC,
4 . . .2 -4 B <

n—5251nB51nC, 0—3ZcosA, p—9Zcoszc052,
—EZ Lil r—lZseEeg S—EZsecé

4= 37 4cos 7. =3 cgsec g % 2"
8v/3 a V3 a 8v3 .

t=—§—Hcosi, u=—9—-Hcotan5, v=—9—]'[51nA,

V3
w = 3V/31 tan—,x—giZcosec A, y = 3V/31 cotan A.

The letters representing normalized symmetric functions for Bager's
second graph are:

a=lZcos 2(B - 0QC), b = 3V31 cotan A, c = 81l cos A,

3
d=%ZcosBcosC, e=%Zsin2Bsin2C,
f=;—6(2cosBcosC)2, g=2—‘9/iZsin2A=%3—‘HsinA,
h = 641 sinz—, i=-;1—7(2 sin 2A)2 =%H sin2 A,
j=:1))~6Zcoschos2 c, k=%Zsin2 2a, L=%Zcos(B—C),
m =271 tanZ%, n=1—f(2 sin B sin C)2, o =8I sin—g— ,
p=3/3—ﬂtan%, q-;—6~(Zsin§sin%),
r=%ZsinBsinC, s=%Zsin2Bsin2C,
t=—§ZC052A, u=§Zsin—2Pisin%, v=—§—ZcosA,
w=é—f—(Zsin2A)2, x:a‘g—nginA=§—'9/iHcos—§~,
y=£21—7(ZsinA)>=—6%T[cosz§2—, z=%(2cosA),
Al =;—3—Zcoszgcoszg, B' =—;1—Zcos 2B cos 2C,
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Bager's Second Graph
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c' = % ¥ cos B ; ¢ , D = é%(z cos g»cos g)z,

E = %%(Z cos2 %)2, F = g»Z sin2 A, G = é{Z cos 2A)2,

H = %(Z sin 502, I = é—Z c052 %—, J = %7(2 cos %)2,

K = %-Z cos g-cos g—, L = g»Z c032 2a, M = %S-Z sin4 A,
N = iﬁ-Z sin2 2-31n2 %—, o = ggi z s % ’

P = 1§~Z cos4 A, Q = i—%Z c052 A)2, R = 3 L cos A,

S = %%~Z cos4 % , T = %—Z sin % , U = %§'Z Sin4 % ’
v=é§(z sin’ %)2, W=32sin® 2

Remark. Note that using Bager's graphs we can directly obtain inequal-
ities from [8-15].
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2.2. Miscellaneous Inequalities for the Angles of a Triangle
2.2.1. M(1 - cos A) 2 T cos A. {E}
Proof. (M. S. Klamkin) It is known that

IH2 = 2r2 ~ 4R2H cos A = 4R2(H(1 - cos A) - II cos A).

Since IH2 2 0, the above inequality of Bager follows, with equality just
when I and H coincide, that is just when the triangle is equilateral.
A. Bager, 'A Family of Goniometric Inequalities', Univ. Beograd.
Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 338-352 (1971), 5-25.
V. N. Murty, G. Tsintsifas, and M. S. Klamkin, 'Problem 544', Crux
Math. 6 (1980), 153; 7 (1981), 150-153.

2.2.2. M(1 + cos 23) + I cos 2A 2 0

with equality for equilateral triangles or for isosceles right triangles.
This is an inequality of Bottema. Now, we shall give a proof from
'Problem 836', Crux Math., where it was shown that 2.2.2. could be
proved by using 2.2.1.
Proof. (M. S. Klamkin) We assume without loss of generality that
AZ2B=2C. If A = /2, then Bottema's inequality reduces to

%{1 - cos 2(B - C)) =20,

and this clearly holds, with equality just when B = C = /4. If A < 7/2,
then the angles of the orthic triangle are mw - 23, m - 2B, m - 2C; and
Bottema's inequality results if we apply inequality 2.2.1. to the orthic
triangle. If A > /2, then the angles of the orthic triangle are 2A - T,
2B, 2C. If we now apply Bager's inquality 2.2.1. to the orthic triangle,
the result is

(1 + cos 2A)(1 -~ cos 2B) (1 - cos 2C) 2 -cos 2A cos 2B cos 2C,
and Bottema's inequality will follow if

(1 + cos 2B) (1 + cos 2C) 2 (1 - cos 2B) (1 - cos 2C),
or, equivalently, if

cos 2B + cos 2C = 2 cos(B + C) cos(B -~ C) 2 O,
This is clearly true, since both B + C and B - C are less than m/2.

Now, we shall show that Bager's inequality follows from Bottema's

. ) . m™ -
inequality, too. Let ABC be any triangle. Then A' = l———~£Q-, B' =

2
lﬂ—a—gl , C' = lﬂ;%—gl are also the angles of a triangle, and Bager's in-
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equality results if we apply Bottema's inequality to triangle A'B'C'.
Note however that, even though inequalities 2.2.1. and 2.2.2. are
equivalent, the corresponding equalities are not, for equality holds in
2.2.2, but not in 2.2.1. when ABC is an isosceles right triangle.

Generalization. C. Cooper (see Editor's comments in Problem 836) gave
the following generalization of Bottema's inequality:

(1 + cos 2nA) + T cos 2™a > 0.

Proof. (N. S. Mendelson). Proceed inductively. If A 2 B 2 C are the
angles of a triangle, then either

M- 2A, T - 2B, T - 2C or 2A - m, 2B, 2C

are angles of a triangle. Replacing A, B, C in the inequality 2.2.2. by
either of these sets increases the value of n by 1. The only thing to
note is that

cos 2n(ﬂ - 2X) = cos 2n(2X - M) = cos 2n+1X

, n=1,2,3, ...
O. Bottema, 'A New Inequality for the Angles of a Triangle', Crux
Math. 8 (1982), 296-297.
V. N. Murty, M. S. Klamkin, and N. S. Mendelson, 'Problem 836',
Crux Math. 9 (1983), 113; 10 (1984), 228-229 and 320,

2.2.3. 3X sin2 A ~ 2% cos3A < 6.

E. Just, B. Kabak, L. H, Cairoli, and M. S. Klamkin, 'Problem 394°',
Pi Mu Epsilon J. 6 (1977), 366; 6 (1978), 493-495.

2.2.4. (£ sin A)(Z sin A + 8T sin A) 2 4(I sin B sin C)2.

This inequality is due to S. J. Bildev.

2.2.5. T sin® A < (I sin A) (T sin’ %). (£}

A. Bager and H. Frischknecht, 'Aufgabe 672', Elem. Math. ZZ (1972),
68, and 28 (1973), 75. T

2.2.6. L(sin 3A - sin 2A + sin A) 2 0. {E}

E. Braune and H. Frischknecht, 'Aufgabe 716', Elem. Math. 29 (1974),
52, and 30 (1975), 43. o

2.2.7. Z cos B cos” C <

[10vs]

I sin

I. Paasche, 'Aufgabe 250', Mat. Vesnik 19'(25) (1973), 209.
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2.2.8. by tan2 2 2 - 81 sin % . {E}

N

J. Garfunkel and L. Bankoff, 'Problem 825', Crux Math. 9 (1983),
79 and 10 (1984), 168. N

2.2.9. 27 cos A + % tan’ %»> a. (g}

A. Bager and L. Bankoff, 'Aufgabe 671', Elem. Math. 27 (1972), 68
and 28 (1973), 74. T

2.2.10. 4Y tan %»< V3 + I cotan §»< 27 cosec A. {E}

A. Bager and P. Hohler, 'Aufgabe 675', Elem. Math. 27 (1973), 95
28 (1973), 100. -

2.2.11. 2% sin g sin g— /$sin B sin C< I cos A € ¥ sin 2 .

N

These inequalities are due to M. §. Klamkin.
V. N. Murty, G. Tsintsifas, and M. S. Klamkin, 'Problem 544', Crux
Math. 6 (1980), 153 and 7 (1981), 150-153.

2.2.12. 8N sin A € Ii(sin B + sin C) € 2% sin A = 81 cos %—.

A, Viorel, 'On an Inequality' (Romanian), Gaz. Mat. (Bucharest)
B 19 (1968), 336.

~D. MiloZevié and S. Srecékovié, 'Problem 54', Matematika 1 (1979),
74-76.

I
(@]
[\S]

2.2.13. -Z sin B sin C £ I cos B £ %I cos A. {e}

w

J. Garfunkel, G. Tsintsifas, and V. N. Murty, 'Problem 768', Crux
Math. 8 (1982), 210 and 9 (1983), 282-283.

B-Cs>yq.

2.2.14. L cosec % cos

J. Garfunkel and M. S. Klamkin, 'Problem 585', Crux Math. 6 (1980),
284 and 7 (1981), 303-304. -

o
CcCOs —
3/” 2 1 a
— —_—— . L = =
2.2.15. <z a-p S cotan 5 . {E}
COST*‘

These inequalities are due to W. Janous.

2.2.16. y—SinA <-i T cosec A.

(sin B + sin C)2 4



MISCELLANEOUS INEQUALITIES WITH ELEMENTS OF A TRIANGLE 157

L. Constantinescu, 'Problem 17184', Gaz. Mat. (Bucharest) 83 (1978),
211. —_

tan % + tan

2z 2.

€
2
2.2.17. I R

sin B + sin

D. MiloZevic and S. Srecdkovié, The same reference as in 2.2.12.

B + C

3 cos
2.2.18. E-S I ————— < 2.
cos

Remark. W. Janous noted that these inequalities are equivalent to GI
1.16.
C. Popa, 'Problem 18218', Gaz. Mat. (Bucharest) 85 (1980), 163,

cos A 3
—_—— > =
2.2.19. 2 cos(B-C) ~ 2 °

V. Stoican, 'Problem 9720', Gaz. Mat. (Bucharest) B 20 (1969), 441
and B 21 (1970), 148.

2.2.20. (I sin %)(2 cotan 5) > 92—‘/5 )

D. Mavlo, Matematika (Sofija) 1985, No. 10, 48.

2.2.21. -3/3/8 < ¥ sin(B - ©) cos3 a < 3/3/8.
M. S. Klamkin, 'Aufgabe 941', Elem. Math. 41 (1986), 78.

2.2.22, 1f, in a triangle, we have a > b > cor b > c > a, or ¢ > a > b,
then

(51n B\cos A <1,

sin ¢/

H. W. Segar, 'Problem 10615', Math. Questions 59 (1893), 93-94.

2.2.23, I1f X € (-», -1] U [0, +0)), then

z cotanA %—? 3(X+2)/2. {E}

Proof. Using the arithmetic-geometric mean inequality and GI 2.41

i.e. Il cotan As 3v3, we get for A € [0, +)
> g

A

¥ cotan

(A+2) /2

QJA/B

2 3(Il cotan 5

N1

2 3

Using the inequality for means of order A (< -1) and -1, and GI
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2.33, i.e. I tan %—? V3, we get for A € (==, -1]

LAy 55 o s /2

L cotan Z 3(%—2 cotan 2) 2

N[

In both cases equality holds if and only if the triangle is equilateral.
Remark. The above result is a generalization of GI 2.35, 2.36, 2.41
and 2.43. The case A = 0, *1, *2, ..., is given by V. F. Zvezdin.
V. F. Zvezdin, 'Problem 488', Mat. v Zkole 1968, No. 3, 65 and
1969, No. 1, 77.

2.2.24. sin L < ¥ sin L
n n

<% (ME€R, n>1).

I. Bursuc, 'Problem 18378', Gaz. Mat. (Bucharest) 85 (1980), 365.

1 sin A
2.2.25. __2‘<ZTB-_W":‘A—)< 0.

S. G&in¥, 'Metoda functiilor convexe', Gaz. Mat. (Bucharest) 85
(1980), 245. _—

2.2.26. V3 + 5% cotan A 2 3% cosec A. {E}

We were informed of this result, which is better than GI 2.62, by
W. Janous.

2.2.27. sin2 A + sin B sin C € %% .

S. Berkolajko, Kvant 1980, No. 1, 9.

2.2.28. Let m be a positive real number. Then

This is a result of E. Mutu. For m = 1 we get a result of C. Ionescu-
Tiu.
Proof. (W. Janous) Let
A - B A -C 2A - B - C C -B

t = sin 5 + sin 5 = 2 sin 7 cos 7 =

= 2 sin 38 - T cos c-B
= i m 2 .

Since m > 0, the desired inequality becomes

A\

y(m) = m2 - 2mt + 2(1 - sin %éj 0.

The function m - y(m) has its minimum for m = t, i.e.
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y(t) = -t7 + 2<1 - sin %é> =
- 2 ¢ -

= 2/1 _ sin 22 _ 2 sin? AT o2 C B) 2

\ 2 4 4 )
> 21 - sin 22 _ > 51n2 38 - m =

2 4

{ (3 3n\ _

= 2\cos<2 - 2> sin > = 0.
Remark. Of course, y(t) = -A/4, where A is the corresponding discrimi-

nant, therefore A < 0, and y(m) > 0.
E. Mutu, 'Problem 18008', Gaz. Mat. (Bucharest) 12 (1970), 728.

2.2.29. Let m be a real number. Then

B -C
2

m(m -~ 2) sin %—+ cos 2 0.

Proof. Let us consider the quadratic inequality

m2 sin 2 _ 2m sin 2 4+ cos BEC >
2 2 2 7

0.

A
Since the discriminant A = 4 sin 5 (-2 sin g-sin %) £ 0, the inequality is
true for every m € R.

2.2.30. sin2 B + sin2 C< 1 + 2 sin B sin C cos A.

D. Andrica, 'Problem 16048', Gaz. Math. (Bucharest) 81 (1976), 337.

2.2.31. cosec A + cosec B 2 8/(3 + 2 cos C).

Z. Mijalkovié, 'Jedna nejednakost o trouglu', Matematika 2 (1978),
67-68. -

2.2.32. Let 0<r, s, t € 1. Then

0 < sin rA sin sB sin tC < sin ra, sin sB, sin tCO,

where A B

0 C, is the unique solution of

0" 0

r cotan rA = s cotan sB = t cotan tC.

This result is due to W. Janous and it is a generalization of
GI 2.10, 2.11 and 2.13.

2.2.33. The following results are valid:
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CHAPTER IX
0< t<1/2=23 sin2%<z sin® ta < sin® tr;
— 2 2
1/2 <t < % arc sin % V3 - /3 = 3 sin %I-< T sin” tA <

<25in2t2:—ﬂ;

3 arc sin 1—v3 -/3<t< 3 arc cos £§2—1~l =
il 2 ™ 8
sin2 tnr < I sin2 ta < 2 sin2 %E ;
%—arc cos !§§§:—1»< t<1 = sin2 tr < X sin2 ta < 3 sin2 %1 .

Remarks. 1° %—arc sin %»¢3 - ¥3 = 0.571077...

%-arc cos ziig:—l = 0.8937467...

3 - 2(Z sin2 ta)

2
2° Using X c052 tA = 3 - 7 sin tA and X cos 2tA

2
inequalities are easily obtained for I cos taA, O <t <1, and for
Y cos tA, 0 < t € 2.

These results are due to W. Janous, and they are generalizations of

GI 2.3, 2.14, 2.21, 2.29 and 2.16.

2.2.34. 3/4 <L cosA-7Y cos B cos € <2 in each triangle,

3/4 <% cos A-1JY cos Becos C<1 in acute triangle,
(2v/2 - 1)/2 < I cos A -L cos Bcos C <2 in obtuse triangles.

These results are due to W. Janous, and they are improvements of

(Iv.1.12).

2.2.35. 3/4 <1 sin % - I sin g»sin %—< 1 in each triangle,
., A .. B ., C .
3/4 € ¥ sin 5" Y. sin 7 sin §'< (2vV2 - 1) /2 in acute

triangles,

V2 - V211 - 1/V/2) +(3/§—2)/4<2sin%—zsing

.. C
sin > <1
in obtuse triangles.

W. Janous, 'Problem 1154', Crux Math. 12 (1986), 139.

2.2.36. 3 sin(2AT/3) € I(tan AB + tan AC)/(1 + tan AB tan Ac) <
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< 2 tan AT,

where 0 < A < 1/2.,
This is a Janous' generalization of a Stocker's problem.
Hj. Stocker and W. Janous, 'Aufgabe 923', Elem. Math. 41 (1986),
74-175. T

2.2.37. Let 0 < A < 1/2. Then

Y cos AA 2 2 + V2 cos(AT + %) + I sin AA.

This result is due to W. Janous. For A = 1/2, we have a result from:
M. S. Klamkin, 'Problem E3180', Amer. Math. Monthly 93 (1986), 812.

2.2.38. It is known that k = (log 9 - log 4)/(log 4 - log 3) is maximal
such that (see VI.1.5):

M o= Mk(sin A, sin B, sin c) £ V/3/2.

(a)*Determine for p > k the least value m(p) such that M (S) m(p) .
(b) Let 0 < t < 1 and k < 1. Then P

(1) Mk(sin tA, sin tB, sin tC) € sin(tm/3).

(c)*Find the maximal k = k(t) such that (1) is valid (From (b) it
follows k 2 1).

This result is due to W. Janous; (b) is a generalization of GI 2.6.
and (a) and (c) are conjectures.

2.2.39. (i) If k < 3, then

(1) Mk(sin A sin B, sin B sin C, sin C sin A) < 3/4.

(i) 1f 3 < k € 4, then

(2) Mk(sin A sin B, sin B sin C, sin C sin A) < 3—1/4.

(iii) If A < B < C and cotan2 % 2 7, then for k € 1 + cotan
is also valid.

Remark. (i) for k = 1, 2, 3 and (ii) for k = 4 were proved by
V. vajditu. J. E. PeCarié and B, Crstici noted that a simple extension
of his proof gives the above result.

2 A
5 (1)

2

T
2.2.40. YBC log A < 3 log (A, B, C in radians).

w|=x

We were informed of this result by W. Janous.

2.2.41. 1f A < B, C, then
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A 9 1
= <L - = il
5 S arc cotan (V3 Tt z A)'

This result is due to V. Mascioni.

B ~
2

2.2.42, §§-Z sin A € I cos ¢ <~%? Y cos % . {E}

J. Garfunkel, 'Problem 1083', Crux Math. 11 (1985), 288.

Proof and comments by C. Tindsescu. We first perform some trivial
transformations, after assuming, with no loss of generality, A 2 B 2 C,
A - B A - B T - 3C

+ 2 cos cos I cos L cos ¢ +
4 4 ! 2 2

C
= cos

B
L cos

A

. . A -
2 cos cos , L sin A = sin C + 2 cos cos E—. So, by

2 2
putting t = cos((A - B)/4) € (1/¥2, 1], the left and the right inequal-
ity, respectively, become

&L N
N

8 C, 2 m - 3C
(1) h(t,C) = (73 cos 2)t - 2 cos —4—— t +
4 C 2
- = i <
+ (1 75 cos 3 + 735 sin c) &0,
2 m - 3C 2 mT - C 2 C
.C) = 2 r=o>% _ -1 - g
(2) g(t;C) t~ + 2(cos 7 735 cos 7 )t 1 75 cos 7 S
. 8 C )
Since C € [0, m/3] and h(0;C), g(0;C) € 0 (7§ cos §> 2), it
suffices to check that
h(1;c) €0, g(l;0) <0,
moreover, since h(1;m/3) = g(1;m/3) = 0, it finally suffices to show
d ; d :
that héé’c) >0, géé,c) >0, ¢ € [0, m/3). And this is true. Indeed,
we have:
dg(1;C) _ 6 - 4 ) sin m - 3C . 4 (sin T - 3C + i 2Cc
ac 73 1 V3 4 sy

simply because sin(a + B) < sin o + sin 8 on [0, w/4]; further,

éhiligl—= 2 (cos C - cos - C) - Evsin m-3c_
ac V3 2 2 4
_ ... m=-3C 4 . m+C 3
= sin — ( 75 sin — Eﬁ >0,
because sin & Z C> sin %-> égz , on [0, m/3).
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Hence, both inequalities are strict for € € [0, 7/3) and become
equalities if and only if C = 7/3, i.e. A = B =C = 7/3, ABC is equi-
lateral.

Remark 1. An almost similar device, i.e. the study of some appro-
priate second degree function, is used in the solution of the following,
apparently insignificant problem: prove that for any non-degenerate tri-
angle the following holds:

A 2 sin B sin C B ~-C
- i 2> L 200 P 2w 2 -
(3) 1 - 8.1 sin 52 5o C (1 cos — ). {e}
cos
2
B -C

Set t = cos € (0, 1], x = sin(A/2) € (0, 1) and (3) reads:

2
fix;t) = 2(1 + t)x = 4t2x + (t + 2t2 - 2t3) 20,

where, for t € (0, 1],

2
. _ t . _t(l - )t +3) S
min £ (x;t) = f<3~:—g,t> = T+ 1 2 0.
XER

So, the transformed inequality holds, with equality if and only if t =1,
2
t 1
X =T, £ 32" i.e. (3) holds, with equality if, and only if, B = C,
7/3, that means only for equilateral triangles.
But (3) is not so insignificant as it appears because it is the
goniometric transcription of a very interesting (and strong) linear in-

equality, namely

1]

(4) R-2r2w_~-h
a a

(see also IX.11.19), due to L. Panaitopol. We are not able to give a
viable geometric interpretation to (4): possibly that would involve the
Euler nine points circle, or Feuerbach points, etc.

Remark 2. Although (1) and (2) are of great interest and beauty
when written in goniometric form, they are also equivalent to some power-
ful and subtle metric inequalities, as one can see below.

h
First, since cos B ; €. WE-’ (1) reads, succesively,
a
2s ha 2s 2F

< - < Pasla,
(5) el \zwa {E} =’_TR3\Zawa=’

= -1 -1 4s 1

< < —_

(6) (RrV3) < Z(awa) or TPl % pom (see also IX.11.9) =

= (rzr‘/i)‘1 < I(b + ¢)/(2abc cos

N
3
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8s b+ ¢
gy btc -
(7) 75 S z o A {e}, (see also IX.4.10 for p 1).
2

And now some trivialities: (5) also reads as

4s/v3 < Zoc/w_ {e}; 2s/R/3 < Ihy /v {E},

where (hl' h2, h3) is some permutation of (ha, hb’ hc)'

h
- A ; - :
From: I v < 7§-Z cos 5 {E}, we get the following conjecture:
h
1 2 A
— < =
ZWa\ﬁZcos2.

For isosceles triangles it is highly plausible and, in this problem, to
be isosceles is not a drastic restriction.
Finally, we shall note that the following result, i.e. 2.2.43 is a

A
simple consequence of the first inequality in 2.2.42 (put A %-g -5
etc.).
a_ 3 B ~C
agX
2.2.43. ¥ cos 2.\ 5 L cos 2 .
J. T. Groenman, 'Problem 1152', Crux Math. 12 (1986), 138.
2.2.44.  I((/3 + 1) cos%—sin%)_1>|/6—3\/§.
S. Bil&ev, 'Problem 1158', Crux Math. 12 (1986), 140.
A . A
cos 2 4 sin 2 cos 2 - sin 2
4 < 4 4 <
2.2.45, 5T ) B = C
cos —— sin | 2 |
2 cos %—— (2 sin %)1/2
< B - C . B-C B-cC1/2°
cos + sin | 7 | - (cos ——5—4

Proof. (B. Crstici). Let B > C. Put A/4 = x, (B - C)/4 = y. The
first inequality becomes sin(x + y) < cos(x + y), what is true since
x +y < 7/4. The second inequality becomes

2
cos X - sin x < (4 cos” x - 2 sin 2x)(cos y + sin y + Vcos 2y)
sin y (1 + sin 2y - cos 2y) (2 cos x + V2 sin 2x)
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(1) V/sin x(sin y + cos y) < /cos x « /cos Jy.

We noted that x + y < m/4. Also, we have x + 2y < T/2. Hence

™

sin x < sin(; - (x + 2y)),
i.e.

sin x < cos(x + 2y),
i.e.

. . 2 .

sin x(sin y + cos y)~ < sin x cos 2y,

i.e. (1).

C. Ionescu—?iu, 'Problem 10465', Gaz. Mat. (Bucharest) B 21 (1970),
421.

2
(m - A) sin A < 8™ \3
2.2.46. 1 = I 2§\<7'3 5) - {}
2

CcOs

2.2.47. % sin(% +B) > 7 sin a.

'Problem F 2600', K&6z. Mat. Lapok 36 (1986), 319.

3. Inequalities with (R, r, s)

R r 5
= —_—> =
3.1 C T2 - (B}
L. Bankoff, 'Problem Q 417', Math. Mag. 40 (1967), 289.
3t/2
3.2. Gt Sl w>0. (&)
R R 2t

This generalization of Onofras' inequality is given by I. Tomescu
(see also paper of F. Fanaca, where many known inequalities are proved
by using Jensen's inequality for convex functions).
E. Onofras, 'Problem 18300', Gaz. Mat. (Bucharest) 85 (1980), 266
and 86 (1981), 31-32. -
I. Tomescu, 'Problem C 69', Gaz. Mat. (Bucharest) 85 (1980), 481.
F. Fanaca, 'Citeva demontratii ale inegalititii 1ui Euler cu
ajutorul inegalitatilor algebrice, Aplicafii'. Gaz. Mat. (Bucharest)
87 (1982), 16-20.

3.3. If 4 = rs/R, then

2
2 2ds 3Rrv3 s
< < < < <
373 2dr € 3r“V/3 < 373;\ rs & 5 S 375

N

2
<§_R<3R/§
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K. Schuler, Praxis der Math. 9 (1967), 344.

3.4. If 4 = rs/R, then
9/3r - s € 44 € 6/3r < 2s < 3/3R.
I. Paasche, 'Problem 165', Mat. Vesnik 10 (25) (1973), 97.

3r (4R + r) < r < 3r < r (4R + r)
(7R - 5py2 2R -r 4R+ r (2R - 1) (2R +5r) °

< r(16R + 3r) < r < r (16R - 5r) <

(4R - r) (4R + 7r) R +r (4R + r)2

s 2 R
= L — <
AR+ 1) T 2(2R - 1)

2 2
< 4r (12R - 11Rr + r ) < (

(3R - 2r) (4R + r)2

< 4R2 + 4Rr + 3r2 2
=

(4R + r)2

1 4R + ¢ R
< =K <
S 37T 27r T 4r(R + r)

This result, due to S. J. Bil&ev, is an extension and interpolation
of results from:
A. Bager and O. Reutter, 'Aufgabe 688', Elem. Math. 28 (1973), 20
and 29 (1974), 18-19. —
A.=§}ger, Private communication.
Remark. In his solution of Aufgabe 688, L. Bankoff gave the fol-
lowing inequalities

2r (4R + r)2/(2R - r) < 2r(4R + r)2/(R + )<
2
€ 2r(16R - 5r) < 2s .

3.6. 232 2 r(20R - r + V3(12R + r) (4R - 5r) 2 32Rr - 1Or2. {E}

A. Bager and O. Reutter, 'Aufgabe 690', Elem. Math. 28 (1973), 48
and 29 (1974), 46-47. T

3.7. If x = r/R and y = s/R, then
y =2 vx(/6 + V2 - x). {E}

V. N. Murty and B. Prielipp, 'Problem 850', Crux Math. 9 (1983),
144, and 10 (1984), 241-242. -

3.8. VF <R + (r/2).

This inequality is due to G. Mircea.

3.9. 2+ rR(1 + V/ZT) + 2 - SR(5 + V27) + R2(6 +2/27) 2 0. {E}
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I. Paasche, 'Problem 332', Mat. Vesnik 12 (27) (1975), 221.
3.10. Let u and v be constants such that the following inequality

2 2
(1) uRr - vr~ < s

holds for every triangle. If in (1) equality occurs for equilateral tri-
angles, then 2u - v = 27, u € (-, 16}, v € (-, 5}. If we out t, = 16 -

u = %{5 -v) for i =1, 2, 3, then

tl(Rr - 2r2)

o

—2452 - 27r2) + uRr - vr2 < 52
16

t

5—3(252 - 27Rr)

AN

are the best possible improvements of (1), if £ 2 0; 0 t, < 16, i.e.
u20; and 0 € N €5, i.e. v20.

I. Paasche, 'Problem 330', Mat. Vesnik 12 (27) (1975), 218-220.

3.11. The maximum values of the positive numbers A, B, C, D, E such that
the inequalities

2 2 2 2 2
0< Rr -~ 2r < s - 27r < 2s” - 27Rr < R™ - 2Rr <

1 A B C

27R - 452

holds for any triangle are:

A=16,B=5,C=D=§,E=@——+§5——— 7

I. Paasche and A. Bager, 'Aufgabe 743', Elem. Math. 30 (1975), 63
and 31 (1976), 67-70. —_
0. Bottema, 'A Triangle Inequality', Elem. Math. 33 (1978), 36-38.

3.12. The best possible constants x and y in the inequalities

0 < s —2r¢27 < R - 2r < RV27 - 2s
X y

are x = 1 and y = V27 - 4.
I. Paasche, 'Problem 332*, Mat. Vesnik 12 (27) (1975), 220-221.

3.13. If M = sup{p:s 2 V27 (%)p rl_p}, then M = %
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This is Bottema's answer to a problem of A. Makowski.

A. Makowski, 'Problems and Remarks on Inequalities for a Triangle',
Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 412-460
(1973), 127-130. -

0. Bottema, 'Two Problems of A. Makowski', Ibid. No. 412-460
(1973), 131-133. -

3.14. For k 2 1, we have
2 2 2
(k + )rl[2(k - 1)(7k - 9)R” - (k° + 17k - 16)Rr + 4r ] <

2
< (k - k(& - DR - 4rls”.
For k = 3, we have the first inequality in

2 Ar 2 2
> - > -
s Z T (12R 11Rr + r~) 2 r(16R 5r),

what is an interpolating inequality for the well-known Gerretsen in-
equality (GI 5.8).
S. J. Bil&v and E. A. Velikova, GT (k)-Transformation for a Tri-

angle and Some Applications, (to appear).

4. Inequalities for the Sides and the Angles of a Triangle

4.1. 1f A2 B 2 C, then Za(C - B) 2 0.
M. Martin, 'Problem 11576', Gaz. Mat. (Bucharest) B 22 (1971}, 680.
F. Cirjan, 'Problem 16354', Gaz. Mat. (Bucharest) §2Vil977), 20 and
179-180. o

4.2, Let p> 0 and x, y, z and X, Y, Z be any permutations of a, b, c
and A, B, C, respectively. Then

a-b+cp p/3
Z(——XX )T > 3(2/m) .

This result is due to W. Janous, and it is an improvement of a
result of C. T. Nedelcu ('Problem 18227', Gaz. Mat. (Bucharest) 85
(1980), 164). T

4.3. 833H(s -a) 2 (Za2)3H cos A.

A. W. Walker, 'Problem E 2245', Amer. Math. Monthly 77 (1970), 652;
78 (1971), 793-795; 79 (1972), 1034 and 80 (1973), 809-810.

4

4.4, % cos <

|

1
2 abc

Ngo Tan and H. Charles, 'Problem 608', Crux Math. 7 (1981), 49 and
8 (1982), 27. =
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c N b
cos B cos C

4.5. T ¢ - a) > 27abc. {E}

R.R. Janié and I. Paasche, 'Problem 172', Mat. Vesnik 1 (22) (1970),
275-276. -

4.6. The following ineqgualities are valid

(1) za” cos A <-% £ a"Tcos A < %—Zan < (g_ZaZn—l)l/Z;

(2) va" tan %-2 % 7a"% tan 2 > gi £a® > 3(za™ T tan % ;
. A 1 .

(3) za" sin 5»? E-ZanZ sin % > 413" sin % ;

(4) za" cos %—<v%-2an2 cos % < gE»Zan < (%E Zazn_l)l/2

with equalities if and only if the triangle is equilateral.

Proof. Here, we shall give only proof of (1). The proofs for the
other results are similar. If a € b € ¢, then cos A 2 cos B 2 cos C,
and using the Ceby3ev inequality for monotone sequences we get the first
inequality in (1). The second inequality is equivalent to GI 2.16, and
the third is a simple consequence of Cauchy's inequality.

Remark. (1) and (2) are generalizations and refinements of results
of A. V. Nikulin and R. L. Sejncvit (Mat. v 8kole 1975, No. 6, 69-71).
(2) is also a generalization and refinement of an inequality of W. Janous
('Problem 0:88', Gaz. Mat. (Bucharest) 85 (1980), 392 and 86 (1981),
170) . (4) is a refinement of an inequal??& of D. M. Milo3evi¢ ('Aufgabe
921', Elem. Math., 40 (1985)).

Comment by W. Janous. The following generalizations of (2-4) are
valid:

37P/250 > 3P (2a™ T tanP 2

2
>
") 7a® tan® %> % $a5 tanP %>{ 3oy /2 Xhere p; 1
3P ah i tan 3
where 0 € p € 3,
(3" Ta© sin® %—2 %-za“z sin® %»2 23_p(2an)ﬂ sin % ,
where 0 € p € 3,
(4" ra" cosP %»< %—Zanz cosP %~< (%—p/zZan < 39/221_p(§-Za2n-1)1/2,

where 0 € p < 2.
4.7. Let u, v, w20, u+v+w<9, r, s, t20andqg> 0. Then,

sin A, r in B,s in C, t -
uf( '\ YT+ V(Sl; )T+ w(Eig——J < 5a%a74,
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Remark. For r = s = t = 1 we have a result of W. Janous. For u = 4,
v=2,w=3, r=s=1, t =0, we have a result of G. F. Molea.
G. F. Molea, 'Problem 19833', Gaz. Mat. (Bucharest) 88 (1983), 334.

. . 2
4.8, Vsabc sin C < 1 T6e < ab sin 9 + sC .
2 4/s sin C

2
ab sin C + sc

Remark. This is a correction of a result of N. Plesu.
N. Plesu, 'Problem 19912', Gaz. Mat. (Bucharest) 88 (1983), 419
and 89 (1984), 372-373. -

22 .3
ac sin B
b A"
bt =2
cos >

4.9. Zaz(b +c) 26

M. Voicu, 'Problem 17746 and 18255', Gaz. Mat. (Bucharest) 84
(1979), 192 and 341-342, and §§ (1980), 214. —_

4.10. For p =2 1

b

T(a + b) sec® > 42//3)Fs.

[S1¥e]

W. Janous, 'Problem 1172', Crux Math. 12 (1986), 205.

2
4.11. 3%a < 1la/a, 3%a > mSa‘/a.

A. Oppenheim, 'Problem E 2649', Amer. Math. Monthly 84 (1977), 294.

4.12. b/c > B/(A + B) and a/c > A/(A + B).

J. V. Uspensky, 'A Curious Case of the Use of Mathematical In-
duction in Geometry', Amer. Math. Monthly 34 (1927), 247-250.

4.13. ghelz cosA-1) r——7> 4
(b - a)(c - a)

This inequality is due to S. J. Bil&ev and E. A. Velikova.

5. Inequalities with (a, b, c¢) and (R, r, s or F)

The main method for generating inequalities with (R, r, s or F) and
other elements of a triangle is the use of identities and the main in-
equalities with (R, r, s or F) (i.e. inequalities GI 5.1, 5.3, 5.4,
5.8, 5.9, 5.10, 5.11, 7.9, 7.10, 7.11), as we said in chapter V. Of
course, the best possible inequalities could be obtained by using GI
5.10 and 7.11 i.e. the well-known fundamental inequality. Here we shall
give only three examples of applications of this inequality.

5.1. 36r2 < 18Rr < 12r (2R - r) <
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< 4R2 + 16Rr - 3r2 - 4(R -~ 2r)¢§2 - 2Rr € Za2 <
2 2 2
< 4R” + 16Rr - 3r° + 4(R - 2r) - 2Rr <

< 8R2 + 4r2 < 9R2

Remarks. 1° Of course, the most interesting inequalities are

2 < 8R™ + 4r2. {E}

(1) 12r (2R - r) < Za
Note that using Theorems III.13 and 14 we can also consider the best
possible inequalities of the form

2 2
Zaz < uR” + VRr + wr (u, v, w € R) and

2
Zaz > uR2 + VRr + wr (u, v, w € R).

These results are
5a2 < a(1 - 0%) V(2R + 2ReO(1 - 50) +

+ r2(1 + 40 + 2@2)) (oso<, {E},

and

ral > a1 - wz)'l(-zwzaz + 2Rr(3 + w) -

- r2(3 + 4w ¥+ wz)) oOo<w<1)., {E}

Similarly, we can get several results of the same type (for some results
of this kind see paper of M. Mar&ev).
2° 0. MuZkarov considered the inequality

2 2
Ta_ < kR2 + jr

and showed that there must be k 2 8 and j = 4(9 - k). The best inequal-
ity of this type holds for k = 8 and j = 4 (L. Panaitopol).
3° Of course, the above results are generalizations and extensions
of results from SM, p. 39 and GI 5.13, 5.14 and 5.15.
L. Liviu, 'Problem 17055', Gaz. Mat. (Bucharest) 83 (1978), 82.
M. Marlev, 'Neravenstva meZdu perimet'ra i radiusite na vpisanata
i opisanata okr'Znost na tri'g'lnika i njakoj sledstvija od tjah’,
Ob. Matematika (Sofija) 1 (1976), 3-7.
0. MuZkarov, 'V'rhu edin vid neravenstva v tri'g'lnik', Matematika
(Sofija) 16 (1977), 32-35.
L. Panaf%bpol, 'A Geometric Inequality' (Romanian), Gaz. Mat.
(Bucharest) 87 (1982), 113-114.




172 CHAPTER IX

2 2 2 7 o«
5.2. 36r° € 18Rr < 20Rr - 4r° € 2R” + 14Rr - 2(R - 2r)¥R® - 2Rr <
2 2

2
< Zab € 2R” + 14Rr + 2(R - 2r) R2 - 2Rr S 4(R + r)” < 9R".

Remark. This result is a refinement of GI 5.16, 5.17, 5.18, 5.19, 5.36,
SM p. 39.

5.3. 8r(R - 2r) S 4(R-2r)(R+r - VR(R - 2r) S Q = Z(b - c)2 <
< 4(R -2r)(R + r + YR(R - 2r) € 8R(R - 2r).

Remark. This is a refinement of GI 5.25.
A. Lupas, 'Problem 441', Mat. Vesnik g_(15) (30) (1978), 293.

2
5.4. 24/§r3 < 12/3Rr” € abc € 4Rr(2R + (3V/3 - 4)r) <

< 6/§R2r < 3/§R3, {E}.

Remark. This result is a refinement and extension of results from SM,
p. 39 and GI 5.27.

5.5. 72/§r3 < 36/§Rr2 < 12/§r2(5R - 4r) < 4sr(5R - 4r) < Za3 <
< 4sR(2R - r) € 4R(2R + (3/3 - 4)r)(2R - x) <

< 6/§R2(2R -ry. {E}

Remarks. 1° The above result, an interpolation of a result from SM, p.
39, we obtained using results of Bottema-Veldkamp and Tsintsifas-
Klamkin.

2° Since sr = F, we have the following refinement and extension of
GI 7.7

3

Ta® > 4F(5R - 4r) > 8F(2R - r) > {4‘@“5 - ©/3)

19FR } 2 24rF 2

> 72/3c. {£}

This is a result of A. Bager.
O. Bottema and G. R. Veldkamp, 'Problem 364', Nieuw Arch. Wisk.
22 (1974), 79 and 22 (1974), 266-267.
“A. Bager (1972), Private communication.
G. Tsintsifas and M. S. Klamkin, 'Problem 816', Crux Math. 9
(1983), 46 and 10 (1984), 157. N

2
5.6. 192/§r3 < 96/§r2R < 12/3r " (9R - 2r) € 4sr(9R - 2r) <

2
<IN +c) € 4s(2R” + 3Rr + 2r2) <
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2 2 2 2
4(2R + (3V3 - 4)r) (2R” + 3Rr + 2r°) € 6/3R(2R" + 3Rr + 2r°) €

<2438, {m)
Remarks. 1° This is an interpolation of a result from SM, p. 39.
2° The fourth inequality is equivalent with the first inequality
in
6
M(b + ¢) 2 4F(9R - 2r) > 2 Fr. {E}

This result is a refinement of the following result of I. Dorobantu

e - %) > %482, (g}

3° Note that M. S. Klamkin proved

(b + ¢c) € 4s(2R2 + 3Rr + 2r2) < 8sR(R + 2r). {e}

I. Dorobantu, 'Problem 9470', Gaz. Mat. (Bucharest) B 20 (1969),
162.

G. Tsintsifas and M. S. Klamkin, The same reference as in 5.5.

V3 _ 2(5R - r) 5R - r 5R - r 1
5.7. = < < < €I =<
R 3‘/?)Rz R(2R + (3V/3 - 4)r) Rs a
2 2
< (RR+Sr) < (R + r; < /51; . (m
r 3v/3Rr 4r

Remarks. 1° This is an interpolation of a result from SM, »p. 39.
2° Since rs = F, we have

2
r(5R - r) 1 (R + r)
P Bt S Y oK A s
RF SLos RF ’

{}

1]

what is better than GI 7.12. We also have

iy <
R a Rr - {e}
2 2.2 3
5.8. <L & pr) R L (w)
R a R r  (16R - 5r) 4r

Remark. This is a result from SM, p. 39. The first inequality was given
by M. Erdman.

M. Erdman, 'Problem 3', Matematyka (Warszawa) 111 (1970), 367.

1
<=L DK .
(D) T {E}

<-4
4r

1 L
2rR 2
a
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Proof.

2rR  abc abc bc

1 2s a+b+c_ 5 l__< %{Z éJZ <

A. W. Walker and H. Meyer, 'Problem E 2248', Amer. Math. Monthly 77
(1970), 765 and 78 (1971), 678. -

2 2
6 < 7R - 2r.< 5 b +c < 2R + Rr + 2r < 3R (£}

R a Rr r

5.10.

B. M. Milisavljevié, 'Some Inequalities Related to a Triangle',
Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 498-541 ,
(1978), 181-184. -

SM, p. 40.

R2 + 3Rr + 2r2 s a 6R
r -
< <
28 e SoR - or {e}

2
2R+ 3Rr + 2r
B. M. Milisavljevié, The same reference as in 5.10.

5.12. 5 min ((a - b)2, (b - )2, (c - a)?) € s° - BRr - 2r°

Remark. This is a problem of M. S. Klamkin. He remarked that the
problem was suggested by an inequality of D. S. Mitrinovicé¢ (Amer. Math.
Monthly 75 (1968), 1124).

M. S. Klamkin and A. A. Jagers, 'Problem 346', Nieuw Arch. Wisk. 21

(1973), 178 and 22 (1974), 90-91. =
Comment by C. T#nisescu. The following inequality is also valid:

(1) min ((a - b)2, (b - c)2, (c - a)2) < 2r(R - 2r)

with equality if and only if s2 = 9r (2R - r).

(1) is best on the set of all (R, r)-triangles, taking s as free
parameter.

From (1) we easily deduce

(2) min ((a - B)2, (b - )2, (c - a)) < R%/a,

with equality if and only if r = R/4, s = 3y7R/4, or equivalently, after
performing some trivial calculations, if and only if the sides are pro-
portional to the numbers v7 - 1, V7, v7 + 1, respectively. This result,
i.e. inequality (2), is due to L. Panaitopol.

Of course, (2) is also the best inequality on the set of all R-tri-
angles with r and s as free parameters.

Another similar result is:

2
If Q =2(a-b), D= 1Il(a - b)l, then we have

(3) Q0 min (la - bl, Ib - cl, lc - al) < 3D,
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with equality if and only if either the triangle is isosceles, or the
sides form an arithmetic progression.
Remark 1. Of course (3) is equivalent to

2 2

(4) 0% min ((a - )2, b -2, (c -a)?) <92,
Remark 2. Both (3) and (4) are still valid for any real numbers a, b, c,
with the same equality conditions.

Remark 3. For the specialization n = 3 the Mitrinovié-PreZié inequality
(AI p. 341) reads

(5) min ((a - B)2, (b - )2, (c - @2 < 9/6.

It is less sharp than (4).
L. Panaitopol, 'Problem C:2', Gaz. Mat. (Bucharest) 85 (1980), 4.

5.13. Za2wﬁc/(z/é)2 < R2. {E}

Remark. This is a result of I. I. Tomescu. Using the idea of his proof
and 5.1. we can get an interpolation of this inequality, i.e. the fol-
lowing result is valid:

2

zaZ/az/(z/aﬂ € = ra“ < (2R2 + r2) < R’%. {E}

O
Ol

Comment by W. Janous. Let g be an arbitrary positive real number. Then

p,,p+l
2 3
I( s)*/ 1 -

zaP (be) 3/ (zad) 2 <
1P o2 4 £2)P/2 5140/2]

N

0<p<s1,
< rP/317P/2, fj

1<p<2.

I. I. Tomescu, 'Problem 9374', Gaz. Mat. (Bucharest) 20, B7 (1969),
425-427., T

2

5.14. 9r” < Ixy < 2

R“. {E}

o

SM, p. 40.

3/3

5.15. 3/3r° < xyz < r2(2R + (3/3 - 4)1) <2 < 3—8@R3. (£}

Remark. This is an interpolation of a result from SM, p. 40.

5.16. 9r2<%Rr<r(8R—7r) <2x2< (2R—r)2

{E}

Remark. We put the term % Rr in the result from SM, p. 40.
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5.17. 9/§r3 < == r2R < 3/§r2(4R - 5r) € sr(4R - 5r) < Zx3\<

2
< s(4R2 - B8Rr + 3r2) < (2R + (3/3 - 4)r)(4R2 - 8Rr + 3r )«

R%(8R - 13r). {E}

< 2-2[3— R(4R2 ~ 8Rr + 3r2)

Remark. This is an interpolation of a result from SM, p. 40.

2/3 (2R + 1) o 4R + r cr Lg
5.18. R 3/3Rr r(2R + (3/3 - 4)r) LS
< 4R + r < 3R (£}

5 .
3V3r 2/§r2

Remark. This is an interpolation of a result from SM, p. 40.

4
5.19 e AR S L)
2Ry 2
SM, p. 41.
2 2
5.20. %<%;<1—2—< - gR - or ) <z—17<
R r r (4R” + 4Ry + 3r ) X
2 2 2
16R™ - R
< 6 24Rr + 1lr < L (£}

r3(16R - 5r) 4r

Remark. We put the term 2/Rr in the result from SM, p. 41.

12R2 + 4Rr - 2r2 16R2 - 8Rr + 6r2

1
5.21. s <3< : . B}
F X P
2 6sR
5.22. 2> 2% 5 125, {E}
X r
5.23. 1 < zaza’/(she)? < ELom

A. Bager and M. S. Klamkin, Elem. Math. 28 (1973), 102 and 29
(1974), 96-97. T —

5.24. 2r/3< 28/3 <5a’/7a<s - r/3. {E}
Remark. This result is due to A. Bager.

5.25. 10 -%—E< 25a> /abe <i—R o g R AT 4y, (m)
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Remark. This is a refinement and extension of a result of E. Braune and
O. Bottema.

E. Braune and O. Bottema, 'Aufgabe 734', Elem. Math. 30 (1975), 18

and 31 (1976), 15-16.

4

5.26. Ya < = R(R - r) (4R + r)2 < 54R3(R -~ r). {E}

wiw

Remark. This result is due to A. Bager.

5.27. 16F%/3 < $a°/3 1§-< 9r?. (g}
a

A, Mirea, Gaz. Math. (Bucharest) 39 (1933), 411.

5.28. 1652 /9R% < Ta’b?/ra’ < 3%,  {E}

A. Mirea, Gaz. Math. (Bucharest) 39 (1933),,411.

2.2

5.29. 16s2r2 < Za’p 2g?

< 4s°R°. {E}

Remark. This result is due to L. Goldstone.

5.30. >

K|
alo

o'l

V. Bandild, 'Problem C:474', Gaz. Mat. (Bucharest) 90 (1985), 65.

2
b2 c= b~ + 2ac

>
5.31. az a+b+c

<-§—(2R + (3/3 - 4)r) S R/3. {8}
Proof. Using CebySev's inequality for monotone sequences we get
2 2
(1) 3(b” + 2ac) = 3(ac + bb + ca) £ (a +b + ¢)
2
b + 2ac_ 2s

2
< R / 4)r < RY/
a+b+c = 3 3(2 (373 xS )

Remarks. 1° This is a refinement of a result of V. Boskoff and D. Mihet.
2° Analogously, (1) becomes

2
3(b2 + 2ac) < 4s7,

so, the following inequality is also valid
2 2
b~ + 2ac € %(4R + 4Rr + 3r2).

V. Boskoff and D. Mihet, Gaz. Mat. (Bucharest) 90 (1985), 108.
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5.32. 5122 <3P /mrnP 0<p<1). (B}

This result is due to W. Janous. For p = 1/2 we get a result from
P. Flore, Gaz. Mat. (Bucharest) §§_(1978), 217.

5.33. Ta/x 2 394R/r 2 6. {E}

Remark. This result is due to A. Bager.

5.34. (b - c)2 + k(rs/3 +

IZaz, for k = 4,

+ (4 - 2/3)r(R - 2r)) < 1 {E}

(Za)2/2, for k = 6.

I. Paasche and L. Carlitz, 'Aufgabe 642', Elem. Math. 26 (1971), 46
and 27 (1972), 39-40. T

-1
5.35. If 2 = ¥fx , and x = s - a, etc. then, for p 2 1,

Sls - x LIP > 31‘9/2(2r)'p. {e}

This result is due to W. Janous. For p = 2 we get a result from:
P. Balev, Matematika (Sofia) 11_(1968), 33.

5.36. 2r/3) ™ P < PP < (3/3R/2) (m, n, p €ER). (B}

Remark. This is Milisavljevié's generalization of a problem of
D. M. Milo3evié.
D. M. MiloZevié and B. Milisavljevié, 'Problem 410', Mat. Vesnik 2
(15) (30) (1978), 425-426. =

log 9 - log 4

-1 £ <
5.37. 1f 1\k\lOg4—lOg3

, then
2/3r < M (a, b, c) < /3R.

Remark. For the second inequality see GI 5.28.
J. Berkes, 'Certaines Inégalités Relatives au Triangle', Univ.
Beograd. Publ. Elektrotehn. Fak. Ser, Mat. Fiz. No. 247-273 (1969),
151-152.,

be
= > -
5.38. z < - a’ (5 2r/R)s.

S. J. Bilfev, Matematika (Sofija). 1985, No. 3, 52.

5.39. 4r(fa)? + 25a° < 9abe + (Za) (Za2) .

S. J. Billev, Ob. po matematika (Sofija) 1984, No. 4, 62.
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5.40. 4%Z1/a - Za/be € (5/R + 2/r) /V3.

This inequality is due to S. J. Bill&ev.
5.41. The following inequality is equivalent to 2.2.20:

T(a/(s - a))1/2 > 9(3Rr)1/2/s.

This result is due to S. J. Bil&ev. He also gave some other similar
results.

5.42. The maximum value of the positive numbers A, B, C, D, E, F, G, H
such that the inequalities

(1) A(R - 2r)r + 3Ibc € (Za)z,

(2) B(R - 2r)r + %%(sz + abc/s) < Zaz,

(3) C(R - 2r)rs + 8xyz € abc,

(4) D(R - 2r)rs + 8abc S II(b + c),
3 3

(5) E(R - 2r)rs + E»H(b +c¢) € Za,

(6) F(R - 2r)rs + %(Za3 + 3abc) < ZaZaz,
2 2

(7) G(R - 2r)rs + g(Za x) € abc,

(8) H(R - 2r)rs + 48xyz < Ibc(b + c),

hold for any triangle are

A=4, B

"

24/7, Cc =4, D=4, E = 1/4,
F =0, G = 3/4, H = 28.

I. Paasche and B. Milisavljevié, 'Problem 325', Mat. Vesnik 12
(27) (1975), 315. -

12"

5.43 4F < 3 2 (2Z(bc)2 NP I §:3

(n

[}
—
~
8]
~

1-n 2-ny ,n-1
2
- Za2 )

Remark. For n = 1 we get the following inequality of F. Finsler and
H. Hadwiger.

4/3 F < 2 be - Ta°.
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D. D. Adamovié&, 'Problem 153', Mat. vesnik 8 (23) (1971), 92.

5.44, Let F and s be fixed. The maximum and minimum values of one of the
sides are roots of the equation

sxz(x - s) + 4F2 = 0.

G. H. Hardy, 'Problem 15689', Educational Times (2) 1§'(1905), 8
and 74. _‘

6. Inequalities Involving A, B, Cand R, r, s or F

6.1. 3f3§<zsinA<2+(3/§-4)-§<%/§. {£}

This is a refinement of a result from SM, p. 44, and an extension of
GI 3.15 and of a result of M. Mardev.
M. Marlev,'Neravenstva meZdu perimet'ra i radiusite na vpisanata
i opisanata okr'Znost na tri'g'lnika i njakoi sledsvija ot tjah’',
Ob. po matematika (Sofija) 1976, No. 6, 3-7.

9r r R +r, 2 9
=< = - < i i < (== L 2
6.2. SRS 2(5R r) £ L sin A sin B < ( = )T S 7 - {E}

o)

This result from SM, p. 44, is an extension of a result of
M. Marlev (see reference from 6.1).

2 2
6.3. ¥ sin A sin B € §—§~= Fz 5 - {E}
3R 3R r
Proof.
2 2 1 2 52
¥ sin A sin B = (s® + ¥ + 4RrRr) < _—5(5 +-§—),

4R 4R

where we used GI 5.5.
Remark. Since x - vX is a concave increasing function we have

F2 1/2 F

Z¥sin A sin B < 3(%~Z sin B sin C)l/2 < 3(%— 5
3R r

- . F
ZVsin A sin B € — ,
Rr

which is a result of I. Nanuti and V. Druli.
I. Nanuti and V. Drul&, Gaz. Mat. (Bucharest) 83 (1978), 218.




MISCELLANEOUS INEQUALITIES WITH ELEMENTS OF A TRIANGLE 181

2
6.4. 335 ¢ 1 osin A< Eo(2r + (33 - ) < 2BE 3B gy
2 2 4R 8
2R 2R
This is an interpolation of a result from SM, p. 44.
15r 2 2 <2
== < = - iy =z
6.5. R (2R - r) € I sin” A < 2(2R +r ) 7" {e}
R
This result from SM, p. 44, is an extension of a result of
M. Marlev (see reference from 6.1).
2 2
6.6. —9~‘/—§—§—— < 3‘/—%*(512 - ar) < ZZ(5R - 4n) <3 sin® A < —5(2R - 1)
2R 2R 2R 2R
<R BB -ro, <oy 38
2 4R 2
2R
This is an interpolation of a result from SM, p. 44.
6.7. 12/3 L 3/§§ (9R - 2r) < i115(912 - 2r) = M(sin A + sin B) €
2R 2R
< ~S——3-(2R2 + 3Rr + 2r2) <
2R
<R (3‘/§ =A% 4 3Re + 20%) <
2R
< 3—‘/——2—(2R + 3Rr + 202) € 373, {E}
4R
This is an interpolation of a result from SM, p. 44.
7R - 2r A + B 2R + R +22 3R
6.8. 6 < < p Sin sin B ¢ = T2, (B}
R sin C Rr r
SM, p. 45.
3r 3
< 2
6.9. R L cos A 5 - {E}
sM, p. 45
7r - 2R 4R 2 R2 r(R + r)
6.10. R < r—;‘ <ZcosAcosB<———~2——£—é<

R R
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This is an extension of GI 3.11 and of a result of M. Mardev (see
reference from 6.1), and a refinement of a result from SM, p. 45.

2 2 2
6.11. or g g8RE DR -3 o osa< i<
4R 3 )
2R 2R

. {E}

1
8
Remark. Using GI 3.11 we gave a refinement of a result from SM, p. 45,

and an extension of a result of M, Mar&ev (see reference from 6.1).

2Rr - r2 2 2

R -
6.12. %< > < T <zcoszA<3—2(R—r)2<3. (E}
R R R
2Rr - r2
Remark. We inserted the term — in the result from SM, p. 45, and
R

in the result of M. Mar&ev (see reference in 6.1).

6.13. §-< —i—%2R3 - 3Rr2 - 4r3) <z cos3 A <
8 3
2R
< -1—2(4112 + 12Rr - 34r2). {E}
4R
SM, p. 45.
4r2 r2
6.14. —zr-< ——349R - 2r) € I(cos A + cos B) <
R 4R
< L (2% + 3Re? + 209 < 1. (e}
3
2R
SM, p. 46.
2{(2R - r) 3(2R - r) 3
< < < = - < <
6.15. V3 < AR S SR s TR S(2R r) € I cotan A <

2% 4 2 2r® 4 r? /3R?
< P < 5 < 5 - {e}
s 3v/3r 4r

Remark. Using a result of D. M. Milofevié and §. Z. Arslanagié we gave
an interpolation of a result from SM, p. 46.
D. M. MiloZevié¢ and S. Z. Arslanagi¢, Private communication.

6.16. Y cotan A > g;». {E}

V. Petkov, Matematika (Sofija) 1968, No. 7, 30.
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2
6.17 12Rr - 4R2 - 6r < O6Rr - 2R2 - 3r2 < 6Rr - 2R2 - 3r2 <
o 3V3Rr S YR + (33 - D) rs =
< T cotan a < L L . {E}
s 3/3

This is a refinement of a result from SM, p. 46.

9 (2R - r)2

5 5 = 2<% cotan2 A <
4R + 4Rr + 3r

6.18. 1<

2 2.2 3
<iB rr) 5 <E 5 (m)
r~ (16R - 5r) 8r
SM, p. 46.
2 s2
6.19. I cotan” A > = - 2. {E}
9r
8 4R 2R2
6.20. < < IQ(cotan A + cotan B) < {e}
3/3 3V3r 2
3/3r
SM, p. 47
r ¢ 2(4R + 1) < 4R + r <7 A o
6.21. 23 5 < T3 S2R+ (373 - 4)yr o3 s
4R + r _ V3R
< < ===
S5 S
This is a refinement of a result from SM, p. 47.
Remark. The following result is also valid.
A 9Rr 9R2
- — £ =
Ztan2\2F \4F .
This is a refinement of a result of T. Rajkov.
T. Rajkov, Kvant 1976, No. 6, 56.
6.22. Ttan 2<E . (g}
2 3r
2r r A 1
< a8 g
6.23. 3R SRy A oy SNtz Sy (B

This is a refinement of a result from SM, p. 47.

2 A < 16R2 - 24Rr + 11r2
_— =

1 <
6.24. S Itan 3 Y (16R - 57)

. {E}
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SM, p. 47.
1 2(4R + 1) - 24R(4R° + 4Rr + 3r9) 3a
6.25. 7§< X 5 3 r < 7 tan 5<
3/3R(4R“ + 4Rr + 3r")
3
< ——%—3 - % . {E}
8/3r
SM, p. 48.
6.26. z tan3§>§—r- . {E}
2 s
Proof.
2 2 3
z tan3 % = %(4R + r)3 - 1232R) > -1—3(35 (4R + r) - 12s5"R) = S_r
s s

where we used GI 5.5.

8 A B 4R
< = =) €
6.27. 373-\ II(tan 5 + tan 2) < 373—]:'_ . {E}
SM, p. 48.
- V3
6.28. 3/3 € £ cotan % < 2R + (3f 4)r < 32iR . {E}

This is a refineme

nt of a result from SM, p. 48.

6.29. 9 €% cotan 2 cotan B = 4R + r < R . {E}
2 2 r 2r
SM, p. 48.
A B 52
6.30. % cotan = cotan = € 2— . {E}
2 2 2
3r
9R 8R - 7 2 A (2R - )2
6.31. 9SS cotan” g RO {E}
2r r 2 2

We put the te

r

rm z—i in the result from SM, p. 49.

2
2
6.32. I cotan %2 i—f . {E}
3r
V3 -
6.33. 93 < 92iR < 3/5(41:_ 5r) < I cotan3 %S
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2 2
<3/§.R(4(R—r) - (5}

3
2r

Remark. We put the second term in the result from SM, p. 49.

2
6.34. 24/3 < 12/3 T < Tl(cotan 2 + cotan 3) < 6‘/2*‘ (8}
r
SM, p. 49.
A B A B
tan §»+ tan 5 cotan 5 + cotan 5 4R - 2r
6.35. 6<z < -5 - AR g
tan > cotan =

SM, pp. 48-49.

2 2
6.36. —%gr(zR;r)<gsin %snggR _R§+r <2R81; L
4R 4R
2 A Or
6.37. Yy cos 52 5% {E}
2
2 A s
.38. = —_— .
6.3 ¥ cos > < ear {E}
27r 8R + 1llr 4R2 + BRr r2 2 A 2B
L= K < _ < = =<
6.39 8R = B8R = > < I cos > cos 2\
4R
5R2 + 3Rr + 2 10R + 7 27
< 2r —< 8R rgﬁ' (e}
4R
2 A 2 B 2
6.40. T cos” = cos” =2 2o, {E}
2 2
4R
4 (5R - r) 2(5R - r) 2(5R - r)
6.41. 2v3 < < < < <
3% 3‘/§R \2R+ (3‘]?—4)1‘\ = £ ¥ cosec A &
2 2 2
< 2(R + 1) <2(R+12r) <‘/31; . {E}
sr 3/3r 2r

This is a refinement of a result from SM, p. 44.

6.42. ¥ cosec A € 2§-. {E}
3r
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2 4
6.43. 4R - r) - 4R <z cose02 A< AR+ r) 4R {E}

4R® + 4Rr + 3¢° T o (16R - 5r) T

This is a result from SM, p. 45. The following result is due to
D. M. MiloSevié:

2
2 2
7? < T cosec” A.
s
. A g - s
6.44. I sin = Vsin B sin C € =— . {E}

2 2R

L. Pirsan, Gaz. Mat. (Bucharest) B 20 (1969), 663-664.

6.45. ¥ cos % Vsin B sin C < E».

{e}

L. Pirsan, Gaz. Mat. (Bucharest) B 20 (1969), 663-664.

cos B cos ¢ 2
r 2 2 (R + r)
- =< <
6.46. 5 RS % —a < Ry . {E}
sin E

This result of D. M. MiloZevi¢ is an extension of GI 2.57.

3 3
6.47.  ZZ(err - 28" - 3r)) <M sin 2a < S 2L (R 2 (‘31‘@ = 4)x) <
r? R R
33/3 _ 33
< < — . {E}
3 8
R
; ; ; <SS _«2 2£<_‘/:3_ <
6.48. Mk(51n A, sin B, sin C) € TRE + (/3 - 3 =S 3 k £ 1) {E}

Remark. This is a refinement of GI 2.6. For k = 1/2 we get the fol-
lowing refinement of GI 2.5

5/sin A < /32 = <32 + (3v/3 - 4)%) 3v3/4 {}

Of course, using identities from 3.2 and Jensen's inequality for
convex function we can give series of similar results. Here, we shall
give a selection of such results but only for the function x - vx.

6.49. %Vsin A sin B 2 3V %% . {e}

6.50. Ztan2<3/4R+r /4R+r<3/R (g}
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—
6.51. Z/cotan%—é/%ié/3(%§+3@-4)SB/%/E—R. (g}
A 2s s
6.52. Zcotanz>3(2—/§)+;—>6+;>3(2+/§). {E}

This result is due to S. Z. Arslanagié¢ and D. M. MiloSevié.
2r
6.53. % cos(B ~-C) < (1 + E—)Z cos A. {E}
This result is due to A. Bager.

6.54. L sin® A > 3(1 sin 2)2/3 > 3197212 55%)P/3 »

1+p/2
> 312 mP, (m)
where p is a positive number.

This result of W. Janous is a generalization and refinement of a
result from:

D. M. MiloZevié&, 'Problem 391', Mat. Vesnik 2 (15) (30) (1978), 396.

6.55. L cosA -XcosAcosB=21 - (%)2 2 % . {E}

This is a refinement of a result of J. Garfunkel and G. Tsintsifas
(see inequality (12) from Chapter 1IV).
Comments by W. Janous. 1) As an upper bound we have

2>2 -3 % + (%JZ 2 L cos A - I cos A cos B,
2) The following similar inequalities are also valid:
1 r r, 2
i < - = - - = <
(1) 0 <377 ((32 15/3) & - (10 - 3V3) (@) >\

< % sin A - I sin A sin B < 1,

Remark. It would be interesting to find also an upper bound
depending on r and R which is less than 1.

(ii) ¥ cotan % cotan g—— % cotan % 25 - 3/3 + %B-Z 9 - 3V/3.
9 1 r r 2 2 2
iii — <K = - = - (= < = - = - =
(iii) e S 4(3 R (R) ) € L cos 5 ¥ cos 5 cos 3
2 A 2 A 2 B 1 r 2
- : - ; ol < - = —(= <
r sin > 2 sin > sin’ 5 S 1 + (R) <

v
)
I

A
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J. Garfunkel and G. Tsintsifas, Inequalities through R-r-s Tri-
angles, Private communication.

2 2
Dot st 2 rcos? By <3 -5+ Xy <3, {g)
8 o2 2 5 R T2

N

6.56.

This inequality is due to W. Janous.

tan 2
2 3r
—_—_— s > =
6.57. z 1 1 Z SR -

_—
sin B sin C

This inequality is due to S. J. Bild&ev.

2
6.58. max (a°, b2, c2) < 2FY cosec A.

Problem B-I-3. Rozhledy Mat. Fyz. Praha 59 (1980/81), 466.

31, 5 2r
6.59. MES) > = . {}

V. D. Mascioni and W. Janous, 'Aufgabe 899', Elem. Math. 38 (1983),
106 and 39 (1984), 102-103. -

6.60. 3/(I1/n) < g VZT/R.

V. D. Mascioni, 'Aufgabe 930', Elem. Math. 40 (1985).
6.61. For a triangle ABC with circumradius R and inradius r, let M =
(R - 2r)/R. An inequality P 2 Q involving elements of a triangle ABC
will be called strong or weak, respectively, according as

P-QSM or ©P-0Q2M.

(a) The following inequalities are strong:

(1) % sin 2> I cos a,
.2 A 3
(2) Z sin 5—2 ik
3 ., A
(3) L cos A2 =+ 6l sin = ,
4 2
3 A
2> in 2
(4) 2/2511’12,

(5) Y cos A 2 % + 1 cos BZ
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2

(6) T sin B-¢C .

Z21 - %~H cos

N

(b) The following inequalities are weak:

(7) ¥ cos A 2 127 sin %-,
(8) 1 2 871 sin % .

9 . X
(9) Z-? ¥ sin B sin C,
(10) 5 cos? 2>rsinpsinc,
(11) T cos A 2 2% cos B cos C,
(12) I tan® 2> 1.

Further, we can also consider a third class, where

P - Q< M/2.

189

Such inequalities do exists, but they are quite rare. For example, in-

equality (2) belongs to this class (see Problem 856 from Crux Math.),

which we may call 'super strong'.
J. Garfunkel, Private Communication.

J. Garfunkel ,and W. J. Blundon, 'Problem 856', Crux Math. 9 (1983),

179 and 10 (1984), 303-304.

B C 9v3r
i = i =—> 2=
6.62. L sin 2 sin 2 Z ’

I cosec = 2 9/3

N
n|x

These inequalities are due to W. Janous.

5 - < A s
6.63. = + 3(2 V3) € I cosec > <1+ R

These inequalities are due to D. M. MiloSevic.

2

6.64. T tan 2 8R - 7r 51

C
—> =" - =
tan 2/16R—5r/3'

N

This result is due to D. M. MiloZevié.

1,r 2 r 4

4 r. 4
i < - = (= - = < - —
6.65. 1° I sin A <2 - 5(2) 36) 2 -5, {E}
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20 Soost2a<3-602%-125%<3-365% @)
R R R
2 r. 2 r 4 r 4
i > 6 4 S r
30 Isin® 224267 + 126" 23667,
° ' ; < 55y 2 I3 ¢ 952
4 % sin 2B sin 2C < 5(R) + 8(R) < 9(R) .

2
6.66. If x = d/R, where d = 0I = (R~ - 2Rr)1/2, then the following in-
equalities are valid

(1) 1+x+2\/1—x<2Zsin%<1—x+2/1+x,

(2) 1/3+x(2+/1—x)<2Zcos%</3—x(2+/1+x),
. A . B

(3) 1 - x+2(1 +x)¥Y1l - x €4 sin 5 sin 5»<

€1 +x+2(1 -x)vV1 + x,

(4) B+x(1 +2/1-x <4fcosFcos =< (3 -0 +2/4+%;
(5) 1 i X * 771?=§ S I cosec % < 1 E X * VTii=§ !
(6) 1 f <t T x?/l = < I cosec % cosec g <
< 1jl-x+(1-x)8x/1+x'
N /32— X 2+ /11+ x) S I sec %-g /32+ x (2 + /11— X)'
(8) 3 f - (1 + Vngéig £ ¥ sec §~Sec g—< 3 i x(1 + /12_ X)

All inequalities are the best possible.

D. S. Mitrinovié, J. E. Pefarié¢, C. T&ndsescu, and V. Volenec,
Inequalities Involving R, r and s for Special Triangles, Rad JAZU
(Zagreb), (to appear).

7. Inequalities with (a, b, ¢), (A, B, C) and (R, r, s or F)

2
) < Zasin A< 4R + 2X- < 4R + r €

1. < 12 L
7 9r § 12r(1 R R

ml@
s

{E}

Proof. Using the identity Za sin A = 1 Zaz

5I5.1.
>R , GI5.14 and G
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we get the above result.

Remark. This is a refinement of GI 3.14. Of course, using GI 5.10
we can give a stronger result, and using results from 5.1 we can give
some other results.

7.2. 3r € Za tan < 5R - 4r. {}

N

Proof. (D. M. MiloSevié and §. 2. Arslanagié.) This is a simple
consequence of the identity

Ya tan = 2(2R - r).

N

D. M. MiloZevié, 'Aufgabe 919', Elem. Math. 40 (1985).

7.3. i) /20 e D os % < (%—sZazn_1)1/2 n>1). (g}

Remarks. 1° For a refinement of the second inequality see inequal-
ities (4) from 4.6. Here we state the original problem from Elem. Math.

2° Note that using this result we can give the following refinement
of Problem 367 from Mat. Vesnik:

9R

9r € fa cos = € /3s < 2/3R + (9 -~ 4/3)r < 5 - {}

A
2
D. M. MiloSevié&, 'Aufgabe 921', Elem. Math. 40 (1985).

B. Milisavljevié and D. M. MiloZevié, 'Problém 367', Mat. Vesnik 12
(27) (1975), 418 and 1 (14) (29) (1977), 406-407. =

3 ~ 9/3R 1 1
2 < < <
7.4. S\ 2 \Z 2A\—r7:-3-. {E}
2s (b + ¢) cos Bl
R. R. Janié¢ and I. Paasche, 'Problem 124', Mat. Vesnik E (20)
(1968), 555-557. -
4 3 3 3
7.5. 55 (Za) <z——a—2——<12R/’. {e}

sin A

D. M. MiloSevi&, 'Problem 381', Mat. Vesnik 2 (15) (30) (1978),
99-100. -

1 2 A 27r
.6. I = =2 . E
7.6 e {e}

T. Rajkov, Kvant 6 (1976), 56.

Q_ < < 3Q
7.7. aF T V3 < T cotan A € /3 + = {E}

Remark. This result is due to D. M. MiloSevié and §. Z. Arslanagié.



192 CHAPTER IX

7.8. 9§§ 5a’ > (Za)2(Z sin A) 2 54F. {E}

N. Schaumberger and D. C. Fuller, 'Problem 225', The College Math.
J. 15 (1984), 164-165.

7.9. Iva cos = 2 abc. {E}

3
2R

N

C. Ionescu-Tiu, 'Problem 7847', Gaz. Mat. (Bucharest) B 17

7.10.(a) T(aa) (%ﬂ)sz, (£}

4T3

3
5 ) “sF. {e}

(b) T((r - A)a) = (

Proof. (W. Janous)

(a) Since F = abc/(4R), the given inequality is equivalent to 6.59.
(b) As before, the given inequality reads equivalently

> (4n/§)3 s

(1) I(x - A) 5 iR

s A
i 2= 2 1
Since I cos 5 (1) becomes

9 35 I sin({(m - A)/2)

(2) Qw3 7 (m -~ a)/2
sin t . . :
Because of f(t) = log being strictly concave, we obtain
2
ZE((m - A)/2) < 3F((T(T - A)/2)/3) = 3f0§) = 3 log ;#§

with equality if and only if A = B = C. Thus, (2) is proved.

V. D. Mascioni, 'Problem E 3054', Amer. Math. Monthly 91 (1984),
515, ”—

8. Inequalities for the Radii of Excircles and «ther Elements of a
Triangle*

9 .
8.1. 27r2 < EZ-Rr € r(16R - 5r) € ZrbrC < 4R2 + 4Rr + 3r2 <

2
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