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Abstract

We develop a general homogenisation procedure for Friedrichs systems. Under rea-
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systems can be used to represent various boundary or initial-boundary value problems
for partial differential equations, some additional assumptions are needed for compact-
ness results. These assumptions are particularly examined for the stationary diffusion
equation, the heat equation and a model example of a first order equation leading to
memory effects. In the first two cases, the equivalence with the original notion of H-
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1. Introduction

The development of homogenisation theory has been motivated by the necessity to describe
relations between different scales: a smaller scale (microscale) and a bigger one (macroscale).
Knowing the equations (physical laws) which describe the behaviour of a heterogeneous material
on a microscale, one is interested in a good approximation at the macroscale.

Historically, these questions were introduced with mathematical rigour by Sergio Spagnolo in
1967 through the concept of G-convergence for stationary diffusion equation, although they were
considered phenomenologically much earlier by Poisson, Faraday, Maxwell, Rayleigh, Einstein
etc. The letter G stands for Green, as Spagnolo was motivated by the weak convergence of
corresponding Green kernels. The notion of H-convergence was also originally introduced for the
stationary diffusion equation [22] (it is also known under the name strong G-convergence [31]). It
differs from the concept of G-convergence, as it treats the convergence of coefficients appearing
in the equation, instead of the convergence of operators. However, for symmetric coefficients
these two notions are equivalent. Similar homogenisation results are also derived for other elliptic
equations and systems, including linearised elasticity (for a nice introduction see [1]), but also
for parabolic and hyperbolic problems [25, 26, 32, 11], and one can naturally generalise this
concept to Friedrichs systems. One of the important gains of general theories of homogenisation
is the justification of multiple scale expansion method used in periodic homogenisation where
the coefficients are periodic with period which tends to zero [8, 1]. Having such a sequence of
problems in mind, one considers a sequence of corresponding solutions, trying to determine the
limit and the corresponding boundary value problem. If the limiting equation is of the same form,
the question is how to calculate the effective coefficients, expected to be constant in the periodic
case.

Symmetric positive systems (also known as Friedrichs systems) form a class of boundary
value problems which allow the study of a wide range of differential equations in a unified frame-
work. They were introduced by Kurt Otto Friedrichs [19] in an attempt to handle transonic flow
problems, which are partially hyperbolic and partially elliptic in different parts of the domain.
Many advances have been made since, overcoming numerous difficulties Friedrichs encountered
in his seminal paper [19], such as the question of traces at the boundary for functions from the
corresponding graph space [23, 2, 20].

During the last decade, a renewed interest in this theory was initiated by numerical math-
ematicians (already Friedrichs considered numerical solution procedures for such systems, by a
finite difference scheme). A number of recent results on discontinuous Galerkin methods for
Friedrichs systems can be found in [10, 12, 15, 16, 17, 20]. We understood that the unifica-
tion of equations of different type (elliptic/parabolic/hyperbolic) within the single framework
of Friedrichs systems has practical benefits in their numerical treatment, as both convergence
analysis and numerical code can be shared.

A good well-posedness result is essential for the justification of a numerical procedure, which
motivated the development of an abstract theory of Friedrichs systems by Ern, Guermond and
Caplain [15, 18]. They suggested an approach in which the theory of Friedrichs systems is written
in terms of operators acting on Hilbert spaces, and gave an intrinsic description of boundary
conditions. In this way they achieved an abstract well-posedness result which can be applied to
the classical Friedrichs setting.

In this paper we develop a homogenisation theory for Friedrichs systems, and by applying our
results to the stationary diffusion equation and the heat equation we rediscover some homogeni-
sation results for these problems and give a new perspective on the homogenisation theory for
these equations. We believe that this approach can also be applied to some other linear equations
of interest, hopefully leading to some new homogenisation results for these equations.

The idea of homogenisation of a general class of problems that encompass a wide variety of
partial differential equations was also studied by some other authors (see [30] and some references
therein), and appears to be promising.

The paper is organised as follows: in the rest of this introductory section we first recall the
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concepts of G and H-convergence for the stationary diffusion equation and the heat equation.
Next, we briefly describe the abstract theory of Friedrichs systems, stating the well-posedness
result and applying it to the classical Friedrichs partial differential operator. We finish this
section by an example, showing how the stationary diffusion equation can be written as the
Friedrichs system. In the second section we identify the dual of the graph space of an abstract
Friedrichs operator, and give a characterisation of the weak convergence in the graph space. The
third section can be considered as the main part of this paper. Here we describe the setting for
development of homogenisation theory for Friedrichs systems, introduce the concepts of G and
H-convergence, give compactness theorems under some compactness assumptions, and discuss
some other interesting topics, such as the convergence of the adjoint operator and the topology of
H-convergence. In the fourth section we apply these results to the stationary diffusion equation
and the heat equation, showing how some classical homogenisation results for these equations can
be derived from our theory. Here the Quadratic theorem of compensated compactness is used in
order to verify our compactness assumptions. We also show that these compactness assumptions
are not satisfied in the simple case of equation that exhibits memory effects in homogenisation.
Finally, we close the paper with some concluding remarks.
Homogenisation

Spagnolo [24, 25] considered a sequence of boundary value problems for the stationary diffu-
sion equation in an open and bounded set Ω ⊆ Rd:

(1)

{−div (An∇u) = f

u ∈ H1
0(Ω) ,

with symmetric matrix-valued functions An. He studied the convergence of corresponding Green
functions implying the weak convergence of sequence (un) of solutions, which led him to the
notion of G-convergence. Tartar and Murat [27, 22] considered the general, nonsymmetric case,
introducing the concept of H-convergence. They found the bounds on coefficients which were
stable under the homogenisation process:

(2)

A(x)ξ · ξ > α|ξ|2 ,

A(x)ξ · ξ >
1

β
|A(x)ξ|2 ,

for every ξ ∈ Rd and almost every x ∈ Ω. The set of all such matrix-valued functions A ∈
L∞(Ω; Md(R)) we denote by Md(α, β; Ω). In particular, if A(x) is a symmetric matrix for
almost every x ∈ Ω, the conditions (2) can be written in a simpler form as αI 6 A(x) 6 βI.

Assuming that a sequence of coefficients (An) in Md(α, β; Ω) is given, the corresponding
sequence of the solutions (un) of (1) is bounded in H1

0(Ω), so it weakly converges (up to a
subsequence) to some u ∈ H1

0(Ω). The main question in homogenisation is to determine the
equation satisfied by this u. If it is the equation of the same type, as it is the case for the
stationary diffusion equation, one is interested in the corresponding conductivity matrix. In
other words, one is trying to define a topology on the set of admissible coefficients, such that the
mapping A 7→ u determined by the boundary value problem (1) is continuous (with respect to the
weak topology on H1

0(Ω)), for any right-hand side. Such topology is described by the following
definition.

Definition. (H-convergence for stationary diffusion equation) We say that a sequence
(An) in Md(α, β; Ω) H-converges to A ∈ Md(α

′, β′; Ω) if for arbitrary f ∈ H−1(Ω) the corre-
sponding sequence of the solutions (un) of (1) satisfies the following weak convergences

un −−⇀ u in H1
0(Ω) ,

An∇un −−⇀ A∇u in L2(Ω; Rd).

The last convergence in particular implies that u is the solution of (1) with A instead of An. The
following compactness result can be shown: For any sequence (An) inMd(α, β; Ω) there exists a
H-convergent subsequence whose limit also belongs to Md(α, β; Ω).
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In this introduction we shall go no further into details concerning the stationary diffusion
setting (for details see [29, 1]), but rather pass to the heat equation, and present it more thor-
oughly, since it fits better to what we have done in the case of Friedrichs systems. The parabolic
homogenisation was originally developed by Sergio Spagnolo [26]. We also mention the survey
[32] in the case of more general parabolic operators, and [11, 7].

Consider the heat equation in a domain ΩT = Ω×〈0, T 〉, where Ω ⊆ Rd is open and bounded,
as before, and T > 0:

(3)

{
∂tu− div (A∇u) = f

u(·, 0) = u0 .

Here we assume that the coefficient matrix A, depending on both t and x, belongs to the set
Md(α, β; ΩT ). We denote V := H1

0(Ω), so that V ′ = H−1(Ω) and H := L2(Ω), which gives us a
Gel’fand triple: V ↪→ H ↪→ V ′ (the continuous and dense inclusions). For the time dependent
functions we define V := L2(0, T ;V ), so that V ′ = L2(0, T ;V ′) and H := L2(0, T ;H), obtaining
again a Gel’fand triple V ↪→ H ↪→ V ′. The appropriate evolution space for a solution is W =
{u ∈ V : ∂tu ∈ V ′}. The corresponding parabolic operator P ∈ L(W;V ′) defined by

Pu := ∂tu− div (A∇u)

is an isomorphism of W0 = {u ∈ W : u(·, 0) = 0} onto V ′.
Spagnolo introduced the notion of G-convergence for more general parabolic operators of the

form:
PA := ∂t +A :W −→ V ′ ,

where (Au)(t) := A(t)u(t), with A(t) ∈ L(V ;V ′) such that for any ϕ,ψ ∈ V

(4)

t 7→ V ′〈A(t)ϕ,ψ 〉V is measurable ,

λ0‖ϕ‖2V 6 V ′〈A(t)ϕ,ϕ 〉V 6 Λ0‖ϕ‖2V ,
|V ′〈A(t)ϕ,ψ 〉V | 6M

√
V ′〈A(t)ϕ,ϕ 〉V

√
V ′〈A(t)ψ,ψ 〉V ,

where λ0,Λ0 and M are some positive constants. The set of all such operators PA we denote by
P(λ0,Λ0,M).

Definition. (G-convergence for parabolic operators) A sequence of parabolic operators
PAn ∈ P(λ0,Λ0,M) G-converges to a parabolic operator PA ∈ P(λ′0,Λ

′
0,M

′) if PAn weakly
converges to PA, i.e. if for any f ∈ V ′

P−1
Anf −⇀ P−1

A f in W0 .

In other words, the sequence of the solutions to parabolic problems determined by PAn converges
weakly to the solution of the problem determined by PA (with the homogeneous initial condition).

In the case of the Gel’fand triple V ↪→ H ↪→ V ′, where the Hilbert space H is identified
with its dual and the inclusions are continuous, under the additional assumption that they are
also compact, Spagnolo proved [26, Theorem 1] the following compactness of G-convergence:
For any sequence (PAn) in P(λ0,Λ0,M) there is a subsequence PAn′ and a parabolic operator

PA ∈ P(λ0,M
2Λ0,

√
Λ0/λ0M), such that PAn′

G−−−⇀ PA.
Moreover, if each An is of the form:

An(t)u = −div (An(·, t)∇u) ,

then the limit is of the same form, where the matrix coefficients A satisfy the same type of
bounds, but with different constants. To be more precise, in this situation the bounds in (4) are
rewritten as

(5)
λ0|ξ|2 6 Aξ · ξ 6 Λ0|ξ|2 ,

|Aξ · η|2 6M
√

Aξ · ξ
√

Aη · η ,
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which follow from the bounds (2) with λ0 := α,Λ0 := β and M :=
√
β/α, and conversely, from

(5) we get the bounds (2) with α := λ0 and β := M2Λ0. Also, in such a case, on a subsequence
we have the convergence

An′∇un′ −⇀ A∇u in L2(ΩT ; Rd) ,

which motivates the following definition [11, 32]:

Definition. (H-convergence for the heat equation) A sequence of matrix-valued functions
An ∈ M(α, β; ΩT ) H-converges to A ∈ M(α′, β′; ΩT ) if for any f ∈ V ′ and u0 ∈ H the solutions
of parabolic problems

(6)

{
∂tun − div (An∇un) = f

un(·, 0) = 0

satisfy
un −⇀ u in V ,

An∇un −⇀ A∇u in L2(ΩT ; Rd) .

Although they are equivalent, the advantage of bounds (2) over those from (5) is that the
limiting coefficients still belong to the same set: A ∈Md(α, β; ΩT ), while for (5) the constants Λ0

and M change, in the same manner as for the sequence PAn of corresponding parabolic operators.
Instead of (5), in [32] the authors used another set of equivalent bounds, also stable under the
homogenisation process:

Aξ · ξ > λ0|ξ|2 ,
|Aξ · η| 6 λ1

√
Aξ · ξ |η| .

Friedrichs systems

In the sequel we recall the main results of [18] (see also [3]): let L be a real Hilbert space,
which we identify with its dual L′, D ⊆ L its dense subspace, and L, L̃ : D −→ L unbounded
linear operators satisfying

(T1) (∀ϕ,ψ ∈ D) 〈 Lϕ | ψ 〉L = 〈ϕ | L̃ψ 〉L ,

(T2) (∃ c > 0)(∀ϕ ∈ D) ‖(L+ L̃)ϕ‖L 6 c‖ϕ‖L .

By (T1), the operators L and L̃ are formally adjoint to each another, and thus, as they are

densely defined, are closable. The closures we denote by L̄ and ¯̃L, and the corresponding domains

by D(L̄) and D(¯̃L).
The graph inner product 〈 · | · 〉L := 〈 · | · 〉L + 〈 L· | L· 〉L defines the graph norm ‖ · ‖L, and

it is immediate that (D, 〈 · | · 〉L) is an inner product space, whose completion we denote by W0.
Analogously we could have defined 〈 · | · 〉L̃ which, by (T2), leads to a norm that is equivalent to

‖ · ‖L. W0 is continuously imbedded in L (as L is closable); the image of W0 being D(L̄) = D(¯̃L).
Moreover, when equipped with the graph norm, these spaces are isometrically isomorphic.

As L, L̃ : D −→ L are continuous (with the graph topology on D), each can be extended
by density to a unique operator from L(W0;L) (i.e. a continuous linear operator from W0 to L).

These extensions coincide with L̄ and ¯̃L (after taking into account the isomorphism between W0

and D(L̄)). For simplicity, we shall drop the bar from notation and simply write L, L̃ ∈ L(W0;L),
prompted by the fact that (T1)–(T2) still hold for ϕ,ψ ∈W0.

Having in mind the Gelfand triple (the imbeddings are dense and continuous) W0 ↪→ L ≡
L′ ↪→ W ′0, it turns out [18, 3] that the adjoint operator L̃∗ ∈ L(L;W ′0) (in the sense of Banach
spaces) satisfies L = L̃∗|W0

. Therefore, L : W0 −→ L ↪→ W ′0 is a continuous linear operator from

(W0, ‖ · ‖L) to W ′0, whose unique continuous extension to the whole L is operator L̃∗ (the same
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holds for L̃ and L∗ instead of L and L̃∗). In order to further simplify the notation we shall use
L and L̃ also to denote their extensions L̃∗ and L∗.

We can now define the graph space

W := {u ∈ L : Lu ∈ L} = {u ∈ L : L̃u ∈ L} ,

which, equipped with the graph norm, is a Hilbert space, containing W0.
The goal of the abstract theory of Friedrichs systems is to solve the following problem:

for given f ∈ L find u ∈W such that Lu = f .

To be more precise, the goal is to find sufficient conditions on a subspace V ⊆W , such that
the operator L|V : V −→ L is an isomorphism. In order to describe such sufficient conditions, a

boundary operator D ∈ L(W ;W ′) is introduced by

W ′〈Du, v 〉W := 〈 Lu | v 〉L − 〈 u | L̃v 〉L , u, v ∈W .

Ern at al. [18] proved the following weak well-posedness result in this abstract setting, under
the additional assumption

(T3) (∃α > 0)(∀ϕ ∈ D) 〈 (L+ L̃)ϕ | ϕ 〉L > 2α‖ϕ‖2L .

In the sequel (T) stands for all properties (T1)–(T3); we shall use the same convention in other
places as well.

Theorem 1. Let (T) hold, and let subspaces V and Ṽ of W satisfy

(V1)
(∀ u ∈ V ) W ′〈Du, u 〉W > 0 ,

(∀ v ∈ Ṽ ) W ′〈Dv, v 〉W 6 0 ,

(V2) V = D(Ṽ )0 , Ṽ = D(V )0 ,

where 0 stands for the annihilator.
Then the restrictions of the operators L|V : V −→ L and L̃|

Ṽ
: Ṽ −→ L are isomorphisms,

and for every u ∈ V the following estimate holds:

(7) ‖u‖L 6

√
1

α2
+ 1 ‖Lu‖L .

A similar estimate holds for L̃ and Ṽ instead of L and V .

We are interested in situations where L is a partial differential operator. In this case the
information about boundary (and initial) conditions will be contained in the structure of the
subspace V .

Classical Friedrichs’ operator

We now describe the classical Friedrichs’ setting, which turns out to fit in the abstract setting
of Ern at al. [18]. Let d, r ∈ N, and let Ω ⊆ Rd be an open and bounded set with Lipschitz
boundary Γ (we shall denote its closure by Cl Ω = Ω ∪ Γ). Furthermore, let us suppose that the
matrix-valued functions Ak ∈W1,∞(Ω; Mr(R)), k ∈ 1..d, and C ∈ L∞(Ω; Mr(R)) satisfy:

(F1) Ak is symmetric: Ak = A>k ,

(F2) (∃α > 0) C + C> +
d∑

k=1

∂kAk > 2αI (a.e. on Ω) .
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If we denote D := C∞c (Ω; Rr), L = L2(Ω; Rr), and define the operators L, L̃ : D −→ L by the
formulaæ

(8)

Lu :=
d∑

k=1

∂k(Aku) + Cu ,

L̃u :=−
d∑

k=1

∂k(Aku) + (C> +
d∑

k=1

∂kAk)u ,

where ∂k stands for the classical derivative, then L and L̃ satisfy (T), since (8) and (F1) imply
(T1), (T2) follows from the regularity assumptions on Ak and C, and (T3) follows from (F2).
Therefore, L and L̃ can be uniquely extended to the respective operators from L(L;W ′0). Actually,
those extensions can be represented by the same formulae as in (8), with the distributional
derivatives instead of the classical ones [3].

The operator L is called the Friedrichs operator or the symmetric positive operator, and
the corresponding first-order system of partial differential equations Lu = f, for a given function
f ∈ L2(Ω; Rr), is called the Friedrichs system or the symmetric positive system.

The graph space W is here given by

W =
{

u ∈ L2(Ω; Rr) :
d∑

k=1

∂k(Aku) + Cu ∈ L2(Ω; Rr)
}
,

and the space C∞(Cl Ω; Rr) is dense in W . Actually, the definition and basic properties of the
graph space of the operator L given by (8) do not depend on the conditions (F) (for more details
regarding these spaces see [2, 20]).

If we denote by ν = (ν1, ν2, . . . , νd) ∈ L∞(Γ; Rd) the unit outward normal on Γ, and define a
matrix field on Γ by

Aν :=
d∑

k=1

νkAk ,

then for u, v ∈ C∞(Cl Ω; Rr) the boundary operator D is given by

(9) W ′〈Du, v 〉W =

∫
Γ

Aν(x)u|Γ(x) · v|Γ(x)dS(x) .

Thus we can say that, in the abstract setting, the operator D plays the role of the matrix-valued
function Aν in the classical Friedrichs theory. To be more precise, it replaces the trace operator
defined on the graph space; for the details concerning the definition and the properties of the
trace operator on graph spaces see [2].

Actually, the matrix-valued function C can be replaced by a continuous linear operator
C ∈ L(L) satisfying

(F2C) (∃α > 0)(∀ u ∈ L) 〈 (C + C> +
d∑

k=1

∂kAk)u | u 〉L > 2α‖u‖L

instead of (F2), leading to the operators L and L̃ with the properties (T) (this type of operators
we shall also call Friedrichs operators) .

It is important to emphasise that this setting covers a large number of equations of continuum
physics. Different types of (initial) boundary conditions (Dirichlet, Neumann, Robin) can be
treated in this way as well. For the motivation, let us present our model example. Further
examples are given in the section Examples.
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Example
Let Ω ⊆ Rd be an open and bounded set with the Lipschitz boundary Γ, as before. We

consider the following elliptic equation

−div (A∇u) + b · ∇u+ cu = f ,

where f ∈ L2(Ω), c ∈ L∞(Ω), b ∈ L∞(Ω; Rd) and A ∈ Md(α
′, β′; Ω), for some constants

β′ > α′ > 0.
This equation can be rewritten as a Friedrichs system, by considering a vector function taking

values in Rd+1 of the form

u =

[
−A∇u
u

]
,

and Ak = ek ⊗ ed+1 + ed+1 ⊗ ek ∈ Md+1(R), for k ∈ 1..d (vectors e1, . . . ed+1 form the standard
basis for Rd+1) and a block matrix-valued function

C =

[
A−1 0

−(A−1b)> c

]
∈ L∞(Ω; Md+1(R)) .

The positivity condition (F2) holds if and only if 2c − 1
2A−1b · b ≥ γ on Ω, for some positive

constant γ [5]. The graph space is given by

W = L2
div(Ω)×H1(Ω) ,

where
L2

div(Ω) = {u ∈ L2(Ω; Rd) : div u ∈ L2(Ω)}

is the graph space of the operator div , with the normal trace u 7→ ν · u ∈ H−
1
2 (Γ) defined on this

graph space.
The homogeneous Dirichlet boundary condition u|Γ = 0 for the original equation can be

imposed if we choose [4, 5, 9]

V = Ṽ = L2
div(Ω)×H1

0(Ω) ,

the Neumann boundary condition ν ·A∇u|Γ = 0 with

V = Ṽ = {(uσ, uu)> ∈ L2
div(Ω)×H1(Ω) : ν · uσ = 0} ,

and the Robin boundary condition ν ·A∇u|Γ + au|Γ = 0, for a > 0, with

V := {(uσ, uu)> ∈ L2
div(Ω)×H1(Ω) : ν · uσ = auu|Γ} ,

Ṽ := {(uσ, uu)> ∈ L2
div(Ω)×H1(Ω) : ν · uσ = −auu|Γ} .

For more examples of (initial) boundary value problems that can be treated via the theory
of Friedrichs systems we refer to [5, 6, 10, 14, 18, 20].

2. Weak convergence in the graph space

In order to characterise the weak convergence in the graph space W we shall first identify its
dual W ′ (here we only assume that L and L̃ satisfy (T1)–(T2)). We proceed similarly as in the
case of the graph space of the first order partial differential operator [9, 20]: if we take arbitrary
w1,w2 ∈ L, then the expression

S(u) := 〈w1 | u 〉L + 〈w2 | Lu 〉L , u ∈W ,

clearly defines an element S of W ′. Let us now prove that every continuous linear functional on
W can be represented in this way.
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Theorem 2. For each S ∈W ′ there are w1,w2 ∈ L such that

(10) (∀ u ∈W ) S(u) = 〈w1 | u 〉L + 〈w2 | Lu 〉L .

If we denote by VS the set of all w̃ = (w1,w2) ∈ L× L satisfying (10), then there exists a unique
w̃ ∈ VS such that

‖S‖W ′ = ‖w̃‖L×L = min{‖w‖L×L : w ∈ VS} .

Dem. After denoting
ΓL := {(u,Lu) : u ∈W} ⊆ L× L ,

it is obvious that W is isometrically isomorphic to ΓL (with the norm inherited from L×L). Then
any S ∈ W ′ can be considered as a continuous linear functional on ΓL. By the Hahn-Banach
theorem for Hilbert spaces, there is a unique continuous extension of S to the whole L× L, with
the same norm as S. Let us denote this extension by w̃ = (w1,w2) ∈ L × L. It is clear that
w̃ ∈ VS and as any other w ∈ VS is also an extension of S, we have

‖w̃‖L×L = ‖S‖W ′ 6 ‖w‖L×L .

Therefore
‖w̃‖L×L = min{‖w‖L×L : w ∈ VS} ,

which concludes the proof.
Q.E.D.

Theorem 3. A sequence (un) converges weakly to u in W if and only if

un −⇀ u in L ,

Lun −⇀ Lu in L .

Dem. Let un −⇀ u in W and let us take arbitrary w1,w2 ∈ L. Then S defined by (10) belongs
to W ′ and therefore

〈w1 | un 〉L + 〈w2 | Lun 〉L = W ′〈S, un 〉W −→ W ′〈S, u 〉W = 〈w1 | u 〉L + 〈w2 | Lu 〉L .

If we take w2 = 0 in the above formula, by arbitrariness of w1, we get un −⇀ u in L. Similarly,
by taking w1 = 0 we achieve Lun −⇀ Lu in L.

The converse statement can be proved in a similar way by using the above representation of
continuous linear functionals on W .

Q.E.D.

3. Homogenisation of Friedrichs systems

In the rest of the paper we shall work in the setting of classical partial differential operators,
i.e. D := C∞c (Ω; Rr), L := L2(Ω; Rr) (we shall use either notation, depending on the situation).
Let us now assume that we are given an operator L0 of the form

L0u :=
d∑

k=1

∂k(Aku) =
d∑

k=1

Ak∂ku ,

where, in addition to (F1), we have assumed that

(F3) all matrices Ak ∈ Mr(R) are constant.

Then, clearly, the operators L0 and L̃0 := −L0 satisfy (T1)–(T2).
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Remark. Some conclusions of this section can be derived without assuming that Ak are
constant matrices. However, as this appears to be the case for the majority of examples of
particular interest (see Section 4 and [5, 6, 10, 14, 18, 20]), for the clarity of presentation we
choose to impose this condition.

Let us, for given β > α > 0, denote

F(α, β; Ω) :=

{
C ∈ L(L) : (∀ u ∈ L) 〈 Cu | u 〉L ≥ α‖u‖2L & 〈 Cu | u 〉L ≥

1

β
‖Cu‖2L

}
.

Then, for C ∈ F(α, β; Ω), the second inequality in the above expression implies ‖C‖L(L) 6 β,
while the first inequality implies that the operator

L := L0 + C ,

in addition to (F1), satisfies (F2C), and therefore all properties (T).
If we denote by W the graph space of the operator L0, then one can easily see that the graph

space of the operator L coincides with W . Indeed, since for u ∈ L we have Cu ∈ L, it follows that
Lu ∈ L if and only if L0u ∈ L.

Let us now prove that on W norms ‖ · ‖L and ‖ · ‖L0 are equivalent: for u ∈W we have

‖u‖2L = ‖u‖2L + ‖Lu‖2L
6 ‖u‖2L + (‖L0u‖L + ‖Cu‖L)2

6 ‖u‖2L + 2‖L0u‖2L + 2‖Cu‖2L .

From boundedness of C it follows that the last term in the above sum is bounded by 2β2‖u‖2L,
which implies

‖u‖L 6 γ‖u‖L0 ,

where γ =
√

max{2, 1 + 2β2} depends only on β. Similarly, starting from

‖u‖2L0 = ‖u‖2L + ‖Lu− Cu‖2L 6 ‖u‖2L + (‖Lu‖L + ‖Cu‖L)2 ,

one derives the converse inequality (with the same constant γ), which proves the equivalence of
these norms.

Also note that the characterisation (9) of the boundary operator D corresponding to the
operator L implies that it does not depend on particular C from F(α, β; Ω).

Let us now assume that V is a subspace of W satisfying (V). Theorem 1 implies that the
operator L restricted to V is an isomorphism from V to L, with

‖u‖L 6

√
1

α2
+ 1 ‖Lu‖L , u ∈ V .

Therefore,

‖u‖L0 6 γ

√
1

α2
+ 1 ‖Lu‖L , u ∈ V ,

and finally, for fixed L0 and V satisfying (V), we have a priori bound

(11) (∃ c > 0)(∀ C ∈ F(α, β; Ω))(∀ u ∈ V ) ‖u‖L0 6 c‖(L0 + C)u‖L .

Note that the constant c depends only on α and β. For the corresponding adjoint operator the
analogous conclusion holds, with Ṽ instead of V .
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Remark. If C ∈Mr(α, β; Ω), where, as before

Mr(α, β; Ω) =

{
C ∈ L∞(Ω; Mr(R)) : (∀ ξ ∈ Rr) C(x)ξ · ξ > α|ξ|2 ,C(x)ξ · ξ >

1

β
|C(x)ξ|2

}
.

then one can easily see that the mapping u 7→ Cu, u ∈ L, defines an operator C ∈ F(α, β; Ω).
Therefore, in this case one has a classical Friedrichs operator L = L0 + C, and from (11) an a
priori bound

(12) (∃ c > 0)(∀C ∈Mr(α, β; Ω))(∀ u ∈ V ) ‖u‖L0 ≤ c‖(L0 + C)u‖L
follows, with the constant c depending only on α and β.

G and H-convergence of Friedrichs operators

In the rest of the paper we shall denote L0 =
∑d

k=1 Ak∂k, with Ak satisfying (F1) and (F3),

so that L0 and its formal adjoint L̃0 = −L0 satisfy (T1)–(T2), W will be its graph space, D the

corresponding boundary operator and V , Ṽ some subspaces of W satisfying (V).
The concept of G-convergence can be applied to Friedrichs operators in the same manner as

it was originally introduced by Spagnolo for the heat equation [26].
To define G-convergence of Friedrichs operators, with the given L0 part and the subspace V as

above, we consider a sequence (Cn) of operators from F(α, β; Ω), so the corresponding Friedrichs
operators Ln := L0 + Cn are isomorphisms of V to L.

Definition. (G-convergence for Friedrichs operators) For a sequence (Cn) in F(α, β; Ω),
we say that the sequence of isomorphisms Ln := L0 +Cn : V → L G-converges to an isomorphism
L := L0 + C : V → L, for some C ∈ F(α′, β′; Ω), if the inverse operators L−1

n : L → V converge
in the weak sense:

(∀ f ∈ L2(Ω; Rr)) L−1
n f −⇀ L−1f in W .

On the other side, as mentioned in the Introduction, H-convergence describes the properties
of the coefficients in the equation, instead of the corresponding operators.

Definition. (H-convergence for Friedrichs systems) We say that a sequence (Cn) in
Mr(α, β; Ω) H-converges to C ∈Mr(α

′, β′; Ω) with respect to L0 and V if for any f ∈ L2(Ω; Rr)
the sequence (un) defined by un := L−1

n f ∈ V , with Ln = L0 + Cn, satisfies

un −⇀ u in L2(Ω; Rr) ,

Cnun −⇀ Cu in L2(Ω; Rr) ,

where u := L−1f ∈ V , with L = L0 + C.
The H-convergence will be denoted by Cn

H−−⇀ C.

Remark. If Cn
H−−⇀ C, then from L0un + Cnun = f = L0u + Cu and the second convergence

in the definition of H-convergence, it follows that

L0un −⇀ L0u in L2(Ω; Rr) ,

which gives us the weak convergence un −⇀ u in W , i.e. the sequence Ln = L0 + Cn G-
convergences to L = L0 + C.

The H-convergence actually defines a topology on the set of all admissible coefficients C.
The following proof is adapted from [1] (see also [29]).

Theorem 4. Let F = {fn : n ∈ N} be a dense countable family in L2(Ω; Rr), C,D ∈
Mr(α, β; Ω), and un, vn ∈ V the solutions of (L0 + C)un = fn and (L0 + D)vn = fn, respec-
tively. Furthermore, let

d(C,D) :=

∞∑
n=1

2−n
‖un − vn‖H−1(Ω;Rr) + ‖Cun −Dvn‖H−1(Ω;Rr)

‖fn‖L2(Ω;Rr)

, C,D ∈Mr(α, β; Ω) .

Then d is a metric on Mr(α, β; Ω), and the above defined H-convergence is equivalent to the
convergence in this metric space.
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Dem. Using the continuity of the imbedding of L2(Ω; Rr) into H−1(Ω; Rr), the a priori estimate
(12) and the upper boundedness ofMr(α, β; Ω), we conclude that there is a constant c1 > 0 such
that

(∀n ∈ N) ‖un − vn‖H−1(Ω;Rr) + ‖Cun −Dvn‖H−1(Ω;Rr) 6 c1‖fn‖L2(Ω;Rr) .

This implies that the series in the definition of d is uniformly convergent (with respect to C
and D), and thus d is well-defined. Clearly, d is symmetric, nonnegative, satisfies the triangle
inequality and d(C,C) = 0. Therefore, in order to complete the proof that it is a metric, it
remains to show that d(C,D) = 0 implies C = D.

Assume d(C,D) = 0, and let us first prove that for an arbitrary f ∈ L2(Ω; Rr) and u, v ∈ V
defined by (L0 + C)u = f and (L0 + D)v = f we have u = v and Cu = Dv. For f ∈ F this
statement follows from the definition of d, and for the general case we use the density of F in
L2(Ω; Rr): for an arbitrary f ∈ L2(Ω; Rr) let (fn′) be a sequence in F that strongly converges to
f, and let un′ , vn′ ∈ V be such that (L0 + C)un′ = fn′ and (L0 + D)vn′ = fn′ . Subtracting the
equations for u and un′ , and similarly for v and vn′ we get

(L0 + C)(u− un′) = f − fn′ ,

(L0 + D)(v − vn′) = f − fn′ .

From the convergence of the sequence (fn′) to f and (12) it follows un′ −→ u and vn′ −→ v in
L2(Ω; Rr), and using un′ = vn′ and Cun′ = Dvn′ we conclude u = v and Cu = Dv.

In order to complete the proof that C = D, let us take K ⊆ Ω compact, ξ ∈ Rr, and
ϕ ∈ C∞c (Ω), such that ϕ ≡ 1 on K. Then the function u(x) := ϕ(x)ξ belongs to C∞c (Ω; Rr) ⊆ V .
Let us take f := (L0 + C)u, and v ∈ V , the solution of (L0 + D)v = f. Then it follows u = v and
Cu = Dv, and since u ≡ ξ in K, we conclude Cξ = Dξ on K. Now, from the arbitrariness of K
and ξ it follows C = D.

It remains to prove that H-convergence is equivalent to the sequential convergence with
respect to d: let a sequence (Cm) in Mr(α, β; Ω) H-converges to C ∈ Mr(α, β; Ω), and let
un, u

m
n ∈ V be such that (L0 + C)un = fn and (L0 + Cm)umn = fn, for fn ∈ F . From the definition

of H-convergence it follows (for every fixed n ∈ N)

umn −⇀ un in L2(Ω; Rr) ,

Cmumn −⇀ Cun in L2(Ω; Rr) .

By the Rellich compactness theorem this implies the strong convergence umn −→ un and Cmumn −→
Cun in H−1(Ω; Rr), which together with the uniform convergence of the series in the definition
of d implies d(C,Cm) −→ 0

In order to prove the converse statement, we take a sequence (Cm) converging to C in
Mr(α, β; Ω), i.e. such that d(C,Cm) −→ 0. For an arbitrary f ∈ L2(Ω; Rr), let (fn′) be a sequence
in F strongly converging to f, and let u, um, un′ , u

m
n′ ∈ V satisfy (L0 + C)u = f, (L0 + Cm)um = f,

(L0 +C)un′ = fn′ and (L0 +Cm)umn′ = fn′ . From d(C,Cm) −→ 0 and the definition of d it follows
that for every n′ ∈ N, umn′ −→ un′ and Cmumn′ −→ Cun′ strongly in H−1(Ω; Rr) as m −→ ∞.
Due to (12) and the upper boundedness ofMr(α, β; Ω) it follows that (for fixed n′) the sequences
(umn′)m and (Cmumn′)m are bounded in L2(Ω; Rr), and therefore converge weakly on a subsequence.
Therefore, from their strong convergence in H−1(Ω; Rr), we conclude the convergence of the whole
sequences:

(13)
umn′ −⇀ un′ in L2(Ω; Rr) as m −→∞ ,

Cmumn′ −⇀ Cun′ in L2(Ω; Rr) as m −→∞ .

Subtracting the equations for u and un′ , and similarly for um and umn′ , we get

(L0 + C)(u− un′) = f − fn′ ,

(L0 + Cm)(um − umn′) = f − fn′ .
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Similarly as before, from the convergence of the sequence (fn′) to f, the upper boundedness of
Mr(α, β; Ω) and (12) we conclude un′ −→ u and Cun′ −→ Cu in L2(Ω; Rr), as well as umn′ −→ um

and Cmumn′ −→ Cmum in L2(Ω; Rr) uniformly in m as n′ −→∞. This, together with (13) implies

um −⇀ u in L2(Ω; Rr) ,

Cmum −⇀ Cu in L2(Ω; Rr) ,

and finally, by the arbitrariness of f ∈ L2(Ω; Rr), Cm
H−−⇀ C.

Q.E.D.

We proceed further with the compactness result which, in particular, shows that the param-
eters α′ and β′ in the definition of H-convergence are equal to α and β, respectively. However, as
Friedrichs theory applies to various differential equations, we cannot expect a compactness result
in this full generality. For example, the transport equation can be written as a Friedrichs systems,
and it is well known that some nonlocal effects occur in the homogenisation of this equation, where
the limiting equation is some integro-differential equation (see [28] for a simple model example of
such nonlocal effects). Therefore, we need some additional assumptions that distinguish cases as
this one, and which would be easy to verify for equations of interest. The majority of our proofs
in this paper follow some ideas from classical homogenisation theory of particular equations, such
as the stationary diffusion equation or the heat equation. However, in homogenisation of these
equations, due to their specific structure, one can use some nice compactness properties, such as
the Div-rot lemma. As our setting is very general, one does not have such properties for granted.

Here are the assumptions that we shall use throughout the rest of this article: for fixed L0 and
V satisfying (V), we say that family Mr(α, β; Ω) (respectively, family F(α, β; Ω)) has property:

(K1) if for every sequence Cn ∈ Mr(α, β; Ω) (respectively, Cn ∈ F(α, β; Ω)), and every f ∈ L, the
sequence un ∈ V defined by un := (L0 + Cn)−1f (respectively un := (L0 + Cn)−1f) satisfies
the following: if (un) weakly converges to u in W , then also

W ′〈Dun, un 〉W −→ W ′〈Du, u 〉W ;

(K2) if for every sequence Cn ∈ Mr(α, β; Ω) (respectively, Cn ∈ F(α, β; Ω)), and every f ∈ L, the
sequence un ∈ V defined by un := (L0 + Cn)−1f (respectively un := (L0 + Cn)−1f) satisfies
the following: if (un) weakly converges to u in W , then also

(∀ϕ ∈ C∞c (Ω)) 〈 L0un | ϕun 〉L −→ 〈L0u | ϕu 〉L .

Remark. From the definition of the boundary operator D it follows that for every w ∈W one
has

W ′〈Dw,w 〉W = 2〈 L0w | w 〉L ,

which implies that the convergence required in (K1) is equivalent to

〈 L0un | un 〉L −→ 〈L0u | u 〉L .

Theorem 5. For fixed L0 and V , if family F(α, β; Ω) satisfies (K1), then for any sequence (Cn)
in F(α, β; Ω) there exists a subsequence of Ln := L0 + Cn which G-converges to L := L0 + C with
C ∈ F(α, β; Ω).

Dem. The proof resembles the original proof of Spagnolo in the case of parabolic G-convergence.
By (11), for given f ∈ L, the sequence un := L−1

n f is bounded in W :

‖un‖L0 6 c ‖f‖L ,

(with the constant c depending on α and β) so it possesses a weakly converging subsequence.
Due to the separability of L, using the Cantor diagonal procedure one can pass to a subsequence
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(for which we keep the same notation) such that L−1
n f weakly converges in W , for any f ∈ L. The

limit will be denoted by u = Bf ∈ V (V is closed in W [18], and therefore weakly closed, as well),
where B ∈ L(L;W ).

Let us define K ∈ L(L) by Kf := f − L0u = f − L0Bf. Then

(14) L0un + Cnun = f = L0Bf +Kf ,

and as L0un −⇀ L0Bf in L, it follows

(15) Cnun −⇀ Kf in L .

Multiplying the left equality in (14) by un, and the right by u = Bf, we get

(16) 〈 L0un | un 〉L + 〈 Cnun | un 〉L = 〈 f | un 〉L ,

(17) 〈 L0u | u 〉L + 〈Kf | u 〉L = 〈 f | u 〉L .

The right-hand side in (16) converges to 〈 f | u 〉L, while the first term on the left-hand side, by
(K1), converges to 〈 L0u | u 〉L. Therefore, by using (17) we obtain the convergence

(18) 〈 Cnun | un 〉L −→ 〈Kf | u 〉L .

Let us show that B is injective: if Bf = 0 for some f ∈ L, then (18) reads 〈 Cnun | un 〉L −→ 0
which, together with the second inequality in the definition of F(α, β; Ω), implies the strong
convergence Cnun −→ 0, and finally from (15) we are able to conclude that 0 = Kf = f−L0Bf = f.

The injectivity of B enables us to define the linear operator C : B(L) → L by C(Bf) := Kf.
Using (15), the second inequality in the definition of F(α, β; Ω), and (18), respectively, we have

1

β
‖Cu‖2L ≤ lim inf

n

1

β
‖Cnun‖2L ≤ lim inf

n
〈 Cnun | un 〉L = 〈 Cu | u 〉L ≤ ‖Cu‖L‖u‖L ,

which shows the continuity of C (in the pair of L norms).

Let us now prove that B(L) is dense in L, and consequently that C can be uniquely extended
by continuity to the whole L: arguing by contradiction, let us assume that there exists a non-zero
f ∈ L, orthogonal to B(L). In particular, the equality 〈 f | Bf 〉L = 0 holds, which together with
(17) implies

〈 L0u | u 〉L + 〈Kf | u 〉L = 0 .

Since 〈 L0u | u 〉L = 1
2W
′〈Du, u 〉W ≥ 0, we have 〈Kf | u 〉L ≤ 0. However, from the first inequality

in the definition of F(α, β; Ω) and (18) it follows 〈Kf | u 〉L ≥ 0 and therefore (18) reduces to
〈 Cnun | un 〉L −→ 0. Now, one proceeds similarly as before to conclude f = 0, which gives a
contradiction.

To sum up, the operator C : L→ L satisfies the same bounds as operators u 7→ Cnu:

(19)
〈 Cu | u 〉L ≥ α‖u‖2L

〈 Cu | u 〉L ≥
1

β
‖Cu‖2L

, u ∈ L .

Here, the second inequality has already been shown, while the first one follows analogously: in
〈 Cun | un 〉L ≥ α‖un‖2L the left-hand side converges to 〈 Cu | u 〉L by (18), while for the right-hand

side it is enough to use the inequality lim infn ‖un‖2L ≥ ‖u‖
2
L.

Q.E.D.
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Theorem 6. For fixed L0 and V , if the family Mr(α, β; Ω) satisfies (K1) and (K2), then it
is compact with respect to H-convergence, i.e. from any sequence (Cn) in Mr(α, β; Ω) one can
extract a H-converging subsequence whose limit belongs to Mr(α, β; Ω).

Dem. As the first step, we apply the last theorem to the operators Cn ∈ F(α, β; Ω) defined
by (Cnu)(x) = Cn(x)u(x), for a.e. x ∈ Ω and u ∈ L, obtaining the operator C ∈ F(α, β; Ω).
It remains to prove that C is of the form (Cu)(x) = C(x)u(x) for almost every x ∈ Ω, with
C ∈ L∞(Ω; Mr(R)); the bounds on C will then follow from (19), thus proving C ∈Mr(α, β; Ω).

For given u ∈ V let us define f := Lu ∈ L and the sequence un := L−1
n f ∈ V , so that un −⇀ u

in W and Cnun −⇀ Cu in L.

Testing the equalities f = Lu = Lnun on ϕun, with ϕ ∈ C∞c (Ω) we obtain:

(20) 〈 L0u | ϕun 〉L + 〈 Cu | ϕun 〉L = 〈 L0un | ϕun 〉L + 〈Cnun | ϕun 〉L .

The left-hand side converges to 〈 L0u | ϕu 〉L + 〈 Cu | ϕu 〉L as n tends to ∞, so by (K2) we
conclude

〈Cnun | ϕun 〉L −→ 〈Cu | ϕu 〉L .

In the sequel we consider only positive ϕ ∈ C∞c (Ω). As
√
ϕCnun weakly converges to

√
ϕCu in L,

we have lim infn ‖
√
ϕCnun‖L ≥ ‖

√
ϕCu‖

L
, so the inequalities ϕCnun · un ≥ 1

βϕ|Cnun|2, n ∈ N,
almost everywhere on Ω imply∫

Ω
ϕCu · u dx = lim

n

∫
Ω
ϕCnun · un dx ≥

1

β

∫
Ω
ϕ|Cu|2 dx .

Now one concludes

Cu · u ≥ 1

β
|Cu|2 , a.e. on Ω ,

and, in particular, for any u ∈ V

(21) |Cu| ≤ β|u| , a.e. on Ω .

Let ω1 ⊆ ω2 ⊆ · · · be an increasing sequence of compact sets in Ω such that
⋃
n ωn = Ω. The

inequality (21) enables one to define a matrix-valued function C ∈ L∞(Ω; Mr(R)) by defining it
on each ωn: if ϕn ∈ C∞c (Ω) equals 1 on ωn, for any ξ ∈ Rr we take

C(x)ξ := C(ξϕn)(x) , a.e. x ∈ ωn .

This definition is correct, since if m > n then on ωn in this way we obtain the same value:

|C(ξϕn)− C(ξϕm)| ≤ β|ξ(ϕn − ϕm)| = 0 .

In particular, due to the linearity of C, this definition implies the equality Cv = Cv almost
everywhere on Ω, for any step function v on Ω. As step functions are dense in L, another
application of (21) implies that the same holds on the whole L.

Q.E.D.

Let us set up the notation for the next theorem: if L is a Friedrichs operator of the form
L = L0 + C, with L0 =

∑d
k=1 Ak∂k and C ∈ F(α, β; Ω), as before, then its formal adjoint is

L̃ = −L0 + C∗, where C∗ ∈ L(L) is the adjoint operator of the operator C (in the sense of
Hilbert spaces), belonging also to F(α, β; Ω). In particular, if C stands for the multiplication
by a matrix-valued function C ∈ Mr(α, β; Ω), then C∗ is of the same kind, with the transpose

matrix C> ∈ Mr(α, β; Ω) instead of C. By Theorem 1, L̃ is an isomorphism from Ṽ to L, and
the definition of G-convergence is analogously written in terms of its inverse.
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Theorem 7. If a sequence of Friedrichs operators of the form Ln = L0 +Cn, for Cn ∈ F(α, β; Ω),
G-converges to L = L0 + C, then the sequence of its formal adjoints L̃n = −L0 + C∗n G-converges
to L̃ = −L0 + C∗. Moreover, if a sequence (Cn) in Mr(α, β; Ω) H-converges to C with respect

to L0 and V , then (C>n ) H-converges to C> with respect to −L0 and Ṽ .

Dem. For given f, g ∈ L we define un = L−1
n f ∈ V and vn := L̃−1

n g ∈ Ṽ . Since Ln
G−⇀ L, the

convergence un
W−⇀ u holds, with u = L−1f ∈ V . Due to the uniform bound on L̃−1

n , we can pass

to a subsequence of (vn) which converges to v ∈ Ṽ weakly in W . After testing Lnun = f and
L̃nvn = g to vn and un, respectively, and then subtracting these equalities, we get

(22) 〈 Lnun | vn 〉L − 〈 L̃nvn | un 〉L = 〈 f | vn 〉L − 〈 g | un 〉L ,

The left-hand side of (22) equals W ′〈Dun, vn 〉W which is zero by (V2), as un belongs to V , and

vn belongs to Ṽ . Therefore, passing to the limit in (22) we obtain

〈 f | v 〉L = lim
n
〈 f | vn 〉L = lim

n
〈 g | un 〉L = 〈 g | u 〉L .

Finally, as u ∈ V and v ∈ Ṽ we have W ′〈Du, v 〉W = 0, or equivalently

〈 u | L̃v 〉L = 〈 Lu | v 〉L = 〈 f | v 〉L = 〈 g | u 〉L .

Since u ∈ V is arbitrary and C∞c (Ω; Rr) ⊆ W0 ⊆ V are dense in L (see e.g. [18, Lemma
3.1]), it follows that v = L̃−1g. Since the accumulation point v of the sequence (vn) is uniquely
determined, the whole sequence converges to v, and arbitrariness of g completes the proof of the
first claim.

Additionally, let us assume that for any n ∈ N the operator Cn : L → L is a multiplication
operator by a matrix-valued function Cn ∈Mr(α, β; Ω) and Cn

H−⇀ C with respect to L0 and V ,
which also implies that C is the multiplication operator by C. For an arbitrary g ∈ L, let us define
vn = L̃−1

n g. By the first part of the proof we know that vn −⇀ v in W , where v = L̃−1g ∈ Ṽ ,
implying also the weak convergence −L0vn −⇀ −L0v in L. Then −L0vn+C∗nvn = g = −L0v+C>v
implies that C>n vn = C∗nvn −⇀ C>v weakly in L, which implies C>n

H−⇀ C> with respect to −L0

and Ṽ , by the definition.
Q.E.D.

In Theorem 6 we have proved that, under the additional assumptions (K1) and (K2), for a
sequence of classical Friedrichs systems satisfying some uniform bounds and sharing the same L0

part, we get a system of the same type in the limit. Since we want to reinterpret the homogeni-
sation results of some classical equations in the setting of Friedrichs systems, we would like to
conclude that, for example for the system corresponding to the stationary diffusion equation, we
get in the limit the stationary diffusion equation in the form of Friedrichs system again. However,
Theorem 6 does not provide that information – it only claims that the limiting equation is the
Friedrichs system (with the same L0 part and satisfying the same bounds), and not necessarily
the system that corresponds to the stationary diffusion equation. Clearly, this is the question of
the conservation of the same structure of the coefficient matrix C through the homogenisation
process, studied in the following theorem.

Theorem 8. Let a sequence (Cn) inMr(α, β; Ω) H-converge towards C with respect to L0 and
V . If each Cn has the block-diagonal structure, with one block not depending on n:

Cn =

[
Cσ
n 0

0 Cu

]
,

then C has the same block-diagonal structure, i. e.

C =

[
Cσ 0
0 Cu

]
,

for some bounded matrix field Cσ on Ω.
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Dem. Let

C =

[
Cσ D
E F

]
,

and let us prove that E = D> = 0 and F = Cu. For an arbitrary u = (uσ, uu)> ∈ V let us
define f := (L0 + C)u and un := (L0 + Cn)−1f = (uσ

n , u
u
n)>, where the σ-component of these

functions has the size of the block Cσ, and similarly for the u-component. Then the convergence
Cnun −⇀ Cu in L implies

Cσ
nuσ

n −⇀ Cσuσ + Duu in L ,

Cuuun −⇀ Euσ + Fuu in L .

However, the convergence un −⇀ u in L, implies Cuuun −⇀ Cuuu and therefore Euσ+Fuu = Cuuu.
Choosing u such that uu = 0 and uσ being an arbitrary smooth function with a compact support
in Ω, we conclude E = 0. Similarly, taking uσ = 0 and an arbitrary smooth uu with a compact
support, we have F = Cu.

Using Theorem 7 and the same argumentation as above for the transpose operators C>n and

C> (and H-convergence with respect to −L0 and Ṽ ), we get D = 0, which concludes the proof.
Q.E.D.

4. Examples

In this section we apply our homogenisation results to the stationary diffusion equation and
the heat equation. For these examples, we are able to obtain the complete characterisation of the
H-limit, in terms of the classical H-limit for the original equations. The last example considers
the opposite case: the simplest equation for which the memory effects occur.

As mentioned before, in order to verify that compactness conditions are fulfilled for the first
two examples, we shall use the Quadratic theorem of compensated compactness [29], which we
state here.

Theorem 9. (Quadratic theorem) Let Ω ⊆ Rd be open, Dk ∈ Mq,p(R), k ∈ 1..d, and

Λ :=
{
λ ∈ Rp : (∃ ξ ∈ Rd \ {0})

d∑
k=1

ξkD
kλ = 0

}
.

Moreover, for given Q ∈ Mp(R), let the quadratic form Q(λ) := Qλ · λ, λ ∈ Rp satisfy

(∀λ ∈ Λ) Q(λ) = 0 .

Then every sequence of functions (wn), with properties

(P1) wn −⇀ w weakly in L2(Ω; Rp) ,

(P2)
( d∑
k=1

Dk∂kwn
)

is relatively compact in H−1(Ω; Rq) ,

satisfies
Q ◦ wn −⇀ Q ◦ w in D′(Ω) .

Stationary diffusion equation
In the introductory section we have seen how stationary diffusion equation can be written

as a Friedrichs system. We are now interested in the homogenisation of that Friedrichs system.
More precisely, we shall show that in this particular case the family Mr(α, β; Ω) satisfies (K1)

Krešimir Burazin & Marko Vrdoljak 16



Communications on Pure and Applied Analysis Homogenisation theory for Friedrichs systems

and (K2), for the various choices of boundary conditions (subspaces V ), and make the comparison
with the classical notion of H-convergence for the stationary diffusion equation.

Let us assume that we have given a sequence of equations

(23) −div (An∇un) + cnun = f

in an open and bounded set Ω ⊆ Rd with the Lipschitz boundary Γ, where f ∈ L2(Ω), An ∈
Md(α

′, β′; Ω) and cn ∈ L∞(Ω) with 1
β′ 6 cn 6 1

α′ , for some β′ ≥ α′ > 0. We have already
seen how this type of equation can be written as the Friedrichs system, with coefficient matrices
Ak = ek⊗ed+1+ed+1⊗ek ∈ Md+1(R), for k ∈ 1..d and the block-diagonal matrix-valued function

(24) Cn =

[
(An)−1 0

0> cn

]
∈ L∞(Ω; Md+1(R)) .

Clearly, the assumptions on cn and An are equivalent to Cn ∈ Md+1(α, β; Ω), for α = 1
β′ and

β = 1
α′ .

Let us recall that graph space is W = L2
div(Ω)×H1(Ω) and

(25) L0

[
uσ

uu

]
=

[
∇uu

div uσ

]
,

where uσ contains the first d components of u, and uu is the last component. Dirichlet, Neumann
and Robin boundary conditions are imposed by the following choice of V and Ṽ , respectively (we
put indices to distinguish them):

VD = ṼD :=L2
div(Ω)×H1

0(Ω) ,

VN = ṼN :={(uσ, uu)> ∈W : ν · uσ = 0} ,
VR :={(uσ, uu)> ∈W : ν · uσ = auu|Γ} ,

ṼR :={(uσ, uu)> ∈W : ν · uσ = −auu|Γ} .

Thus, in order to apply the theorems presented here, it remains to prove the compactness as-
sumptions (K1) and (K2) for Md+1(α, β; Ω):

Lemma 1. For L0 as in (25) and any V ∈ {VD, VN , VR}, the family Md+1(α, β; Ω) satisfies

assumptions (K1) and (K2). The same is true for the operator −L0 and the subspace Ṽ , instead
of L0 and V , respectively.

Dem. For the proof of (K1) we shall use the following representation of D [9]:

W ′〈D(uσ, uu)>, (vσ, vu)> 〉W =
H−

1
2
〈ν · uσ, vu 〉

H
1
2

+
H−

1
2
〈ν · vσ, uu 〉

H
1
2
,

for u = (uσ, uu)>, v = (vσ, vu)> ∈ W . It is now clear that W ′〈Dv, v 〉W = 0 if v belongs to any

of the sets VD, ṼD, VN , or ṼN , so the condition (K1) is trivially satisfied. In the case of Robin
boundary conditions, for v ∈ VR, we have

(26) W ′〈Dv, v 〉W = 2a‖vu‖2L2(Γ) .

If a sequence (un) in VR weakly converges to u in W , then the sequence of the last components (uun)
weakly converges to uu in H1(Ω). Now, using the weak continuity of trace operator H1(Ω) −→
H

1
2 (Γ), and compact imbedding of H

1
2 (Γ) in L2(Γ), we conclude ‖uun‖L2(Γ) −→ ‖uu‖L2(Γ), which

together with (26) proves (K1) for VR. Similarly for ṼR.
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As we mentioned above, in order to check the assumption (K2) we shall use Quadratic
theorem of compensated compactness: let un be a sequence which weakly converges to u in W
and ϕ ∈ C∞c (Ω) arbitrary. Using integration by parts, from

〈 L0un | ϕun 〉L =

∫
Ω

d∑
k=1

Ak∂kun · ϕun dx ,

we easily get

〈 L0un | ϕun 〉L = −1

2

∫
Ω
∂kϕ

d∑
k=1

Akun · un dx ,

and a similar formula for u instead un. Therefore, in order to prove (K2) it is enough to prove
that Aiun · un −⇀ Aiu · u in D′(Ω), for every i ∈ 1..d. Now we apply Quadratic theorem with
p = q = d+ 1, Dk = Ak and Q = Ai, for fixed i ∈ 1..d. Note that the conditions (P1) and (P2)
of Quadratic theorem are satisfied for our sequence because un −⇀ u in W . Now it is easy to
calculate Λ:

Λ = {λ ∈ Rd+1 : λd+1 = 0} ,
and since Aiλ · λ = 2λiλd+1 it follows that our quadratic form is zero on it. Therefore, the
conditions of Quadratic theorem are satisfied, which proves (K2).

Q.E.D.

The above lemma implies that our general homogenisation results can be applied to this
example. Let us now compare the notion of H-convergence of this Friedrichs system with the
classical H-convergence in case of stationary diffusion equation. More precisely, consider a se-
quence of matrices Cn of the form (24) H-converging to C with respect to L0, given by (25), and
some V ∈ {VD, VN , VR}.

For the moment let us consider the simplest case: let (cn) be a stationary sequence. Then
by Theorem 8 the H-limit C has the same block-diagonal structure:

C =

[
B 0
0> c

]
.

If the right-hand side f vanishes, except at the last component f , the limiting system turns to
the stationary diffusion equation for the last component of u:

−div (B−1∇u) + cu = f .

On the other hand, as mentioned in the Introduction, the sequence (An) has a subsequence that
H-converges to A in the original sense for the stationary diffusion problem (we shall address
this H-convergence as the classical H-convergence). Now, the natural question appears: does
A = B−1 hold?

We shall obtain this in Theorem 11, without the stationarity assumption on the sequence
(cn), but we first cite the following theorem, which shows that the classical H-convergence is
independent of boundary conditions [22]. Actually, the possibility of an improvement of the
result of Theorem 8 for this example lies in the special structure of matrices Ak, as well as the
strong convergence in L of the sequence of the solutions uun.

Theorem 10. If a sequence (An) classically H-converges to A and un −⇀ u in H1(Ω) with
div (An∇un) belonging to a compact set of H−1(Ω) strong, then An∇un −⇀ A∇u in L2(Ω; Rd).

Theorem 11. For the Friedrichs system corresponding to the stationary diffusion equation, a
sequence (Cn) in Md+1(α, β; Ω) of the form (24) H-converges with respect to L0 and VD if and
only if (An) classically H-converges to some A and (cn) L∞ weakly ∗ converges to some c. In
that case, the H-limit is the matrix-valued function

(27) C =

[
A−1 0
0> c

]
,
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Dem. For the proof of the necessity part let us denote the H-limit by

C =

[
B D
E F

]
,

where, as before, the size of the matrix-valued function B is d × d, and since C is uniformly
positive definite, so is B. Due to the compactness theorem for classical H-convergence, and the
boundedness of the sequence (cn) in L∞, we can pass to a subsequence such that (An) classically
H-converges to A, and cn weakly ∗ converges to c.

The operator Au := div A∇u + cu is an isomorphism from H1
0(Ω) to H−1(Ω), and since

L2(Ω) is dense in H−1(Ω), so is D(A) := A−1(L2(Ω)) dense in H1
0(Ω). Let us take an arbitrary

uu ∈ D(A) and define u = (uσ, uu)> with uσ = −A∇uu ∈ L2
div(Ω), f := −div (A∇uu) + cuu ∈ L,

and f = (0, . . . , 0, f)>.
Furthermore, we take un = (uσ

n , u
u
n)> := L−1

n f, with Ln = L0 + Cn. By the a priori bound
(12), the sequence of the solutions (un) is bounded in W so we can take another subsequence
such that un −⇀ v in W . Since first d components of f are equal to zero, the Friedrichs system
for un reads: uσ

n = −An∇uun and uun ∈ H1
0(Ω) (which weakly converges to vu in H1

0(Ω)) solves the
equation −div (An∇uun) = f−cnuun. By the Rellich compactness theorem, the weak convergence of
uun implies uun −→ vu in L2(Ω), which together with weak ∗ convergence of cn implies cnu

u
n −⇀ cvu

in L2(Ω). Using again the Rellich theorem, we obtain that the right-hand side in the equation
for uun strongly converges to f − cvu in H−1(Ω), and therefore An∇uun −⇀ A∇vu in L2(Ω; Rd),
by Theorem 10. Therefore, passing to the limit in the equation for uun we obtain −div (A∇vu) =
f−cvu, and the uniqueness of the solution implies vu = uu. Moreover, we have uσ

n = −An∇uun −⇀
−A∇vu = −A∇uu = uσ in L2(Ω; Rd), showing the equality v = u.

On the other side, by the H-convergence Cn
H−−⇀ C, we know that un = L−1

n f −⇀ L−1f in
W , with L = L0 + C, so the uniqueness of the limit implies u = L−1f.

The convergence Cnun −⇀ Cu means

−∇uun −⇀ Buσ + Duu in L ,

cnu
u
n −⇀ Euσ + Fuu in L .

Since we already obtained ∇uun −⇀ ∇uu in L and cnu
u
n −⇀ cuu (due to the strong convergence

of the sequence (uun) in L) we have

(28)
−∇uu = Buσ + Duu ,

cuu = Euσ + Fuu .

These two equalities hold for an arbitrary uu ∈ D(A) and uσ = −A∇uu, so they also hold
for any uu ∈ H1

0(Ω) and uσ = −A∇uu. Indeed, using density of D(A) in H1
0(Ω), for given

uu ∈ H1
0(Ω) let us take a sequence vun ∈ D(A) converging to uu strongly in H1(Ω), implying also

vσn := −A∇vun −→ −A∇uu in L2(Ω). Now, taking the limit in equalities (28) with vun instead of
uu and vσn instead of uσ, as n tends to ∞, we obtain (28).

As uu ∈ C∞c (Ω) can be chosen arbitrarily, and uσ = −A∇uu, let us take uu ≡ 1 on some
set ω compactly included in Ω. Substituting this in (28), we obtain D = 0 and F = c on ω,
and therefore, on the whole Ω. Now, from the above equalities one easily concludes E = 0 and
A = B−1 almost everywhere on Ω. The uniqueness of the limit of all converging subsequences of
(An) and (cn), implies the convergence of the whole sequences.

Conversely, if the sequence (An) classically H-converges to A, and cn weakly ∗ converges
to c, let us pass to a subsequence of (Cn) which H-converges to C with respect to L0 and VD.
However, from the first part of this proof, one obtains that C is given by (27), implying that the
whole sequence converges to the same limit, as this is its only cluster point.

Q.E.D.

Thanks to the characterisation given by the last theorem, it is possible to conclude that the
notion of H-convergence for Friedrichs system given by the operator L0 from (26) is independent
of the prescribed boundary conditions, i.e. independent of the choice of the subspace: VD, VN or
VR.
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Corollary 1. The notion of H-convergence with respect to L0 given by (26) does not depend
on the particular choice of the subspace VD,VN or VR.

Dem. The claim of the last theorem still holds if we change the subspace VD by VR or VN , with
actually the same proof. The operator A : H1(Ω) → H1(Ω)

′
, from the beginning of that proof,

defined classically via corresponding bilinear form, is isomorphic by Lax-Milgram lemma. But A
could also be restricted to an isomorphism from D(A) := A−1(L2(Ω)) (with respect to the graph
norm) onto L2(Ω). Now the same proof applies because D(A) is dense in H1(Ω) (for details see
[13, VI.3.2 and VII.1.3]).

Q.E.D.

Heat equation
Let, as before, Ω ⊆ Rd be an open and bounded set with the Lipschitz boundary Γ, T > 0

and ΩT := Ω× 〈0, T 〉. We consider a sequence of heat equations in the following form

∂tun − div x(An∇xun) + cnun = f in ΩT ,

where f ∈ L2(ΩT ), cn ∈ L∞(ΩT ), 1
β′ 6 cn 6 1

α′ and An ∈ Md(α
′, β′; ΩT ), for some β′ ≥ α′ > 0

(note that the coefficients depend both on x and t).
Similarly as it is the case for the stationary diffusion equation, this equation can be rewritten

as the Friedrichs system (L0 + Cn)un = f for the vector function (see [6] for details)

un =

[
uσ
n

uun

]
=

[
−An∇xun

un

]
,

and the right-hand side f = (0, . . . , 0, f)> ∈ L2(ΩT ; Rd+1). The operator L0 is given by

(29) L0

[
uσ

uu

]
=

[
∇xu

u

∂tu
u + div xuσ

]
,

while the corresponding graph space is

W =
{

u ∈ L2
div(ΩT ) : uu ∈ L2(0, T ; H1(Ω))

}
.

Therefore, the matrices Ak = ek ⊗ ed+1 + ed+1 ⊗ ek ∈ Md+1(R), for k ∈ 1..d and the block
matrix-valued function

Cn =

[
(An)−1 0

0> cn

]
coincides with the one used for the stationary diffusion equation, while Ad+1 = ed+1 ⊗ ed+1 ∈
Md+1(R). Here we again have that each Ak is a constant symmetric matrix, while Cn ∈
Md+1(α, β; ΩT ), for α = 1

β′ and β = 1
α′ . Note that our domain is now ΩT , and that the first

d variables are the space variables of the original equation, while (d + 1)-st variable is the time
variable.

The subspaces V and Ṽ are chosen with respect to the homogenous Dirichlet boundary
condition on Γ× 〈0, T 〉 and the zero initial condition:

(30) V =
{

u ∈W : ud+1 ∈ L2(0, T ; H1
0(Ω)), ud+1(·, 0) = 0 a.e. on Ω

}
,

Ṽ =
{

v ∈W : vd+1 ∈ L2(0, T ; H1
0(Ω)), vd+1(·, T ) = 0 a.e. on Ω

}
.

In [6] it was shown that they satisfy conditions (V1) and (V2) providing the well-posedness result.
Therefore, in order to apply our homogenisation result for Friedrichs systems we need to check
conditions (K1) and (K2).
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Lemma 2. For L0 as in (29) and V as in (30), the familyMd+1(α, β; Ω) satisfies the assumptions

(K1) and (K2). The same is true for the operator −L0 and the subspace Ṽ , instead of L0 and V ,
respectively.

Dem. Using results from [6] (namely, Lemma 4 and the formula (7)) we easily get that for every
u = (uσ, uu)>, v = (vσ, vu)> ∈ V we have

W ′〈D(uσ, uu)>, (vσ, vu)> 〉W =

∫
Ω
uu(·, T )vu(·, T ) dx ,

and in particular

(31) W ′〈Dv, v 〉W = ‖vu(·, T )‖2L2(Ω) .

Similarly as in [32, Lemma 3] one can prove that for the sequence un := (L0 + Cn)−1f ∈ V ,
for arbitrary f ∈ L2(ΩT ; Rd+1) and Cn ∈ F(α, β; Ω), the corresponding sequence of the last
components (uun) is compact in C([0, T ]; L2(Ω)), which together with (31) proves (K1) for V .

In order to prove (K2) we use the Quadratic theorem of compensated compactness similarly
as in the proof of Lemma 1. Actually, the only differences arise from the fact that we now have
d+ 1 instead of d variables. The set Λ = {λ ∈ Rd+1 : λd+1 = 0} remains the same, as well as the
quadratic forms Aiλ · λ = 2λiλd+1, for k ∈ 1..d, which are then, clearly, zero on Λ. In the case
of the heat equation we have one additional quadratic form: Q(λ) = Ad+1λ · λ = λ2

d+1 which is
also zero on Λ and then we can apply Theorem 9 in order to conclude (K2).

The statements can be similarly proved for −L0 and Ṽ .
Q.E.D.

The next theorem gives the comparison of H-convergence for the Friedrichs system corre-
sponding to the heat equation with the parabolic H-convergence.

Theorem 12. Let the operator L0 and the subspace V be defined by (29) and (30), respectively,
and (Cn) be a sequence in Md+1(α, β; ΩT ) of the form

Cn =

[
(An)−1 0

0> cn

]
.

Then Cn H-converges to some C ∈ Md+1(α, β; ΩT ) with respect to L0 and V if and only if the
sequence An ∈Md(α, β; ΩT ) parabolically H-converges to some A and cn converge to some c in
L∞ weakly ∗. In that case the limit is given by

C =

[
(A)−1 0

0> c

]
.

The proof is done in a similar manner as the proof of Theorem 11. Here, instead of Theorem
10, the parallel result for the heat equation is used [26, Theorem 3].

Equation with memory effects in homogenisation
In the first two examples we were dealing with the equations whose homogenised limit is

the equation of the same type. Of course, this is not always the case, as a number of equations
are known that under the process of homogenisation exhibit so called memory effects, where the
limiting equation contains some nonlocal term. We shall present here the simplest model problem
where such nonlocal effects occur [28]:

(32)

{
∂tu(x, t) + c(x)u(x, t) = f(x, t) , (x, t) ∈ ΩT = Ω× 〈0, T 〉
u(x, 0) = 0 , x ∈ Ω ,
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represent it as Friedrichs system, and then try to apply our general homogenisation setting for
Friedrichs systems. Since our setting does not detect memory effects, we expect to find that some
of our assumptions are not satisfied. Here, for simplicity, we take Ω = 〈0, 1〉, and, as before,
T > 0, f ∈ L2(ΩT ), β > c > α > 0 a.e. on Ω.

Actually, this single equation is already in a form of Friedrichs system with our matrix-valued
functions now being scalars: A1 = 0,A2 = 1,C = c. The graph space is given by

W = {u ∈ L2(ΩT ) : ∂tu ∈ L2(ΩT )}
= {u ∈ L2(0, T ; L2(Ω)) : ∂tu ∈ L2(0, T ; L2(Ω))} ,

and it is continuously imbedded in C(0, T ; L2(Ω)) [21]. As Aν = ν2 the boundary operator D is
given by

(33) W ′〈Du, v 〉W =

∫ 1

0
u(·, T )v(·, T ) dx−

∫ 1

0
u(·, 0)v(·, 0) dx ,

for smooth functions u and v, but similarly as in [6] it can be shown that this representation

formula is valid for arbitrary u, v ∈W . The natural choice of subspaces V and Ṽ that corresponds
to the initial and boundary conditions in (32) is given by

V = {u ∈W : u(·, 0) = 0} ,
Ṽ = {v ∈W : v(·, T ) = 0} ,

and one can easily verify that they satisfy conditions (V).
Let us now turn our attention to the homogenisation problem: if properties (K1) and (K2)

hold then we would have compactness theorem and, similarly as in the previous two examples,
the limiting equation would be of the same type. However, we know that this is not the case
for this particular example, as shown in [28]. Therefore, some of our assumptions will not be
satisfied: we shall prove that property (K1) is not valid for this Friedrichs system.

Let (cn) be a sequence of bounded functions on 〈0, 1〉 with β > cn > α > 0 a.e. on 〈0, 1〉, and
let ν be its Young measure. Take f(x, t) ≡ 1, so that the solution of{

∂tun(x, t) + cn(x)un(x, t) = 1 , (x, t) ∈ ΩT = 〈0, 1〉 × 〈0, T 〉
u(x, 0) = 0 , x ∈ 〈0, 1〉

is given by the explicit formula un(x, t) = F (cn(x), t), where

F (y, t) =
1

y

(
1− e−yt

)
.

One can easily see that this sequence of the solutions converges weakly in L2(ΩT ) to

u(x, t) =

∫ β

α
F (y, t) dνx(y) .

From (33) it follows

W ′〈Dun, un 〉W =

∫ 1

0
F 2(cn(x), T ) dx ,

W ′〈Du, u 〉W =

∫ 1

0

(∫ β

α
F (y, T ) dνx(y)

)2

dx ,

and since

F 2(cn(·), T ) −⇀
∫ β

α
F 2(y, T ) dν·(y) weakly ∗ in L∞(〈0, 1〉) ,
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after testing the last convergence on the constant function 1 ∈ L1(〈0, 1〉), we conclude

W ′〈Dun, un 〉W −→
∫ 1

0

∫ β

α
F 2(y, T ) dνx(y) dx .

Therefore, if (K1) is valid, we have∫ 1

0

∫ β

α
F 2(y, T ) dνx(y) dx =

∫ 1

0

(∫ β

α
F (y, T ) dνx(y)

)2

dx ,

which, in case when the sequence (cn) is of the form cn(x) = c̃(nx), for some periodic function
c̃ : R −→ R, and therefore has homogenous Young measure (independent of x), becomes∫ β

α
F 2(y, T ) dν(y) =

(∫ β

α
F (y, T ) dν(y)

)2

.

As this equality is clearly not true for every homogenous Young measure, it follows that (K1) is
not valid.

5. Concluding remarks

It is known that the abstract theory of Friedrichs systems can be applied to the stationary
diffusion equation [18, 4, 10], and more recently to the heat equation [6]. In this paper we have
developed the general theory of homogenisation of Friedrichs systems, and applied it to these
two equations. In this way we rediscover some homogenisation results, such as the compactness
theorem for classical H-convergence of the stationary diffusion and the heat equation.

There is also a number of open problems that arise from this work, the obvious one being the
possible applications to other equations of interest (as Friedrichs systems can be applied to a wide
variety of equations and systems [18, 4, 10, 20]). Furthermore, some properties of H-convergence
for Friedrichs systems should be investigated, e.g. locality property, irrelevance of the boundary
conditions, homogenisation of periodic or stratified materials, question of correctors etc.

It would also be of interest to develop the homogenisation theory for the two-field Friedrichs
systems with partial coercivity [17]. This would enable the treatment of the stationary diffusion
equation and the heat equation with zero non-derivative term (c = 0).
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[32] Vasili V. Žikov, Sergei M. Kozlov, Ol’ga A. Oleinik: On G-convergence of parabolic operators,

Russ. Math. Surv. 36:1 (1981) 9–60.
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