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1. Introduction

Various questions originating from gas dynamics, both of theoretical and practical nature,
have been the source of interesting mathematical problems for quite some time. Stimulated by
the appearance of a book [CF] on the subject written by mathematicians seeking to understand
in a rational way a fascinating field of physical reality, a huge advance was made in the last
half-century. However, a completely satisfactory theory still eludes the present state of analysis,
and various specific approaches are used.

In quite general terms, the conservation laws can be written [Ma] in the form

∂tu + div F(u) = s(·, u) ,

where u is the unknown vector function, and F a prescribed nonlinear matrix function, with s rep-
resenting the source term. Such a system should be supplemented by appropriate initial/boundary
conditions.

Assuming that the source term vanishes, any constant u0 belonging to the domain of F
provides a trivial solution. By linearisation (i.e. taking u := u0 + v and inserting it into the
equation), we get the linear system for new unknown v:

∂tv +

d∑
k=1

Ak(u0)∂kv = 0 ,

where Ak are the gradients of the rows of F. A reasonable requirement for a general system of
conservation laws is that the corresponding linearised problem is well-posed.

Over fifty years ago, Friedrichs [F] realised that most of the equations of classical physics can
be written as a form of first-order system of the above form; in fact, they can be symmetrised by
a multiplication with a positive definite matrix function. However, the choice of such a multiplier
was neither unique nor straightforward. An important consequence for the linearised problem,
which is our main concern here, was well-posedness through an energy principle.

Furthermore, this framework can accommodate equations which change their type, such as
the equations appearing in the mathematical models of transonic gas flow. Such models are
inherently nonlinear, but often the equation can be transformed into a linear one, with the
nonlinearity hidden in the unknown domain. Actually, these equations of mixed type were the
main motivation for Friedrichs in the development of this theory.

To be specific, take d, r ∈ N and let Ω ⊆ Rd be an open and bounded set with Lips-
chitz boundary Γ (we shall denote its closure by Cl Ω = Ω ∪ Γ). If real matrix functions
Ak ∈W1,∞(Ω; Mr(R)), k ∈ 1..d, and C ∈ L∞(Ω; Mr(R)) satisfy

(F1) Ak is symmetric: Ak = A>k ,

(F2) (∃µ0 > 0) C + C> +
d∑

k=1

∂kAk > 2µ0I (a.e. on Ω) ,

then the first-order differential operator L : L2(Ω; Rr) −→ D′(Ω; Rr) defined by

Lu :=
d∑

k=1

∂k(Aku) + Cu

is called the Friedrichs operator or the symmetric positive operator, while (for given f ∈ L2(Ω; Rr))
the first-order system of partial differential equations Lu = f is called the Friedrichs system or the
symmetric positive system. Note that we have written both time and space variables together, as
in this generality the difference between them is not clear, and that we have used the divergence
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form of the differential operator in order to allow coefficients with lower regularity (the difference
(∂kAk)u can be included in the term Cu).

In describing the boundary conditions, following Friedrichs [F] we first define

Aν :=
d∑

k=1

νkAk ,

where ν = (ν1, ν2, · · · , νd)> is the outward unit normal on Γ, which is, like Aν , of class L∞ on Γ.
For a given matrix field on the boundary M : Γ −→ Mr(R), the boundary condition is prescribed
by

(Aν −M)u|Γ = 0 ,

and by varying M one can enforce different boundary conditions. Friedrichs required the following
two conditions (for a.e. x ∈ Γ) to hold:

(FM1) (∀ ξ ∈ Rr) M(x)ξ · ξ > 0 ,

(FM2) Rr = ker
(
Aν(x)−M(x)

)
+ ker

(
Aν(x) + M(x)

)
;

and such an M he called an admissible boundary condition.
The boundary value problem thus reads: for given f ∈ L2(Ω; Rr) find u such that

(1)

{
Lu = f

(Aν −M)u|Γ = 0
.

Of course, under such weak assumptions the existence of a classical solution (C1 or W1,∞)
cannot be expected. It can be shown that, in general, the solution belongs only to the graph
space of operator L:

W =
{

u ∈ L2(Ω; Rr) : Lu ∈ L2(Ω; Rr)
}
.

W is a separable Hilbert space (see e.g. [AB1]) with the inner product

〈 u | v 〉L := 〈 u | v 〉L2(Ω;Rr) + 〈 Lu | Lv 〉L2(Ω;Rr) ,

in which the restrictions of functions from C∞c (Rd; Rr) to Ω are dense. The corresponding norm
will be denoted by

‖u‖L =
√
‖u‖2

L2(Ω;Rr)
+ ‖Lu‖2

L2(Ω;Rr)
.

However, with such a weak notion of a solution in a quite large space, the question arises of
how to interpret the boundary condition. It is not a priori clear what would be the meaning of
u|Γ for functions u from the graph space. Recently (cf. [AB1, J]) it has been shown that u|Γ can

be interpreted as an element of H−
1
2 (Γ; Rr), and the appropriate well-posedness results for the

weak formulation of (1), under additional assumptions, have been proven [Ra, J].
More recently the Friedrichs theory has been rewritten in an abstract setting by Ern, Guer-

mond and Caplain [EG, EGC], in terms of operators acting on Hilbert spaces, such that the traces
on the boundary have not been explicitly used. Instead, the boundary conditions have been repre-
sented in an intrinsic way. In fact, the trace operator has been replaced by the boundary operator
D ∈ L(W ;W ′) defined by

W ′〈Du, v 〉W := 〈 Lu | v 〉L2(Ω;Rr) − 〈 u | L̃v 〉L2(Ω;Rr) , u, v ∈W ,

where L̃ : L2(Ω; Rr) −→ D′(Ω; Rr), the formally adjoint operator to L, is defined by

L̃v := −
d∑

k=1

∂k(A
>
k v) +

(
C> +

d∑
k=1

∂kA
>
k

)
v .

Furthermore, it has been shown that operator D has better properties than the trace operator.
One of them that we shall use later is given by this lemma.
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Lemma 1. The operator D is symmetric, i.e.

(∀ u, v ∈W ) W ′〈Du, v 〉W = W ′〈Dv, u 〉W .

In [EGC] the following weak well–posedness result has been shown as well.

Theorem 1. Let (F1)–(F2) be valid for matrix functions Ak ∈W1,∞(Ω; Mr(R)), k ∈ 1..d, and
C ∈ L∞(Ω; Mr(R)). Further assume that there exists an operator M ∈ L(W ;W ′) satisfying

(M1) (∀ u ∈W ) W ′〈Mu, u 〉W > 0 , and

(M2) W = ker(D −M) + ker(D +M) .

Then the restricted operators

L|ker(D−M)
: ker(D −M) −→ L2(Ω; Rr) and L̃|ker(D+M∗)

: ker(D +M∗) −→ L2(Ω; Rr)

are isomorphisms.

The operator M from the theorem is also called the boundary operator, as kerM = kerD =
W0. In the sequel we shall refer to both properties (M1) and (M2) as (M); similarly we shall use
(F) and (FM).

In the abstract setting, Ern, Guermond and Caplain [EGC] considered, besides (M), two
additional forms of the boundary conditions and their mutual relationship, raising a number of
open questions. In the papers [AB1, AB2, AB3] we closed the most important question by proving
that those abstract conditions are, in fact, all equivalent. The new development was based on
the fact that the theory can be expressed in terms of Krĕın spaces (particular kinds of indefinite
inner product spaces). This approach allowed us to simplify a number of earlier proofs as well.

The above simplification of abstract theory paved the way to new investigations of the precise
relationship between the classical Friedrichs theory and its abstract counterpart.

The analogy between the properties (M) for operator M and the conditions (FM) for matrix
boundary condition M is apparent. A natural question to be investigated is that of the nature
of the relationship between the matrix field M and the boundary operator M . More precisely,
our goal is to find additional conditions on the matrix field M with properties (FM) which will
guarantee the existence of a suitable operator M ∈ L(W ;W ′) with properties (M).

For a given matrix field M, which M will be a suitable operator? The condition is satisfied
by such an operator M that the result of Theorem 1 really presents the weak well–posedness
result for problem (1) in the following sense: if for given f ∈ L2(Ω; Rr), u ∈ ker(D −M) is such
that Lu = f, where we additionally have u ∈ C1(Ω; Rr) ∩ C(Cl Ω; Rr), then u satisfies (1) in the
classical sense.

With such a connection between M and the boundary operator M , applications of the ab-
stract theory to some equations of particular interest will become easier, as calculations with
matrices are simpler than those with operators. We also take it as a first step towards a better
understanding of the relation between the existence and uniqueness results for the Friedrichs
systems as in [EGC, AB2] and the earlier classical results [F, J, Ra].

In order to establish this connection between M and M , we first note that boundary operator
D can be expressed [AB1, EGC] via matrix function Aν :

(2) (∀ u, v ∈ C∞c (Rd; Rr)) W ′〈Du, v 〉W =

∫
Γ

Aν(x)u|Γ(x) · v|Γ(x)dS(x) .

In fact, the above can easily be extended to u, v ∈ H1(Ω; Rr), provided that the restriction to Γ

is replaced by the trace operator TH1 : H1(Ω; Rr) −→ H
1
2 (Γ; Rr). Of course, for M we expect to

have the following form (see [EG])

(3) (∀ u, v ∈ C∞c (Rd; Rr)) W ′〈Mu, v 〉W =

∫
Γ

M(x)u|Γ(x) · v|Γ(x)dS(x) ,
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where we naturally assume that M is bounded, i.e. M ∈ L∞(Ω; Mr(R)). As the properties (FM)
do not guarantee that the preceding formula defines a continuous operator M : W −→ W ′, we
have found [AB4] some additional conditions under which we have continuity of M , as well as
(M). They are stated in Theorem 2 below, where some well known properties (precisely stated in
the next lemma, also taken from [AB4]) of matrix field M are used.

Lemma 2. Let matrix function M satisfy (FM1). Then the following statements are equivalent:
a) M satisfies (FM2).
b) For almost every x ∈ Γ there is a projector S(x) such that

M(x) = (I− 2S>(x))Aν(x) .

c) For almost every x ∈ Γ there is a projector P(x) such that

M(x) = Aν(x)(I− 2P(x)) .

For the boundedness of operator M defined by (3), the fact that Aν via formula (2) defines
a continuous operator D, as well as the representation of field M by Aν from the above lemma,
was used.

Theorem 2. Let the matrix field M ∈ L∞(Γ; Mr(R)) satisfy (FM), and let S be as in Lemma 2.
Additionally assume that S can be extended to a measurable matrix function Sp : Cl Ω −→ Mr(R)
satisfying

(S1) The multiplication operator Sp defined by Sp(v) := Spv for v ∈W is in L(W ).
(S2) (∀ v ∈ H1(Ω; Rr)) Spv ∈ H1(Ω; Rr) & TH1(Spv) = STH1v.

Then formula (3) defines a bounded operator M ∈ L(W ;W ′).

The paper is organised as follows. In the second section we show that the method described
in [AB4], after a careful examination of matrix multipliers, suffices for the treatment of elliptic
equations. However, in the following section it is shown that this method fails on the simplest
hyperbolic equation, and an extension is proposed to overcome this shortcoming. On the part
of the boundary where Aν is singular, the matrix P appearing in Lemma 2(c) is not necessarily
a projector. This allows the treatment of hyperbolic equations, which is demonstrated in the
fourth section by writing the wave equation in three different ways as a Friedrichs system, and
supplementing it with some standard initial/boundary conditions. Finally, in the last section we
consider the equations of mixed type, and sketch the possibility of application of the procedure
described in this case as well.

2. The elliptic case

Continuous linear operators on graph space

For the applications of our method (cf. [AB4]), it would be important to describe all possible
matrix functions S such that Su belongs to the graph space W for any u ∈W . More precisely, for
the multiplication operator Su := Su we would like to characterise the set of all matrix functions
S such that the corresponding linear operator S belongs to L(W ).

Let us first consider the case of constant matrices Ak ∈ Mr(R), k ∈ 1..d, and S ∈ Mr(R).
After introducing matrices Bk = AkS for k ∈ 1..d, the inclusion SW ⊆W can be written as

(∀ u ∈ L2(Ω; Rr))

d∑
k=1

Ak∂ku ∈ L2(Ω; Rd) =⇒
d∑

k=1

Bk∂ku ∈ L2(Ω; Rd) .

We shall use the following notation: let A ∈ Mr×rd(R) (and analogously for B) denote the
block matrix A = [A1 A2 · · ·Ad]; the columns of matrices A and B will be denoted by ai and
bi, for i ∈ 1..rd, respectively.
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Lemma 3. Let Ak,Bk ∈ Mr(R), k ∈ 1..d. Then the following three statements are equivalent:

a) (∀ u ∈ L2(Ω; Rr))
∑d

k=1 Ak∂ku ∈ L2(Ω; Rd) =⇒
∑d

k=1 Bk∂ku ∈ L2(Ω; Rd) .
b) ker A ⊆ ker B .
c) There exists P ∈ Mr(R) such that Bk = PAk, for k ∈ 1..d.

Dem. It is clear that (c) implies (a).
Let us next prove that (b) follows from (a) by contradiction: suppose that for some ξ ∈ Rrd

we have
rd∑
i=1

ξia
i = 0 and

rd∑
i=1

ξib
i 6= 0 .

Assuming that the set Ω contains the origin (this argument can easily be adapted to the general
case), we take a function φ ∈ C(R) ∩ C1(R \ {0}) such that φ′ is not square integrable on any
interval around 0. For j ∈ 1..r we set ηj = [ξj , ξj+r . . . , ξj+(d−1)r]

> ∈ Rd and the function

uj(x) = φ(x · ηj), x ∈ Ω. Therefore, u = [u1, . . . , ur]
> belongs to L2(Ω; Rr) and

∑d
k=1 Ak∂ku =

0 ∈ L2(Ω; Rd), but
∑d

k=1 Bk∂ku = φ′
∑

i ξib
i /∈ L2(Ω; Rd).

The proof of the remaining implication will be done by induction: we can easily construct
matrix P satisfying Pai = bi for i = 1..rd. For the basis of induction, one can notice that if
a1 = 0 then b1 = 0 by the assumption (b), so we can take any P. Otherwise, the equality
Pa1 = b1 defines linear operator P on span{a1}.

Suppose that we have determined P on the subspace spanned by the first m columns of the
matrix A, mapping them to corresponding columns of the matrix B. If the next column can be
written as the linear combination am+1 =

∑m
j=1 λja

j then, by assumption (b), we have bm+1 =∑m
j=1 λjb

j =
∑m

j=1 λjPaj = Pam+1. Otherwise, we take the equality bm+1 = Pam+1 into
account for the definition of P on span{a1, . . . ,am+1}. Notice that P is not uniquely determined
if (and only if) A does not have maximal rank.

Q.E.D.

If matrix S fits the assumptions of the previous lemma, the continuity of the corresponding
multiplication operator S : W →W can easily be checked. We shall use the third characterisation
from Lemma 3 since it seems to be easier than the second one to verify in examples.

Corollary 1. For constant Ak ∈ Mr(R) and S ∈ Mr(R) the multiplication operator S : u 7→ Su
belongs to L(W ) if and only if there exists P ∈ Mr(R) such that AkS = PAk for k ∈ 1..d.

The case of non-constant matrix functions Ak and S is much more delicate, but still the
sufficient condition from the previous corollary trivially holds.

Corollary 2. Let Ak,S ∈ W1,∞(Ω; Mr(R)), k ∈ 1..d. If there exists P ∈ W1,∞(Ω; Mr(R))
such that AkS = PAk holds on Ω for any k ∈ 1..d then the multiplication operator S : u 7→ Su
belongs to L(W ).

As was already noted in [AB4], the Lipschitz property of Sp in Theorem 2 implies (S2) (for the
problem of Sobolev multipliers the reader might wish to consult a recent book [MŠ]). Combining
this with the results of Lemma 2, Theorem 2 and Corollary 2 we get the following corollary, which
is suitable for some applications. However, as we shall see later, this result does not enable us
to treat some other important systems; this is the reason for some modifications described in the
following section.

Corollary 3. Let S : Cl Ω −→ Mr(R) be a Lipschitz matrix function satisfying
(L1) (∃P ∈W1,∞(Ω; Mr(R)))(∀ k ∈ 1..d) AkS = PAk.
(L2) For almost every x ∈ Γ the matrix (I− 2S>(x))Aν(x) is positive semidefinite.
(L3) For almost every x ∈ Γ matrix S(x) is a projection.

Then formula (3), for M(x) := (I − 2S>(x))Aν(x), x ∈ Γ, defines a bounded operator M ∈
L(W ;W ′) that satisfies (M).
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Application to scalar elliptic equations

Let Ω ⊆ Rd be an open and bounded set with the Lipschitz boundary Γ, as before. We
consider the following elliptic equation

−div (A∇u) + b · ∇u+ cu = f ,

where f ∈ L2(Ω), c ∈ L∞(Ω), b ∈ L∞(Ω; Rd) and A ∈ L∞(Ω; Md(R)). Suppose that there exist
constants β ≥ α > 0 such that A(x) is a symmetric matrix with eigenvalues between α and β,
almost everywhere on Ω.

This equation can be rewritten as a Friedrichs system, for the vector function taking values
in Rd+1

u =

[
−A∇u
u

]
,

with Ak = ek ⊗ ed+1 + ed+1 ⊗ ek ∈ Md+1(R), for k ∈ 1..d (by e1, . . . ed+1 here we have denoted
the standard basis for Rd+1) and block matrix function

C =

[
A−1 0

−(A−1b)> c

]
∈ Md+1(R) .

The positivity condition C + C> > 2µ0I reads

(4)

[
2A−1 −A−1b

−(A−1b)> 2c

] [
x
y

]
·
[

x
y

]
> 2µ0(|x|2 + y2) , x ∈ Rd, y ∈ R .

Notice that the first block 2A−1 is positive definite, uniformly on Ω: A−1 ≥ 1
β I. Let us write (4)

in a more elementary way by the use of Schur complement; by substitution[
I 1

2b
0 1

] [
z
w

]
=

[
x
y

]
we introduce new variables z ∈ Rd and w ∈ R, obtaining thus[

2A−1 −A−1b
−(A−1b)> 2c

] [
I 1

2b
0 1

] [
z
w

]
·
[

I 1
2b

0 1

] [
z
w

]
> 2µ0

(
|z +

1

2
wb|2 + w2

)
,

or equivalently that for arbitrary z ∈ Rd and w ∈ R we have

(5)

[
2A−1 0

0 2c− 1
2A−1b · b

] [
z
w

]
·
[

z
w

]
> 2µ0

(
|z +

1

2
wb|2 + w2

)
.

If there exists γ > 0 such that 2c− 1
2A−1b · b ≥ γ on Ω, then the left hand side in (5) is greater

than c1(|z|2 + w2) with some positive c1, while the right hand side is less than µ0c2(|z|2 + w2)
with some positive c2. Therefore, for µ0 > 0 small enough, the inequality (5) holds true, so we
have obtained the positivity condition for the Friedrichs system.

Let us now apply Corollary 2 and determine all possible S ∈W1,∞(Ω; Mr(R)) such that

(∃P ∈ W1,∞(Ω; Mr(R)))(∀ k ∈ 1..d) AkS = PAk .

Since matrices Ak have a simple form, we see that AkS has only two non-vanishing rows: its kth
row equals the last row of S and its last row equals the kth row of S. A similar conclusion holds
for PAk: its only nontrivial columns are the kth, which is exactly the last column of P, and the
last column, which equals the kth column of P. One can now conclude that kth and d + 1st
rows of S and kth and d + 1st columns of P vanish, except eventually at the kth and the last
component, where we have, for any k ∈ 1..d,

Sk,k = Pd+1,d+1 , Sd+1,d+1 = Pk,k , Sk,d+1 = Pd+1,k , Sd+1,k = Pk,d+1 = 0 .
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The last equality is obtained by applying the same reasoning for some other k. This leads to the
following matrices

S =

[
aI η
0> b

]
, P =

[
bI 0
η> a

]
,

where a, b and η are Lipschitz functions on Ω.
Therefore, for the matrices of interest we have

Aν =

[
0 ν
ν> 0

]
and M = (I − 2S>)Aν =

[
0 (1− 2a)ν

(1− 2b)ν> −2η>ν

]
.

Using the fact that S is a projector, a simple calculation leads to two cases: either a = 1 and
b = 0 or vice versa. Checking whether M ≥ 0 leads us to the condition η · ν ≤ 0 (in both cases).
Finally, we calculate Aν −M and obtain the following possibilities for the boundary conditions
a) The case a = 1 and b = 0 leads us to the Dirichlet boundary condition u = 0 on Γ.
b) The case a = 0 and b = 1 leads to the Robin boundary condition A∇u · ν − η · νu = 0 on Γ

which in particular gives the Neumann boundary condition A∇u · ν = 0 if η · ν = 0.

3. Projectors are not the only possibility

The representation of M as a product of Aν with some matrix field I− 2S> is the essential
ingredient in the proof of Theorem 2. However, the requirement for S to be a projector appears
overly restrictive for applications of Theorem 2 to particular equations of interest, as we can see
from the next simple example.

Example. (transport equation) Let α ∈W1,∞(Ω; Rd) and µ ∈ L∞(Ω), such that

(∃µ0 > 0) µ(x)− 1

2
divα(x) > µ0 (a.e. x ∈ Ω) .

Then the scalar equation
α · ∇u+ µu = f ,

for given f ∈ L2(Ω), takes the form of a Friedrichs system (actually, it consists of only one
equation)

d∑
k=1

∂k(Aku) + Cu = f

for

Ak = αk and C = µ−
d∑

k=1

∂kAk .

The graph space is given by

W = {u ∈ L2(Ω) : α · ∇u ∈ L2(Ω)} ,

while Aν = α · ν.
We define the inflow boundary Γ− and the outflow boundary Γ+ by

Γ− = {x ∈ Γ : α(x) · ν(x) < 0} and Γ+ = {x ∈ Γ : α(x) · ν(x) > 0} ,

and we additionally suppose that they are well-separated: d(Γ−,Γ+) > 0.
We would like to determine all possible boundary conditions that can be imposed by using

Corollary 3. The fact that S (being a scalar here) needs to be a projector in almost every point
of Γ, in combination with the requirement that it is a Lipschitz function, gives us only two
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possibilities: either S|Γ = 0 or S|Γ = 1. In the first case the property (FM1) gives (α ·ν)|Γ− = 0,

while in the second case it reads (α · ν)|Γ+
= 0. Therefore, either Γ− is empty, or this is the case

with Γ+, and neither of these situations is suitable for most practical examples (in particular, if
α is a constant vector, this cannot be achieved).

However, the abstract Theorem 1 can be applied to any α (cf. [B, EGC]). Actually, the
boundary condition that can be imposed in the framework of Theorem 1 is

u|Γ− = 0 ,

and it corresponds to M = |α · ν|.

It appears that the conditions of Corollary 3 are overly restrictive for envisaged applications.
This seems to be particularly true for hyperbolic equations, and motivates further investigations
of possible improvements of Lemma 2, Theorem 2, and Corollary 3.

Our results will be based on the following simple lemma, which we prove for the sake of
completeness.

Lemma 4. Two matrices A+,A− ∈ Mr(R) satisfy ker A+ + ker A− = Rr if and only if there
is a projector P ∈ Mr(R) such that

A+ = (A+ + A−)(I−P) and A− = (A+ + A−)P .

Dem. If there exists such P, then from ker P ⊆ ker A−, ker(I−P) ⊆ ker A+, and ker P+ker(I−
P) = Rr it immediately follows that ker A+ + ker A− = Rr.

The other implication follows from the fact that if ker A+ + ker A− = Rr, then there is a
projector P such that im (I−P) ⊆ ker A− and im P ⊆ ker A+. Such a P then satisfies

(A+ + A−)(I−P) = A+(I−P) = A+ ,

(A+ + A−)P = A−P = A− .
Q.E.D.

By defining A+ := (Aν +M)(x) and A− := (Aν −M)(x), we obtain that M satisfies (FM2)
(at x ∈ Γ which, for simplicity, will be omitted from expressions in the sequel) if and only if there
is a projector P such that M = Aν(I− 2P). With this representation of M the condition (FM2)
becomes

(6) ker(AνP) + ker(Aν(I−P)) = Rr .

In order to relax the assumptions of Lemma 2 and Theorem 2, it is important to observe
that it is not necessary that P is a projector for (6) to hold. To be more precise, there are two
situations that can occur:
◦ If Aν is a regular matrix, then ker(AνP) = ker P and ker((Aν(I − P)) = ker(I − P), and

therefore (6) is equivalent to ker P + ker(I −P) = Rr, which is equivalent to the statement
that P is a projector.
◦ If Aν is not regular, then there can be several matrices P, which are not projectors, but

nevertheless satisfy (6). For example, any matrix P such that im P ⊆ ker Aν or im (I−P) ⊆
ker Aν , would satisfy (6), as for such a P either ker(AνP) = Rr or ker((Aν(I−P)) = Rr.

The above discussion can be formulated as a lemma.

Lemma 5. For a matrix M ∈ Mr(R) the following statements are equivalent.
a) M satisfies (FM2).
b) There is a projector P1 such that M = Aν(I− 2P1).
c) There is a matrix P such that M = Aν(I− 2P) and ker(AνP) + ker(Aν(I−P)) = Rr.

The key idea is to use the representation (c) of M from Lemma 5 in order to get better results
than before. First we prove one technical lemma.

Nenad Antonić & Krešimir Burazin & Marko Vrdoljak 8



Nonlinear analysis: real world applications Second-order equations as Friedrichs systems

Lemma 6. If M satisfies (FM), then for P as in the preceding lemma we have

AνP(I−P) = Aν(I−P)P = 0 .

Dem. It is well known [F] that if M satisfies (FM), then M> also satisfies (FM). Therefore,
from the preceding lemma (b) it follows that there can be found a projector S such that M> =
Aν(I− 2S). Since Aν is symmetric,

Aν(I− 2P) = M = (M>)> = (Aν(I− 2S))> = Aν − 2S>Aν ,

and we get AνP = S>Aν .
Any w ∈ Rr can be decomposed as w = ξ+η such that ξ ∈ ker(AνP) and η ∈ ker(Aν(I−P)).

Now we easily get

AνP(I−P)w = AνP(I−P)ξ + AνP(I−P)η

= AνPξ − S>AνPξ + S>Aν(I−P)η = 0 ,

which concludes the proof.
Q.E.D.

Theorem 3. Let the matrix field M ∈ L∞(Γ; Mr(R)) satisfy (FM), and let P be as in Lemma 5.
Additionally assume that P can be extended to a measurable matrix function Pp : Cl Ω −→ Mr(R)
satisfying:

(S1) The multiplication operator Pp, defined by Pp(v) := Ppv for v ∈ W , is a bounded linear
operator on W .

(S2) (∀ v ∈ H1(Ω; Rr)) Ppv ∈ H1(Ω; Rr) & TH1(Ppv) = PTH1v.

Then formula (3) defines a bounded operator M ∈ L(W ;W ′) satisfying (M).

Dem. Let us first prove that M ∈ L(W ;W ′). For the formula (3) to define a unique bounded
operator from L(W ;W ′), by density it is necessary and sufficient that

(7) (∃C > 0)(∀ u, v ∈ C∞c (Rd; Rr))
∣∣∣∫

Γ
M(x)u|Γ(x) · v|Γ(x)dS(x)

∣∣∣ 6 C‖u‖L‖v‖L .

For such u and v it holds that∫
Γ

Mu|Γ · v|ΓdS =

∫
Γ

Aν(I− 2P)u|Γ · v|ΓdS =

∫
Γ
(I− 2P)u|Γ ·Aνv|ΓdS .

By (S2) it follows that (I− 2Pp)u ∈ H1(Ω; Rr) and TH1

(
(I− 2Pp)u

)
= (I− 2P)u|Γ , so from (2)

and Lemma 1 we can conclude that

(8)

∫
Γ

Mu|Γ · v|ΓdS = W ′〈Dv, (I− 2Pp)u 〉W

= W ′〈Dv, (IW − 2Pp)u 〉W = W ′〈D(IW − 2Pp)u, v 〉W ,

where IW denotes the identity on W . Since all the operators appearing on the right hand side of
the above equality are continuous, we conclude that∣∣∣∫

Γ
Mu|Γ · v|ΓdS

∣∣∣ 6 ‖D‖L(W ;W ′) · ‖IW − 2Pp‖L(W ) · ‖u‖W · ‖v‖W ,

and therefore M defined by (3) belongs to L(W ;W ′), so we have the equality M = D(IW −2Pp).
Since property (M1) obviously follows from (FM1) and (3), it remains to prove (M2). In

order to do that let us first show that DPp(IW −Pp) = D(IW −Pp)Pp = 0. Using Lemma 6, for
u, v ∈ C∞c (Rd; Rr) we get

W ′〈DPp(IW − Pp)u, v 〉W =

∫
Γ

AνTH1(Pp(I−Pp)u) · v|ΓdS

=

∫
Γ

AνP(I−P)u|Γ · v|ΓdS = 0 ,
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and thus DPp(IW − Pp) = D(IW − Pp)Pp = 0 by density.
Finally, for an arbitrary w ∈W , let u = (IW −Pp)w, and therefore w− u = Ppw. Now, from

(D −M)u = 2DPpu = 2DPp(IW − Pp)w = 0

and
(D +M)(w − u) = 2D(IW − Pp)(w − u) = 2D(IW − Pp)Ppw = 0 ,

(M2) follows.
Q.E.D.

At this point, just as before, it is natural to look for some sufficient conditions on P so that the
assumptions of Theorem 2 will be fulfilled, and that these conditions can conveniently be verified in
applications to equations of interest. Combining the results of Corollary 2, the previous theorem,
and the already mentioned argument that the Lipschitz property of Pp : Cl Ω −→ Mr(R) implies
(S2), we have the following corollary.

Corollary 4. Let P : Cl Ω −→ Mr(R) be a Lipschitz matrix function satisfying:
(P1) (∃R ∈W1,∞(Ω; Mr(R)))(∀ k ∈ 1..d) AkP = RAk,
(P2) for almost every x ∈ Γ the matrix Aν(x)(I− 2P(x)) is positive semidefinite, and

(P3) for almost every x ∈ Γ it holds that ker
(
Aν(x)P(x)

)
+ ker

(
(Aν(x)(I−P(x))

)
= Rr.

Then formula (3), for M(x) := Aν(x)(I−2P(x)) on Γ, defines a bounded operator M ∈ L(W ;W ′)
satisfying (M).

If we try to apply this result to the already mentioned transport equation we get that (P1) is
trivially satisfied with R = P (which are scalars in this example). Since Aν = α ·ν, the condition
(P3) is equivalent to P (x) ∈ {0, 1}, for a.e. x ∈ Γ+ ∪ Γ−, which in combination with (P2) finally
gives that properties (P) are equivalent to the equality

P (x) =

{
0 , for x ∈ Γ+

1 , for x ∈ Γ−
.

Since Γ+ and Γ− are well-separated, we can find a Lipschitz function P : Cl Ω −→ R with this
property, and thus the conditions of Corollary 4 are satisfied.

Note that for such a P we have

Aν −M =

{
0 , x ∈ Γ+

2α · ν , x ∈ Γ−
,

and therefore the boundary condition
u|Γ− = 0 ,

which is in agreement with the well known results for the transport equation.

4. Wave equation as a Friedrichs system

Two unknowns: u and ut + γux

The complexity of application of the theory of Friedrichs systems to particular equations
was partially demonstrated in [AB4]. From some examples presented there we can see how the
application depends on the representation of a particular equation as a Friedrichs system, which
is usually not unique. Among other things, the representation depends on the choice of unknown
vector function u (its components can be the original unknown u, some of its derivatives, perhaps
a linear combination of them, etc.), on the auxiliary equations that one takes to supplement the
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original equation in order to get a formally determined system (i.e. one with the same number of
unknowns as equations), and even on the order in which equations are written. All these have to
be carefully chosen in order to get a positive symmetric system. The type of boundary condition
that can be treated also depends on this representation [AB4], as sometimes one representation
allows the treatment of one type of boundary condition, while some other allows the treatment
of some other type. This complexity will also be illustrated here, as we try to apply the results
of Corollary 4 to the wave equation

utt − γ2uxx = f

in some bounded open set Ω ⊆ R2. We shall propose a representation of this equation as a
Friedrichs system, and then check what type of domain Ω and which boundary conditions we can
treat in the framework of Corollary 4. Here, we assume that γ > 0 is a constant, and f ∈ L2(Ω)
a given function.

In the first representation we take u1 = u and u2 = ut + γux. Then our new unknown vector
function u = (u1, u2)> satisfies this symmetric system

∂t

([
1 0
0 1

]
u
)

+ ∂x

([
γ 0
0 −γ

]
u
)

+

[
0 −1
0 0

]
u =

[
0
f

]
,

where the first equation is just the definition of u2, while the second one is our original wave
equation. The above system is not positive, so we introduce a new unknown v := e−λtu, which
then satisfies

∂t

([
1 0
0 1

]
v
)

+ ∂x

([
γ 0
0 −γ

]
v
)

+

[
λ −1
0 λ

]
v =

[
0

e−λtf

]
,

again being a symmetric system, but also a positive one for λ > 0 large enough. Note that

Aν =

[
ν1 + γν2 0

0 ν1 − γν2

]
.

If we try to apply Corollary 4, one can easily check that (P1) is equivalent to the statement that
P is a diagonal matrix function

P =

[
a 0
0 d

]
,

and since then

M =

[
(1− 2a)(ν1 + γν2) 0

0 (1− 2d)(ν1 − γν2)

]
,

the condition (P2) becomes

(9)
(1− 2a)(ν1 + γν2) > 0 on Γ ,

(1− 2d)(ν1 − γν2) > 0 on Γ .

To verify which P fulfils (P3), we distinguish several cases depending on the rank of Aν :
I. If Aν is regular, then P must be a projector, and thus a, d ∈ {0, 1}. Combining this with (9)
we get four sub-cases

I.a a = 0 , d = 1 , ν1 + γν2 > 0 , ν1 − γν2 < 0 ;

I.b a = 1 , d = 0 , ν1 + γν2 < 0 , ν1 − γν2 > 0 ;

I.c a = 1 , d = 1 , ν1 + γν2 < 0 , ν1 − γν2 < 0 ;

I.d a = 0 , d = 0 , ν1 + γν2 > 0 , ν1 − γν2 > 0 .

II. If Aν is singular, then we have det Aν = (ν1 + γν2)(ν1 − γν2) = 0, and this corresponds to
situations where some part of boundary Γ lays on the characteristics of the original wave equation.
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By distinguishing whether ν1 + γν2 = 0 or ν1− γν2 = 0, combining this with (9), using condition
(P3) and the fact that the normal is a unit vector ν2

1 +ν2
2 = 1, we get the following four sub-cases:

II.a a ∈ R , d = 0 , ν1 =
γ√

1 + γ2
, ν2 =

−1√
1 + γ2

;

II.b a ∈ R , d = 1 , ν1 =
−γ√
1 + γ2

, ν2 =
1√

1 + γ2
;

II.c a = 0 , d ∈ R , ν1 =
γ√

1 + γ2
, ν2 =

1√
1 + γ2

;

II.d a = 1 , d ∈ R , ν1 =
−γ√
1 + γ2

, ν2 =
−1√
1 + γ2

.

After combining these eight cases we get that Γ has a specific form presented in Figure 1.

Figure 1. An example of the acceptable domain Ω

It remains to clarify that we can indeed choose a and d in such a way that these conditions
are satisfied, and that both a and d are Lipschitz functions at the same time. We simply note that
the part of the boundary where a = 0 (I.a, I.d, II.c) is separated from the part of the boundary
where a = 1 (I.b, I.c, II.d) with parts where a can take an arbitrary value (II.a, II.b). Thus,
we can choose a to be Lipschitz as long as parts of Γ (of nonzero length) lay on characteristics
corresponding to cases II.a and II.b. Similarly, the same holds for d when parts of Γ lay on
characteristics corresponding to cases II.c and II.d.

We can conclude that, as long as parts of Γ that correspond to any of cases I are appropriately
well-separated by parts that correspond to cases II, we can apply Corollary 4. Also note that
Γ need not have parts corresponding to any of cases I and can be made only of characteristics
(Figure 2).

Let us now take a closer look at the separate boundary conditions that we impose on specific
parts of the boundary; as

Aν −M =

[
a(ν1 + γν2) 0

0 d(ν1 − γν2)

]
,

and v1 = e−λtu1 = e−λtu, v2 = e−λtu2 = e−λt(ut+γux), we get the following boundary conditions
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for the original wave equation at parts of the boundary

I.a ut + γux = 0 ;

I.b u = 0 ;

I.c u = 0 and ut + γux = 0 ;

I.d no boundary condition is imposed on this part of Γ ;

II.a no boundary condition is imposed on this part of Γ ;

II.b ut + γux = 0 ;

II.c no boundary condition is imposed on this part of Γ ;

II.d u = 0 .

For example if we take that the entirety of Γ lays on the characteristics, and we impose u = 0
on the characteristics II.d, and ut + γux = 0 on II.b, we get a well-posed problem (Figure 2).

Figure 2. Boundary conditions for the simplest domain

Finally, let us note that the above result for the wave equation could not be achieved in
the framework of Corollary 3: if we required P to be a projector on the whole Γ, we would get
only cases I, and thus that a and d are identically equal to either 0 or 1 on Γ, being Lipschitz
functions. Say, for example, that we took a = d = 0, this being the case I.d; then the conditions
ν1 + γν2 > 0 and ν1 − γν2 > 0 must be satisfied on the whole Γ, which is impossible for bounded
Ω. In other cases we would have got a contradiction in an analogous way, and thus the conditions
of Corollary 3 could not be satisfied by this Friedrichs system.

Two unknowns: ut and ux

Next, we present another representation of the wave equation as a Friedrichs system: if we
take u = (u1, u2)> = (e−λtut, e

−λtux)>, the wave equation transforms to the system (for λ > 0)

∂t

([
1 0
0 γ2

]
u
)

+ ∂x

([
0 −γ2

−γ2 0

]
u
)

+

[
λ 0
0 λγ2

]
u =

[
e−λtf

0

]
,

with

Aν =

[
ν1 −γ2ν2

−γ2ν2 γ2ν1

]
.

As before, multiplication by e−λt was performed in order to get a positive system.
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We proceed similarly to what was done in the previous example above: condition (P1) gives
us the following form of the matrix:

P =

[
a dγ2

d a

]
,

and then

M =

[
(1− 2a)ν1 + 2dγ2ν2 −(1− 2a)γ2ν2 − 2dγ2ν1

−(1− 2a)γ2ν2 − 2dγ2ν1 (1− 2a)γ2ν1 + 2dγ4ν2

]
,

which turns (P2) into the following inequalities valid on Γ:

(10)
(1− 2a)ν1 + 2dγ2ν2 > 0 ,

(ν2
1 − γ2ν2

2)[(1− 2a)2 − 4d2γ2] > 0 .

As before, to check (P3) we distinguish several cases.
I. When Aν is regular, then P is projector, which in combination with (10) gives the following
sub-cases

I.a a =
1

2
, d =

1

2γ
, ν1 + γν2 > 0 , ν1 − γν2 < 0 ;

I.b a =
1

2
, d = − 1

2γ
, ν1 + γν2 < 0 , ν1 − γν2 > 0 ;

I.c a = 1 , d = 0 , ν1 + γν2 < 0 , ν1 − γν2 < 0 ;

I.d a = 0 , d = 0 , ν1 + γν2 > 0 , ν1 − γν2 > 0 .

II. The situation when Aν is singular corresponds again to the characteristic boundary, as
det Aν = γ2(ν1 + γν2)(ν1 − γν2). Similarly to what was done before we get the following four
sub-cases:

II.a a = −γd , d ∈ R , ν1 =
γ√

1 + γ2
, ν2 =

−1√
1 + γ2

;

II.b a = 1− γd , d ∈ R , ν1 =
−γ√
1 + γ2

, ν2 =
1√

1 + γ2
;

II.c a = γd , d ∈ R , ν1 =
γ√

1 + γ2
, ν2 =

1√
1 + γ2

;

II.d a = 1 + γd , d ∈ R , ν1 =
−γ√
1 + γ2

, ν2 =
−1√
1 + γ2

.

Analogously to what was done for the first representation, one can easily see that we can
choose a and d to be Lipschitz, as long as all cases II corresponding to the characteristic boundary
appear as parts of Γ (of nonzero length).

Furthermore, it is interesting to notice that by this representation of the wave equation as
a Friedrichs system we can treat the same domains as we did by the first representation (Figure
1). Non-convex domains are also possible: for example, instead of the part of the boundary
corresponding to the case I.a in Figure 1, we could put two concave curves belonging to the same
case I.a.

Let us finally write down the boundary conditions that we have to impose on specific parts
of the boundary. As

Aν −M = 2

[
aν1 − dγ2ν2 −aγ2ν2 + dγ2ν1

−aγ2ν2 + dγ2ν1 aγ2ν1 − dγ4ν2

]
,

and u = (u1, u2)> = (e−λtut, e
−λtux)>, we get that the following boundary conditions are admis-

sible for the wave equation at various parts of the boundary (in some cases, one has to solve a
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system of linear equations in ut and ux)

I.a ut + γux = 0 ;

I.b ut − γux = 0 ;

I.c ut = ux = 0 ;

I.d no boundary condition is imposed on this part of Γ ;

II.a no boundary condition is imposed on this part of Γ ;

II.b ut + γux = 0 ;

II.c no boundary condition is imposed on this part of Γ ;

II.d ut − γux = 0 .

For example, for the domain presented in Figure 2, the boundary conditions are not exactly
the same: the boundary condition on the part II.d of the boundary changes to ut − γux = 0.
However, this is fine, as solution (ut, ux) of the system can determine u only up to a constant,
while along the characteristics II.b and II.d the tangential derivatives are zero, imposing the
constancy of u.

Let us remark that, using the same argument as for the first representation of the wave
equation, one can easily see that the above results cannot be achieved within the framework of
Corollary 3.

Three unknowns: u, ut and ux

Note that in the preceding representation the unknown u was not part of u, but only its
derivatives. If one would like to have boundary conditions that explicitly involve values of u, then
it should also be included as part of u. It is natural to, besides the first representation, also try
with three unknowns u = (u1, u2, u3) = (ut, ux, u) and supplement the two equations from the
second representation with one additional equation. Two natural choices for the third equation
might be

∂tu3 − u1 = 0 or ∂xu3 − u2 = 0 .

In the first case we get the following symmetric system

∂t

( 1 0 0
0 γ2 0
0 0 1

 u

)
+ ∂x

( 0 −γ2 0
−γ2 0 0

0 0 0

 u

)
+

 0 0 0
0 0 0
−1 0 0

 u =

 f0
0

 ,
while in the second

∂t

( 1 0 0
0 γ2 0
0 0 0

 u

)
+ ∂x

( 0 −γ2 0
−γ2 0 0

0 0 1

 u

)
+

 0 0 0
0 0 0
0 −1 0

 u =

 f0
0

 .
Neither of these two systems is positive, but they can easily be transformed into positive ones
by an appropriate change of unknown function u, as before (for the second system this is done
below). However, while for the second system we can apply Corollary 4 (see below), it turns
out that this cannot be done for the first one. This also shows the inherent complexity in the
applications of Friedrichs system theory, as we do not know (prior to actually trying them both)
that the equation ∂xu3 − u2 = 0 is a better choice for the third equation than ∂tu3 − u1 = 0.

After taking v = e−λt−µxu, the second system becomes a Friedrichs system (for an appropriate
choice of λ > 0 and µ > 0):

∂t

( 1 0 0
0 γ2 0
0 0 0

 u

)
+ ∂x

( 0 −γ2 0
−γ2 0 0

0 0 1

 u

)
+

 λ −νγ2 0
−νγ2 λγ2 0

0 −1 µ

 u =

 e−λt−µxf0
0

 ,
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with

Aν =

 ν1 −γ2ν2 0
−γ2ν2 γ2ν1 0

0 0 ν2

 .
The condition (P1) is now equivalent to the requirement that P is of the following form

P =

 a dγ2 0
d a 0
0 0 i

 ,
and thus

M =

 (1− 2a)ν1 + 2dγ2ν2 −(1− 2a)γ2ν2 − 2dγ2ν1 0
−(1− 2a)γ2ν2 − 2dγ2ν1 (1− 2a)γ2ν1 + 2dγ4ν2 0

0 0 (1− 2i)ν2

 ,
and (P2) transforms into the following inequalities, which should be valid on Γ:

(11)

(1− 2a)ν1 + 2dγ2ν2 > 0 ,

(ν2
1 − γ2ν2

2)[(1− 2a)2 − 4d2γ2] > 0 ,

(1− 2i)ν2 > 0 .

Similarly to before, (P3) leads to several cases:
I. Aν being regular implies that P is a projector, which in combination with (11) gives the
following sub-cases:

I.a a = 0 , d = 0 , i = 0 , ν2 > 0 , ν1 + γν2 > 0 , ν1 − γν2 > 0 ;

I.b a = 0 , d = 0 , i = 1 , ν2 < 0 , ν1 + γν2 > 0 , ν1 − γν2 > 0 ;

I.c a = 1 , d = 0 , i = 0 , ν2 > 0 , ν1 + γν2 < 0 , ν1 − γν2 < 0 ;

I.d a = 1 , d = 0 , i = 1 , ν2 < 0 , ν1 + γν2 < 0 , ν1 − γν2 < 0 ;

I.e a =
1

2
, d =

1

2γ
, i = 0 , ν1 + γν2 > 0 , ν1 − γν2 < 0 ;

I.f a =
1

2
, d = − 1

2γ
, i = 1 , ν1 + γν2 < 0 , ν1 − γν2 > 0 .

II. The situation when Aν is singular does not correspond just to the case of characteristic
boundary, as det Aν = ν2γ

2(ν1 + γν2)(ν1 − γν2). Here we actually have the following sub-cases:

II.a a = −γd , d ∈ R , i = 1 , ν1 =
γ√

1 + γ2
, ν2 =

−1√
1 + γ2

;

II.b a = 1− γd , d ∈ R , i = 0 , ν1 =
−γ√
1 + γ2

, ν2 =
1√

1 + γ2
;

II.c a = γd , d ∈ R , i = 0 , ν1 =
γ√

1 + γ2
, ν2 =

1√
1 + γ2

;

II.d a = 1 + γd , d ∈ R , i = 1 , ν1 =
−γ√
1 + γ2

, ν2 =
−1√
1 + γ2

;

II.e a = 0 , d = 0 , i ∈ R , ν1 = 1 , ν2 = 0 ;

II.f a = 1 , d = 0 , i ∈ R , ν1 = −1 , ν2 = 0 ;

The cases II.a–II.d correspond to the characteristic boundary, while in II.e and II.f we have
ν2 = 0, which is the case when the boundary is parallel to the x–axis.

An example of the acceptable domain is presented in Figure 3.
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Figure 3. An example of the domain Ω (three unknowns)

Similarly to what was done in the previous two cases, one can conclude that Γ must have
parts that correspond to the characteristic boundary (cases II.a–II.d).

We can see that in cases I and II.a–II.d we have i ∈ {0, 1}, and in particular i = 0 when
ν2 > 0, while i = 1 when ν2 < 0. Since i must be a Lipschitz function, the boundary Γ must
have parts that correspond to cases II.e and II.f, where i can take arbitrary values. Therefore, we
cannot treat the domain presented in Figure 2, which suggests that this representation is inferior
to the other two.

Finally, let us write down what boundary conditions we impose on specific parts of boundary:
since

Aν −M = 2

 aν1 − dγ2ν2 −aγ2ν2 + dγ2ν1 0
−aγ2ν2 + dγ2ν1 aγ2ν1 − dγ4ν2 0

0 0 iν2

 ,
and v = (v1, v2, v3)> = (e−λt−νxut, e

−λt−νxux, e
−λt−νxu)>, we get the following boundary condi-

tions for the wave equation at parts of the boundary (in some cases, one has to solve a system of
linear equations in ut, ux and u)

I.a no boundary condition is imposed on this part of Γ ;

I.b u = 0 ;

I.c ut = ux = 0 ;

I.d u = ut = ux = 0 ;

I.e ut + γux = 0 ;

I.f ut − γux = 0 ;

II.a u = 0 ;

II.b ut + γux = 0 ;

II.c no boundary condition is imposed on this part of Γ ;

II.d u = ut − γux = 0 .

II.e no boundary condition is imposed on this part of Γ ;

II.f ut = ux = 0 ;
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5. Some remarks on equations of mixed type

We have shown that the framework introduced in the third section encompasses both elliptic
and hyperbolic equations. Let us now consider a linear second-order equation with variable
coefficients:

(α(x, y)ux)x + (β(x, y)uy)y + γ(x, y)ux = f(x, y) ,

in some bounded open set Ω ⊆ R2 with Lipschitz boundary Γ. Here α, β ∈W1,∞(Ω), γ ∈ L∞(Ω)
and f ∈ L2(Ω) are given. We allow that α and β change their sign in order to cover some
equations of mixed type. By substituting u = (u1, u2)> = (e−λxux, e

−λxuy)
> for some constant

λ, our equation can be written as a symmetric system

∂x

([
α 0
0 −β

]
u
)

+ ∂y

([
0 β
β 0

]
u
)

+

[
γ + λα 0
−βy βx − λβ

]
u =

[
e−λxf

0

]
.

The positivity condition (F2) for this system is given by

(12)
2γ + 2λα+ αx > 2µ0 ,

βx − 2λβ > 2µ0 ,

while

Aν =

[
αν1 βν2

βν2 −βν1

]
.

Since the coefficients of our equation are functions that can change their sign, the conditions
of Corollary 4 are now more technical to check. One usually has to pay special attention to
situations where one of coefficients α and β is zero. Anyway, the condition (P1) will be satisfied
for

P =

[
a bγ2

c a

]
,

with cβ = −bα, and then

M =

[
(1− 2a)αν1 + 2bαν2 (1− 2a)βν2 − 2bαν1

(1− 2a)βν2 − 2bαν1 −(1− 2a)βν1 − 2bβν2

]
,

which turns (P2) into the following inequalities valid on Γ:

(13)
(1− 2a)αν1 + 2bαν2 > 0 ,

(αν2
1 + βν2

2)[(1− 2a)2β + 4b2α] > 0 .

To check (P3) we distinguish between Aν regular and singular; for this, note that here we have
det Aν = β(αν2

1 + βν2
2).

However, in this case a procedure similar to the one applied for the wave equation would result
in fifteen different sub-cases, and at the moment it is not clear whether a different representation
of the equation as a Friedrichs system might lead to a more feasible discussion.

Clearly, the equations which change their type have been attacked by different methods (see
[M1, M2] and [Ku] for a more recent review). We believe that the procedure described here will,
after some additional modifications, lead to interesting new results.

Let us note that the feasibility of the approach via the trace operator is investigated in [ABV].
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