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Abstract

In discrete time, moving average processes play an important role in time series
analysis. A moving average is a process {Xn}n∈N of the form Xn =

∑n
k=−∞ φn−kZk

where {φk}k∈N is a deterministic sequence of real numbers and {Zk}k∈Z is a sequence
of independent and identically distributed random variables. In continuous time,
moving averages are processes X = {Xt : t ∈ R+} of the form

Xt =

∫ t

−∞
φ(t− s) dZs (2)

where φ : R+ → R is a deterministic function and Z = {Zt : t ∈ R} is a process with
stationary and independent increments (a so-called Lévy process). In this work we
will consider a continuous time moving average X of the form (2) in the the case
where the kernel function φ is the gamma density, i.e. φ(t) = e−λttγ−1. We will
derive necessary and sufficient conditions for X to be well-defined, that is, for the
existence of the stochastic integrals (2). In some cases X has very irregular sample
paths, e.g. they are unbounded on every bounded interval. We give necessary and
sufficient conditions for X to have the following type of regularity: almost all sample
paths are of bounded variation, or more generally, the process is a semimartingale.

These two condition corresponds to that stochastic integrals of the form
∫ t

0
Ys dXs

are well-defined in the Lebesgue–Stieltjes sense or in the Itô sense, respectively. Our
work uses the recent results [2, 3, 4]. Finally let us mention that the gamma kernel
has been extensively used to build stochastic models for turbulence; see [1] and the
reference therein.
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