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Abstract

In nonparametric statistics one is often interested in estimators or confidence re-
gions for curves such as densities or regression functions. Estimation of such curves
is typically an ill-posed problem and requires additional assumptions. An interesting
alternative to smoothness assumptions are qualitative constraints, e.g. monotonic-
ity, concavity or log-concavity. Estimation of a distribution function F based on
independent, identically distributed random variables X1, X2, . . . , Xn with c.d.f. F
is less difficult. But non-trivial confidence regions for certain functionals of F such
as the mean do not exist without substantial additional constraints (Bahadur and
Savage, 1956).
In density estimation, a particular constraint which attracted considerable attention
recently is log-concavity. That means, we estimate a probability density f on R

d

under the constraint that log f : R
d → [−∞,∞) is a concave function. While

many papers are focussing on point estimation, Schuhmacher et al. (2011) show
that combining the log-concavity constraint and a standard Kolmogorov-Smirnov
confidence region yields an interesting nonparametric confidence region, although
its explicit computation is far from obvious. In the present work we introduce a
new and weaker constraint on distribution functions:
A distribution function F on the real line is called bi-log-concave if both logF and
log(1− F ) are concave functions (with values in [−∞, 0]).
This new shape constraint is rather natural in many situations. For instance, any
c.d.f. F with log-concave density f = F ′ is bi-log-concave, according to Bagnoli and
Bergstrom (2005). But bi-log-concavity of F alone is a much weaker constraint: F
may have a density with an arbitrarily large number of modes. Various characteri-
zations of bi-log-concavity are provided. It is shown that combining any nonpara-
metric confidence band for F with the new shape-constraint leads to substantial
improvements and implies non-trivial confidence bounds for arbitrary moments and
the moment generating function of F .
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