Bi-Log-Concave Distribution Functions and Confidence Bands

Petro Kolesnyk¹

¹Institute of Mathematical Statistics and Actuarial Science, University of Bern, Switzerland

Abstract

In nonparametric statistics one is often interested in estimators or confidence regions for curves such as densities or regression functions. Estimation of such curves is typically an ill-posed problem and requires additional assumptions. An interesting alternative to smoothness assumptions are qualitative constraints, e.g. monotonicity, concavity or log-concavity. Estimation of a distribution function F based on independent, identically distributed random variables X_1, X_2, \ldots, X_n with c.d.f. Fis less difficult. But non-trivial confidence regions for certain functionals of F such as the mean do not exist without substantial additional constraints (Bahadur and Savage, 1956).

In density estimation, a particular constraint which attracted considerable attention recently is log-concavity. That means, we estimate a probability density f on \mathbb{R}^d under the constraint that $\log f : \mathbb{R}^d \to [-\infty, \infty)$ is a concave function. While many papers are focussing on point estimation, Schuhmacher et al. (2011) show that combining the log-concavity constraint and a standard Kolmogorov-Smirnov confidence region yields an interesting nonparametric confidence region, although its explicit computation is far from obvious. In the present work we introduce a new and weaker constraint on distribution functions:

A distribution function F on the real line is called *bi-log-concave* if both log F and $\log(1-F)$ are concave functions (with values in $[-\infty, 0]$).

This new shape constraint is rather natural in many situations. For instance, any c.d.f. F with log-concave density f = F' is bi-log-concave, according to Bagnoli and Bergstrom (2005). But bi-log-concavity of F alone is a much weaker constraint: F may have a density with an arbitrarily large number of modes. Various characterizations of bi-log-concavity are provided. It is shown that combining any nonparametric confidence band for F with the new shape-constraint leads to substantial improvements and implies non-trivial confidence bounds for arbitrary moments and the moment generating function of F.

Keywords: Shape constraints, log-concavity, confidence set, Empirical distribution, Kolmogorov-Smirnov.

AMS subject classifications: 62G05, 62G15, 62G20, 62G30

Acknowledgements: This is joint work with Lutz Dümbgen (Bern) and Ralf Wilke (Nottingham).

Bibliography

- [1] Owen, A. (1995). Nonparametric likelihood confidence bands for a distribution function. J. Amer. Statist. Assoc. **90**(430), 516-521.
- [2] Bagnoli, M. and Bergstrom, T. (2005). Log-concave probability and its applications. *Econ. Theory* 26, 445-469.
- [3] Bahadur, R. and Savage, L. (1956). The nonexistence of certain statistical procedures in nonparametric problems. Ann. Math. Statist. 27, 1115-1122.
- [4] Schuhmacher, D., Hüsler, A. and Dümbgen, L. (2011). Log-concave distributions as a nearly parametric model. *Statist. Risk Model.* 28(3), 277-295.