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rasprave koje su mi pomogle u znanstvenom i osobnom životu.

Zahvaljujem mentoru prof. Peteru Benneru na njegovom vodstvu i vrijednim

komentarima i raspravama. On mi je tijekom protekle četiri godine omogućio
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Chapter 1

Introduction

1.1 Motivation

In real physical systems, which possess elasticity and mass, vibration is a

typical phenomenon which was widely studied in the past, but also nowadays

this is a widely investigated field.

Vibrations can sometimes be desirable. On the other hand, dangerous vibra-

tions could produce damage or even a breakup of the vibrational system. For

example, dangerous vibrations can lead to a collapse or structural damage of

the bridge. A well known collapse of the bridge happened to the suspension

bridge called Tacoma Narrows Bridge in November, 1940. One recent exam-

ple of dangerous vibration of a bridge happened at the seven kilometer long

bridge over the Volga River (the bridge was opened in 2009). The bridge had

oscillations whose amplitude was reaching 1 meter. Appropriate damping of

a system should be employed in order to prevent dangerous vibrations.

In relation to vibrational systems, damping is a widely studied problem. In

real-world systems, energy is always dissipated by some means and damping

is the dissipation of energy with time or distance. Damping can produce

undesirable effects such as energy waste, noise or heat production. On the

1



2 Chapter 1 Introduction

other hand, damping is also responsible for many important system properties

such as stability, control and that the amplitude of free vibrations, decays to

a negligible value.

There are different types of damping which correspond to different real-world

systems. An overview of various types of damping is presented in [43]. A

mathematical introduction to damped oscillations of linear systems is given

in [55]. There are also many other books that study vibrational systems and

the problem of damping, such as [25; 26; 29; 30; 38; 47].

In terms of different types of damping, in this thesis we will refer to critical

damping, internal damping, passive damping and viscous damping. Viscous

damping is the dissipation of energy which happens when a particle in a vi-

brating system is resisted by a force. This force has a magnitude proportional

to the magnitude of the velocity of the particle and a direction opposite to the

direction of the particle. The main part of the thesis will be efficient determi-

nation of optimal external viscous damping for the given vibrational system.

Critical damping is the minimum viscous damping that will ensure a return of

a displaced system to its initial position without oscillation. Internal damping

is a result of the mechanical energy dissipation within the material as a result

of various microscopic and macroscopic processes.

Figure 1.1 shows a single degree-of-freedom system with a viscous damper.

The differential equation of motion of mass m > 0 with the spring of stiffness

k > 0 is

mẍ + cẋ + kx = 0,

where c > 0 is viscosity.

The corresponding quadratic eigenvalue problem is

mλ2 + cλ+ k = 0,

with roots being equal to

−c±
√
c2 − 4km

2m
.
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It is well known that the structure od the solution x(t) depends on magni-

tudes of quantities m, c and k (x(t) is the displacement from the equilibrium

position). That is, with respect to the sign of the expression c2 − 4km we

distinguish three cases:

• c2 − 4km < 0, the system is ”weakly damped”,

• c2 − 4km > 0, the system is ”overdamped”,

• c2 − 4km = 0, the system is ”critically damped”; in this case there is no

oscillation at the solution x.

Figure 1.1: Single degree-of-freedom system with a viscous damper

In the next section we will set a general problem setting.

1.2 Problem formulation

We consider a mathematical model of a linear vibrational system described

by the system of differential equations:

Mẍ +Dẋ+Kx = 0, (1.1)

where the matrices M and K (called mass and stiffness, respectively) are real

symmetric positive definite matrices of order n. Matrix

D = Cu + Cext
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represents the damping matrix, where internal damping Cu is a symmetric

positive semidefinite matrix. External viscous damping

Cext = v1C1 + v2C2 + · · ·+ vkCk

is a semidefinite matrix where Ci describes a geometry of the corresponding

dampers’ position with corresponding viscosity vi for i = 1, . . . , k.

We will assume that our system is slightly modally damped which is a usual

assumption when considering mechanical systems. Modally damped systems

are characterized by the identity:

MK−1Cu = CuK
−1M. (1.2)

For more details see [35; 38; 55; 59]. In [55] it is also shown that this assump-

tion is a characterization of the systems with internal damping Cu such that

triple (M,Cu, K) can be simultaneously diagonalized. Another characteriza-

tion of the systems such that triple (M,Cu, K) is simultaneously diagonaliz-

able is given in [1].

More precisely, throughout the thesis we will assume that internal damping

Cu is a small multiple of critical damping, that is,

Cu = αcCcrit, (1.3)

where critical damping is defined with

Ccrit = 2M1/2
√
M−1/2KM−1/2M1/2. (1.4)

This internal damping was widely used (for example see [14; 39; 50; 51; 53;

59]). Observe that Cu defined in Equation (1.3) satisfies congruence condition

(1.2).

For the sake of simplicity, we will use parameter α = 2αc. Moreover, it holds

that ΦTCuΦ = αΩ, where Φ is a matrix that simultaneously diagonalizes M
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and K, that is,

ΦTKΦ = Ω2 = diag(ω2
1, . . . , ω

2
n) and ΦTMΦ = I.

Another internal damping which is also widely used in consideration of me-

chanical systems is the so-called proportional damping (or Rayleigh damping)

Cu = αM + βK. (1.5)

This internal damping also satisfies congruence condition (1.2) and it follows

that ΦTCuΦ = αI + βΩ2.

Example 1.1. Example of a mechanical system, whose mathematical model

is given by (1.1), is an n-mass oscillator or oscillator ladder. Figure 1.2

describes a mechanical system of n masses and n+1 springs with two dampers

of different viscosities. For the mass and the stiffness matrix we have that

M = diag(m1, m2, . . . , mn), (1.6)

K =




k1 + k2 −k2

−k2 k2 + k3 −k3
. . .

. . .
. . .

−kn−1 kn−1 + kn −kn

−kn kn + kn+1




, (1.7)

where mi > 0 for i = 1 . . . , n are the masses and ki > 0 for i = 1 . . . , n + 1

are stiffnesses.

Recall that the damping matrix is D = Cu +Cext, where the internal damping

Cu is defined as in (1.3).

Since we will consider two dampers of different viscosities, we have external

damping defined by Cext = v1eie
T
i + v2eje

T
j for 1 ≤ i < j ≤ n, where ei is the

ith canonical basis vector, and v1, v2 are viscosities of the damper applied on

the ith and jth mass, respectively. Usually, external damping has a small rank

and in this example the rank of Cext is two.
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Figure 1.2: n-mass oscillator with two dampers of different viscosity

The system given in Figure 1.2, described by the above matrices M,D and K,

corresponds to a discrete model for a vibrating string and also for a longitudi-

nally vibrating elastic rod. For more details see for example [34].

Equation (1.1) can be transformed to the so-called phase space which yields

a system of the first order differential equations. For that purpose let Φ be a

matrix that simultaneously diagonalizes M and K, it holds

ΦTKΦ = Ω2 = diag(ω2
1, . . . , ω

2
n) and ΦTMΦ = I. (1.8)

Positive numbers ω1, ω2, . . . , ωn are eigenvalues of the undamped system Mẍ+

Kx = 0, and they are called undamped eigenfrequencies.

Physical background and more details about the matrix Φ will be presented

in Section 2.1.1.

Using the substitutions x = ΦxΦ, y1 = ΩxΦ and y2 = ẋΦ we can write

differential equation (1.1) in a phase space as

d

dt

[
y1

y2

]
=

[
0 Ω

−Ω −ΦTDΦ

][
y1

y2

]
(1.9)

or ẏ = Ay,

where

A =

[
0 Ω

−Ω −ΦTDΦ

]
, y =

[
y1

y2

]
. (1.10)
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For more details see for example [14; 39; 52; 53].

Now, we have the first order differential equation

ẏ = Ay,

with the solution

y(t) = eAty0, where y0 contains the initial data.

For (M,D,K) from our problem it can be shown that the matrix A is (asymp-

totically) stable or Hurwitz, that is, eigenvalues of A are in the left half of the

complex plane, see [48].

In investigation of vibrating systems, we are interested in the following prob-

lem: for a given mass and stiffness we want to determine the ”best” (optimal)

damping matrix D which insures optimal evanescence of each component of

y.

This problem requires a certain optimization criterion. One criterion is the

so-called spectral abscissa criterion, which requires that the maximal real part

of the eigenvalues of the corresponding quadratic eigenvalue problem is mini-

mized. More precisely, the spectral abscissa is defined by

µ(A) := max
k

Reλk,

where λk is the complex eigenvalue of the corresponding quadratic eigenvalue

problem

(λ2M + λD +K)x = 0. (1.11)

Then the spectral abscissa criterion is equivalent to minimization of µ(A).

For more details about quadratic eigenvalue problem one can see for example

[3; 48].
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We will use another criterion which is based on the minimization of the total

energy of the system:

∫ ∞

0

E(t; y0) dt → min, (1.12)

where E(t) is the total energy of the system at given time t (as a sum of

kinetic and potential energy), more precisely

E(t; y0) =
1

2
ẋ(t)TMx(t) +

1

2
x(t)TKx(t). (1.13)

It can be shown that 1
2
ẋ(t)TMx(t) + 1

2
x(t)TKx(t) = 1

2
‖y(t)‖2.

Criterion (1.12) depends on the initial data y0. In order to overcome this

problem, we take the average over all initial states of the unit total energy. It

can be shown [39; 56; 57] that with this averaging our criterion is equivalent

to

traceX → min, (1.14)

where X is the solution of the Lyapunov equation

AX +XAT = −Z (1.15)

with A as in (1.10). The existence of the unique solution X is ensured with the

stability of the matrix A, see for example [22; 41]. The structure of the matrix

Z determines which part of undamped eigenfrequencies has to be damped and

the structure of the matrix Z has the following form

Z = GGT . (1.16)

The case when G = I corresponds to the case when all eigenfrequencies of the

undamped system are damped. If we are interested in damping of just first

s eigenfrequencies of the undamped system (s of them corresponding to the
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critical part), the matrix G will have the following form

G =




Is 0

0 0

0 Is

0 0



. (1.17)

The structure of Z has been studied in [39].

In [39], it is shown that our criterion (1.14) can be written using the solution

of the so-called dual Lyapunov equation

AT X̂ + X̂A = −I. (1.18)

Then, criterion (1.14) can be written as

trace X̂Z → min . (1.19)

Considering the trace and the spectral abscissa criterion, in [59] authors state

that very often optimization with the spectral abscissa criterion gives a similar

result to optimization of the trace. However, they also give an example where

the spectral abscissa may fail. Furthermore, the advantage of criterion (1.14)

is its connection with the total energy of vibration. Also, the criterion with

the trace implies a penalty function that is smooth, which is not the case

for the spectral abscissa criterion, although there is a criterion which uses

smoothed spectral criterion [54]. For more details about the spectral abscissa

criterion see also [24]. Apart from these criterions, in damping optimization

one can also use another criterions. One overview of the criterions with their

descriptions is given in [39]. Criterion (1.14) will be used throughout this

thesis.

The optimization problem (1.14) has been intensively considered in the last

decade. Basically, there are two different approaches. One approach uses a

formula for a corresponding solution of the Lyapunov equation and contrary

to this approach are methods which include numerical approximations.



10 Chapter 1 Introduction

Explicit formulae for the trace, for linear vibrational systems with one-dimensional

external damping and without internal damping, are given in [57]. The closest

generalization of this approach is presented in Chapter 5. In [52] authors show

that the trace of a corresponding Lyapunov equation can be represented as a

rational function of viscosity. Moreover, an efficient algorithm which derives a

formula for the trace of the solution of the Lyapunov equation is presented in

paper [50]. In [50], N. Truhar considers the case where external damping has

a rank greater than 1 and includes one viscosity (all dampers have the same

viscosity).

Approaches which include different approximations were also widely studied.

Modal approximations of damped linear systems are presented in [58]. In [53],

authors present an approach that uses an iterative method (ADI method) for

calculation of a low rank approximation of the solution of the corresponding

Lyapunov equation. Approximation of the Lyapunov equation will be consid-

ered in this thesis in approaches which use dimension reduction techniques.

Furthermore, optimal damping was studied in thesis [14] by K. Brabender

and in thesis [39], where I. Nakić considers this optimization problem and

gives a generalization of criterion (1.14) to the infinite dimensional case. The

existence and the uniqueness of the global minimum, using criterion (1.14),

was proved in [21].

Damping optimization using criterion (1.14) requires solving the Lyapunov

equation (1.15) numerous times (this will be presented in detail in Section

4.1). On the other hand, for larger n even solving the Lyapunov equation

is very prohibitive. All this together makes the optimization process very

demanding. We will consider different approaches in which our aim will be

acceleration of the optimization process.

The main part of this thesis will be the construction of an efficient method

for determination of optimal damping using dimension reduction. For that

purpose we propose dimension reduction techniques in order to accelerate the

optimization process. Our algorithms for an efficient approximation of opti-

mal damping will be based on this approximation. We also give algorithms
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for an efficient optimization of dampers’ positions. Some of them use heuris-

tical approaches which can be combined with algorithms which use dimension

reduction techniques.

In the last chapter we will consider a case study for systems with a very strong

structure. That is, for a system without internal damping we assume that

the undamped eigenfrequencies ω1, ω2, . . . , ωn (undamped eigenfrequencies are

introduced in (1.8)), are double in pairs; more precisely it holds that ω1 = ω2,

ω3 = ω4, . . . , ωn−1 = ωn. In this case we present a formula which gives the

solution of the corresponding Lyapunov equation (with an additional linear

system of order n
2
which has to be solved), this then allows us to calculate the

first and the second derivatives of the trace of the solution, with no extra costs.

This one can serve for the efficient trace minimization. This is a generalization

of the result from [57] where the similar explicit formulae for the trace are

given.

Dimension reduction in applications is widely used. Systems with moderate

or large dimension are usually approximated with the systems which have

smaller dimension for the purpose of reducing complexity.

There is a lot of algorithms which use dimension reduction of second-order

systems. Dimension reduction methods were examined using balancing meth-

ods and model reduction techniques in [10; 19; 20; 37; 42]. This problem was

also considered using Krylov-based methods in [4; 6; 36]. Several methods for

dimension reduction were also given in [2; 3; 9]. Besides the dimension re-

duction techniques presented in this thesis, we have considered several model

reduction methods based on the existing approaches (some of them are men-

tioned in the above references). Unfortunately, application of these methods

is not straightforward applicable to our optimization problem. In this thesis

we will consider new approaches.

Some approaches which use dimension reduction with optimization criterion

(1.14) are presented in [59] where authors use frequency cut off and the so-

called modal approximation. Some of these techniques were also studied in

[51] where authors also give a heuristic algorithm for determination of optimal



12 Chapter 1 Introduction

positions of dampers. The main disadvantage of these approaches is that there

is no theoretical justification for these approximations, thus we will present

dimension reduction techniques with corresponding error bounds.

1.3 Organization of the thesis

In this section we present an organization of this thesis.

Chapter 2: Optimal damping of all eigenfrequencies using dimension

reduction

This chapter is devoted to a case where all eigenfrequencies of the undamped

system have to be damped. In Section 2.1, we explain the basic idea of di-

mension reduction. We also note the connection of dimension reduction with

physical properties of the system. Generally, our approximation strategy for

the solution of the Lyapunov equation is presented in Section 2.2. For this

approximation we give a corresponding error bound in Section 2.3. Relying on

the approximation and the corresponding error bound we present a method

for calculation of optimal viscosities in Section 2.4. Numerical examples are

presented in Section 2.5. Section 2.6 contains conclusions.

Some results presented in this chapter are also available in [12]:

P. Benner, Z. Tomljanović, and N. Truhar, Dimension reduction for

damping optimization in linear vibrating systems, Z. Angew. Math.

Mech. 91 (2011), no. 3, 179–191, DOI: 10.1002/zamm.201000077.

Chapter 3: Optimal damping of selected eigenfrequencies using di-

mension reduction

In this chapter we are interested in damping of selected undamped eigenfre-

quencies. In Section 3.1, we will present an algorithm for approximation of

the trace of the solution of the Lyapunov equation. The corresponding error
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bound for trace approximation of the solution of the Lyapunov equation is

given in Section 3.2. Using the approximation algorithm, in Section 3.3, we

give an algorithm for approximation of optimal viscosities. A comparison of

the new algorithm with the current standard algorithm for viscosity optimiza-

tion is given in numerical examples in Section 3.4. Conclusions are discussed

in Section 3.5.

Some results presented in Chapter 3 and Section 4.5 are also available in [13]:

P. Benner, Z. Tomljanović, and N. Truhar, Optimal damping of selected

eigenfrequencies using dimension reduction, submitted for publication

in NLAA, 2011.

Chapter 4: Determination of the optimal dampers’ positions

Here we study an efficient calculation of optimal damping which includes opti-

mal viscosities and we are especially interested in optimal dampers’ positions.

In Section 4.1, we present the ”Direct” approach which searches through all

dampers’ positions and two heuristical approaches; the ”Multigrid-like” and

the ”Discrete to continuous” optimization approaches are described in sec-

tions 4.2 and 4.3, respectively. The optimization approach, which combines

dimension reduction techniques with heuristical approaches for position opti-

mization, is given in Section 4.4. The dimension reduction approach can be

applied for determination of the area that contains the optimal dampers’ posi-

tions, which is presented in Section 4.5. Conclusions are presented in Section

4.6.

Some results presented in this chapter are also available in [11], [51]:

P. Benner, Z. Tomljanović, and N. Truhar, Damping optimization in

linear vibrating systems using dimension reduction, accepted for publi-

cation in Proceedings of the 10th International Conference on Vibration

Problems, Prague.
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N. Truhar and Z. Tomljanović, Estimation of optimal damping for me-

chanical vibrating systems, Intl. J. Appl. Math. Mech. 5 (2009), no. 5,

14–26.

Chapter 5: Optimal damping of a system - a case study

This chapter is devoted to the case study of the system with a special structure,

where all undamped eigenfrequencies are double in pairs. That is, ω1 = ω2,

ω3 = ω4, . . . , ωn−1 = ωn. In Section 5.1, we derive a formula for the so-

lution of the structured Lyapunov equation. Section 5.2 is devoted to trace

minimization using the new formula, whereas Section 5.3 contains numerical

experiments and comparison with existing algorithms. Conclusions are given

in Section 5.4.

Some results presented in this chapter are also available in [49]:

Z. Tomljanović, N. Truhar, and K. Veselić, Optimizing a damped sys-

tem - a case study, International Journal of Computer Mathematics 88

(2011), no. 7, 1533–1545, DOI: 10.1080/00207160.2010.521547, 2011

(iFirst).
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Notation

In this thesis we will use the following notation:

‖ · ‖ the standard 2-norm;

‖ · ‖F the Frobenius norm;

⊗ the Kronecker product;

|A| the matrix with (i, j) element being equal to |aij|;
A(p, q) the submatrix of A obtained by intersection of rows determined

with vector p and columns determined with vector q;

A(:, i) the ith column of matrix A;

A(i, :) the ith row of matrix A;

d−T denotes (d−1)T ;

diag(d1, . . . , dn) the diagonal matrix with diagonal entries d1, . . . , dn;

i : j the vector of integers from i to j;

Is the s-dimensional identity matrix;

R+ the set {x ∈ R : x ≥ 0};
trace(X) the trace of matrixX.

The notations A(p, q), i : j, A(:, i), A(i, :) are taken from MATLAB R©.





Chapter 2

Optimal damping of all

eigenfrequencies using

dimension reduction

In this chapter, we will consider the construction of an efficient algorithm for

calculation of optimal damping for the case where all undamped eigenfrequen-

cies have to be damped.

Using the structure of our system:

Mẍ +Dẋ+Kx = 0, (2.1)

we will derive an approximation of the solution of the corresponding Lya-

punov equation and an error bound for this approximation. Our algorithm

for efficient approximation of optimal damping is based on this approximation.

Numerical results illustrate the effectiveness of our approach.

Since we are interested in damping of all undamped eigenfrequencies, the

17
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matrix Z from Lyapunov equation (1.15) is equal to identity and the corre-

sponding Lyapunov equation is equal to

AX +XAT = −I, A =

[
0 Ω

−Ω −ΦTDΦ

]
, (2.2)

where Φ is a matrix which simultaneously diagonalizes pair (M,K), that is,

ΦTKΦ = Ω2 = diag(ω2
1, . . . , ω

2
n) and ΦTMΦ = I.

Matrix D = Cu + Cext is a damping matrix from the system described by

Equation (2.1), where for internal damping we have that ΦTCuΦ = αΩ.

In our approach we construct two truncation matrices Q1 and Q2 such that

system (2.1) can be approximated with two systems of a smaller dimension.

These systems are

M i
rÿi +Di

rẏi +Ki
ryi = 0, (2.3)

where xi = Qiyi and

M i
r = QT

i MQi,

Di
r = QT

i DQi,

Ki
r = QT

i KQi for i = 1, 2.

An n × r matrix Q1 is a full column rank matrix which will give a reduced

system, such that contribution to the trace of the Lyapunov equation can be

calculated by solving the Lyapunov equation of smaller dimension 2r×2r (r <

n). Furthermore, matrix Q2 is an n× (n− r) full column rank matrix, which

will in the linearization form give a block diagonal matrix, thus contribution

to the corresponding trace of the Lyapunov equation of the system can be

calculated by a simple formula.
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2.1 Solving Lyapunov equations using dimen-

sion reduction: basic idea

The structure of the Lyapunov equation has an important impact on dimen-

sion reduction, thus we will first discuss the structure of the considered Lya-

punov equation (2.2).

For this we will need a perfect shuffle permutation matrix. Perfect shuffle

permutation is the permutation that splits a set into 2 piles and interleaves

them. More precisely, it is defined with permutation which maps

k 7→
{

2k − 1, k ≤ n,

2(k − n), k > n,

for k = 1, 2, . . . , 2n.

After multiplying by perfect shuffle permutation we obtain the following Lya-

punov equation

APXP +XPA
T
P = −I , (2.4)

where

AP = A0 + P T

[
0 0

0 C

]
P, C = ΦTCextΦ, (2.5)

A0 = Â1 ⊕ Â2 ⊕ · · · ⊕ Ân, Âi =

[
0 ωi

−ωi −αωi

]
, (2.6)

XP = P TXP.

Our approach uses a simple fact that if Cext = 0, then the solution of the

Lyapunov equation (2.4) is given by

XP = X̂1 ⊕ X̂2 ⊕ · · · ⊕ X̂n,
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where

X̂i =
1

ωi

[
2+α2

2α
−1

2

−1
2

1
α

]
and trace(X̂i) =

(
2

α
+

α

2

)
1

ωi
. (2.7)

Now, since P is a permutation matrix and Cext = 0, we can easily calculate

the trace of the Lyapunov equation (2.2). It holds

traceX = traceXP =

(
2

α
+

α

2

) n∑

i=1

1

ωi

. (2.8)

Moreover, if Cext 6= 0, the matrix AP from Equation (2.5) has the following

form:

AP =




0 ω1 0 0 0 0 · · · 0 0

−ω1 −αω1 − c11 0 −c12 0 −c13 · · · 0 −c1n

0 0 0 ω2 0 0 · · · 0 0

0 −c12 −ω2 −αω2 − c22 0 −c23 · · · 0 −c2n

0 0 0 0 0 ω3 · · · 0 0

0 −c13 0 −c23 −ω3 −αω3 − c33 · · · 0 −c3n
...

...
...

...
...

...
. . .

...
...

0 0 0 0 0 0 · · · 0 ωn

0 −c1n 0 −c2n 0 −c3n · · · −ωn −αωn − cnn




,

where cij = (C)ij, C is given in (2.5). Note that since Cext is a symmetric

matrix, the matrix C is also a symmetric matrix.

Let us illustrate our main idea on the following example. If some part of the

matrix C has ”small norm”, then we will approximate Ap with Ãp neglecting

that part. For example, if ‖C(:, r+1 : n)‖ is small, then matrix AP from (2.5)

will be approximated by

ÃP =

[
Ã11 0

0 Ã22

]
, (2.9)
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where

Ã11 = AP (1 : 2r, 1 : 2r) and Ã22 = Âr+1 ⊕ · · · ⊕ Ân, (2.10)

and Âi is defined in (2.6). Using this approximation, the solution of the

Lyapunov equation (2.4) can be approximated by the solution of the Lyapunov

equation

ÃP X̃P + X̃P Ã
T
P = −I , (2.11)

where ÃP is given by Equation (2.9) and for the solution we have a block

structure

X̃P =

[
X11 0

0 X22

]
.

The upper block-diagonal part X11 is the solution of the Lyapunov equation

Ã11X11 +X11Ã
T
11 = −I, (2.12)

and the lower block-diagonal part is the solution of the

Ã22X22 +X22Ã
T
22 = −I, (2.13)

due to the block structure of Ã22 we have that X22 = X̂r+1 ⊕ · · · ⊕ X̂n where

X̂i is from (2.7).

Note that in terms of truncation matrices Qi, introduced in Equation (2.3),

the above Lyapunov equations can be obtained using appropriate truncation

matrices (up to the perfect shuffle permutation). That is, the Lyapunov equa-

tion (2.12) can be obtained from the system (2.3) using Q1 = Φ( : , 1 : r),

while Lyapunov equation (2.13) can be obtained from the system (2.3) using

Q2 = Φ( : , r + 1 : n) and setting that ‖C(:, r + 1 : n)‖ = ‖C(r + 1 : n, :)‖ = 0

(which is by our assumption small by the norm).
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Since we are particularly interested in the trace of the solution of the Lyapunov

equation (2.2), using the formula (2.7) we have the following approximation

traceX = traceXP ≈ trace X̃P = traceX11 +

(
2

α
+

α

2

) n∑

i=r+1

1

ωi
,

where X11 is the solution of Equation (2.12). Since we have to solve the

Lyapunov equation with matrices of dimension 2r × 2r (in order to obtain

X11), we can see that the dimension of the reduced system is connected with

the magnitude of the elements in the matrix C, thus in the next subsection

we will show that this is closely related with the structure of the considered

system.

2.1.1 Connection of small elements in damping with the

structure of the matrix Φ

The primary question in this subsection is: when can we expect that the norm

of some part of the matrix C will be small?

As we have mentioned in the previous section, instead of solving Lyapunov

equation (2.4) we will solve its approximation with matrices of dimension

2r × 2r. The dimension r depends on the magnitude of the absolute values

of the entries of the matrix C = ΦTCextΦ. This means that the dimension of

the reduced system (dimension r) is determined by magnitude of elements in

the matrix C which is closely related to the magnitude of the elements in the

matrix Φ (which is usually called the modal matrix).

Furthermore, the elements of the matrix Φ are closely related to displacements

of the masses at the corresponding modes. Particularly, the ith mode of the

system is determined by the ith column of the matrix Φ. For each mode,

mass displacements are sinusoidal with the same frequency, and the extreme

value of displacement for the ith mode at the kth mass is equal to Φki. The

ith column of the matrix Φ is called the ith natural mode (or the ith mode
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shape) and corresponds to the ith natural frequency (or the ith undamped

eigenfrequency). For more details see for example [26; 43].

As an illustrative example consider the mechanical system shown in Figure 1.2.

If we add one damper at position k with viscosity v (thus the second viscosity

v2 = 0). This means that C = ΦTCextΦ = vΦT eke
T
kΦ and cij = vφkiφkj where

φij = (Φ)ij.

On the other hand, the first part of Figure 2.1 shows the corresponding un-

damped system in the equilibrium stage. The second part presents the system

with displacements which corresponds to the ith mode. From this part we can

conclude that if some masses are larger than the others, the corresponding dis-

placements will be smaller. That justifies our assumption that some entries of

the matrix C will be small, indeed since cij = vφkiφkj for small φki and φkj,

cij will be small, too. As a small illustration which also testifies our assump-

tion, we consider the system from Figure 2.1 with 5 masses (n = 5) and the

following configuration:

m1 = 1, m2 = 5, m3 = 10, m4 = 30, m5 = 50;

ki = 1, i = 1, . . . , 6.

For this configuration the mass and the stiffness matrix are:

M = diag(1, 5, 10, 30, 50),

K =




2 −1 0 0 0

−1 2 −1 0 0

0 −1 2 −1 0

0 0 −1 2 −1

0 0 0 −1 2



.
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Figure 2.1: Displacements for the ith mode are shown at their extreme
values

It is easy to calculate that

Φ =




−3.6751 · 10−2 −5.6613 · 10−2 1.2451 · 10−1 −2.1099 · 10−1 −9.6717 · 10−1

−7.3017 · 10−2 −1.1008 · 10−1 2.3254 · 10−1 −3.45 · 10−1 1.1334 · 10−1

−1.0445 · 10−1 −1.3298 · 10−1 1.8664 · 10−1 1.9114 · 10−1 −5.9166 · 10−3

−1.2206 · 10−1 −8.2029 · 10−2 −1.0634 · 10−1 −1.9926 · 10−2 9.6196 · 10−5

−9.1207 · 10−2 1.0559 · 10−1 2.3022 · 10−2 1.1441 · 10−3 −9.2621 · 10−7



.

Now, we can calculate the matrix C for the given damper’s position. For

example, let the damper’s position be at position 5, that is k = 5 and viscosity

v = 100. Then we have:

C = 100 · ΦT e5e
T
5Φ

=




8.3187 · 10−1 −9.6309 · 10−1 −2.0997 · 10−1 −1.0435 · 10−2 8.4477 · 10−6

−9.6309 · 10−1 1.1150 2.4309 · 10−1 1.2081 · 10−2 −9.7802 · 10−6

−2.0997 · 10−1 2.4309 · 10−1 5.2999 · 10−2 2.6339 · 10−3 −2.1323 · 10−6

−1.0435 · 10−2 1.2081 · 10−2 2.6339 · 10−3 1.3090 · 10−4 −1.0597 · 10−7

8.4477 · 10−6 −9.7802 · 10−6 −2.1323 · 10−6 −1.0597 · 10−7 8.5787 · 10−11



.

We can see that in the above matrix C we have elements small by magnitude,

and this effect is even bigger for larger dimensions.
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Based on the ideas presented in Section 2.1, in the next section, we will show

how one can find an approximate solution of the Lyapunov equation (2.2) in

general.

2.2 Solving Lyapunov equations using dimen-

sion reduction: general case

In this section we will present an algorithm for the approximation of the

solution of the Lyapunov equation (2.2) in a general case.

Let p ∈ Nn−r be a vector of indices for which n−r is the maximal (r is minimal)

dimension such that ‖C(p, :)‖F is less than or equal to some tolerance tol. The

vector of indices p ∈ N
r is chosen such that p ∪ p = {1, 2, . . . , n}. Then we

define the vector w ∈ Nn with w(i) = p(i) for i = 1, . . . , r and w(i) = p(i− r)

for i = r + 1, . . . , n.

Instead of Lyapunov equation (2.4) we add additional permutation matrix P̂

and solve the following Lyapunov equation

P̂ TAP P̂ X̂P + X̂P P̂
TAT

P P̂ = −I , (2.14)

where for solution X̂p it holds that X̂p = P̂ TXP P̂ and the matrix P̂ is the

permutation such that P̂ ( : , 2i − 1 : 2i) = I( : , w(2i − 1) : w(2i)) for i =

1, 2, . . . , n. Moreover, with such permutation P̂ , the matrix P̂ TAP P̂ has the

following structure:

ÂP = P̂ TAP P̂ =




0 ωw(1) · · · 0 0

−ωw(1) −αωw(1) − cw(1)w(1) · · · 0 −cw(1)w(n)

...
...

. . .
...

...

0 0 · · · 0 ωw(n)

0 −cw(1)w(n) · · · −ωw(n) −αωw(n) − cw(n)w(n)




.

(2.15)
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Since P̂ is the permutation matrix, it holds that trace X̂P = traceX, where

X is the solution of (2.2) and X̂P is the solution of the Lyapunov equation

(2.14).

Now, with additional permutation P̂ we have ensured the same structure

needed in Section 2.1. Thus, we can use a similar approach, which includes

neglecting of diagonal blocks ”small by the norm”. That is, approximation of

the Lyapunov equation can be obtained from the following Lyapunov equation

ÃP X̃P + X̃P Ã
T
P = −I ,

where

ÃP =

[
Ã11 0

0 Ã22

]
with

Ã11 = ÂP (1 : 2r, 1 : 2r),

Ã22 = Âp(1) ⊕ · · · ⊕ Âp(n−r),
(2.16)

and Âi is defined by (2.6) while ÂP is given by (2.15).

Then, approximation of the solution of the Lyapunov equation (2.2) is given

by

X̃P =

[
X11 0

0 X22

]
.

Here X11 and X2 are the solutions of the Lyapunov equations

Ã11X11 +X11Ã
T
11 = −I, (2.17)

Ã22X22 +X22Ã
T
22 = −I, (2.18)

respectively. Solution of Equation (2.18) is given by X22 = X̂p(r+1)⊕· · ·⊕X̂p(n)

where matrices X̂i are from (2.7). Thus, the trace of X22 can be obtained by

a close formula for which we need O(n − r) flops, while for X11 we need to

solve the Lyapunov equation with matrices of dimension 2r × 2r.

Similarly to Section 2.1, Lyapunov equation (2.17) can be obtained from the

system (2.3) using an appropriate truncation matrix. Equation (2.17) corre-

sponds to the Lyapunov equation which is obtained from the reduced system
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(2.3) using the truncation matrix Q1 = Φ( : , p). Now X22 is the solution

which corresponds to the Lyapunov equation obtained from the system (2.3)

using Q2 = Φ( : , p) and setting ‖C(:, p)‖ = ‖C(p, :)‖ = 0 (in our approach the

corresponding part of the matrix C is small by the norm).

Since we are interested in the trace of the solution of the Lyapunov equation

(2.2) or (2.14), we have

traceX = trace X̃P ≈ traceX11 +

(
2

α
+

α

2

) n−r∑

i=1

1

ωp(i)
, (2.19)

where X11 is the solution of the Lyapunov equation (2.17).

As can be seen from Equation (2.19), the approximation of the traceX is

obtained by summing the trace of the solution of the Lyapunov equation

(2.17) obtained from the reduced system and the trace of the solution of

the Lyapunov equation (2.18) (here we have used formula (2.7)). From the

computational point of view, the most expensive part is solving the Lyapunov

equation (2.17). By summarizing, we have reduced the problem of solving a

2n× 2n Lyapunov equation to the problem of solving a Lyapunov equation of

dimension 2r × 2r. In this sense the parameter r will be called the reduced

dimension. The resulting method is presented in Algorithm 2.2.1.

Note that in the optimization process for viscosity optimization we only need

the traceX instead of the solution X. Thus, for viscosity optimization, in-

stead of Steps 5 and 6 of Algorithm 2.2.1 we will use the formula traceX =

traceX11 + ( 2
α
+ α

2
)
∑n−r

i=1
1

ωp(i)
.

In the following section we will derive an error bound for the approximation

of the solution of the Lyapunov equation (2.2) obtained by the previous algo-

rithm.
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Algorithm 2.2.1 (Approximation of the solution of the Lyapunov equation
(2.2))

Input: α, tol;
Φ such that ΦTKΦ = Ω2 = diag(ω2

1, . . . , ω
2
n) and ΦTMΦ = I;

C – contains information about the dampers’ positions and viscosities.
Output: X(C)
1: Determine minimal r and vector p ∈ Nn−r such that ‖C(p, :)‖F < tol,

i = 1, . . . , n− r.
2: Determine vector p ∈ Nr such that p ∪ p = {1, 2, . . . , n}.
3: Ωr = diag(ωp(1), ωp(2), . . . , ωp(r)).
4: Calculate X11, where

A11X11 +X11A
T
11 = −I, A11 =

[
0 Ωr

−Ωr −αΩr − C(p, p)

]
.

5: X̃P = X11 ⊕ X̂p(r+1) ⊕ · · · ⊕ X̂p(n), where X̂i is given in (2.7).

6: X(C) = P P̂X̃P P̂
TP T , where the matrix P is the perfect shuffle permuta-

tion and the permutation matrix P̂ is introduced in (2.14).

2.3 Error bound

Since Algorithm 2.2.1 gives an approximation of the solution X of the Lya-

punov equation (2.14), we are interested in the error bound for this approxi-

mation. For that purpose consider the Lyapunov equation (2.14) in the par-

titioned form

[
A11 εE

εET A22

][
X11 X12

XT
12 X22

]
+

[
X11 X12

XT
12 X22

][
AT

11 εE

εET AT
22

]
= −I,

where A =

[
A11 εE

εET A22

]
, X =

[
X11 X12

XT
12 X22

]
, ε = ‖A12‖F and E = 1

‖A12‖F ·A12.
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By equalizing the corresponding blocks we obtain

A11X11 +X11A
T
11 = −I − ε(EXT

12 +X12E
T ), (2.20)

A22X22 +X22A
T
22 = −I − ε(ETX12 +XT

12E), (2.21)

A11X12 +X12A
T
22 = −ε(EX22 +X11E). (2.22)

Since equations (2.20) – (2.22) can be considered as perturbed Sylvester equa-

tions, we will need a perturbation bound for Sylvester equations of the form

AX −XB = C.

For our purpose we will use one from [32; 33]: let

(A +∆A)(X +∆X)− (X +∆X)(B +∆B) = C +∆C

be a perturbed equation. Then the following bound holds

‖∆X‖F ≤
√
3‖P−1‖

(
(α+ β)‖X‖F + γ

)
η, (2.23)

where P = I⊗A−BT ⊗I and η = max

{
‖∆A‖F

α ,
‖∆B‖F

β
,
‖∆C‖F

γ

}
, while α,

β and γ are scaling factors as in [33]. Usually one uses α = ‖A‖F , β = ‖B‖F ,
and γ = ‖C‖F , but some other constants for α, β and γ can be used as well.

Note that

‖P−1‖ = sep(A,B)−1, (2.24)

where sep(A,B) is the separation of matrices A and B defined as

sep(A,B) = min
X 6=0

‖AX −XB‖F
‖X‖F

.

First, we will derive the bound for the solution X12 of the Sylvester equation

(2.22). In our case we have A11 = Ã11 and A22 = Ã22 + ∆A22 with Ã22 and

Ã11 given in (2.16) and

∆A22 = ÂP (2r + 1 : n, 2r + 1 : n)− Ã22,
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where ÂP is defined as in (2.15). Note that there is no perturbation in the

matrix A11, thus ∆A11 = 0. Since ε is small, Equation (2.22) is a perturbation

of the equation

A11X̃12 + X̃12Ã
T
22 = 0,

with solution X̃12 = 0. Using the bound (2.23) one can obtain a bound for

X12 = X̃12 + ∆X12 with η1 = max
{

‖∆A22‖F
‖Ã22‖F

, ‖ε(EX22+X11E)‖F
γ

}
, where γ is an

arbitrarily small constant (since the right hand side of Equation (2.22) is zero):

it holds

‖X12‖F = ‖∆X12‖F ≤
√
3‖P−1

1 ‖η1γ,

where P1 = I ⊗ A11 + Ã22 ⊗ I. Since ‖E‖F = 1, using the triangle inequality

we have

η1 ≤ max

{
‖∆A22‖F
‖Ã22‖F

, ε
‖X22‖F + ‖X11‖F

γ

}
.

Setting γ small enough yields

η1 ≤ ε
‖X22‖F + ‖X11‖F

γ
,

thus we obtain

‖X12‖F = ‖X̃12 +∆X12‖F = ‖∆X12‖F ≤
√
3‖P−1

1 ‖‖(‖X22‖F + ‖X11‖F )ε.
(2.25)

Furthermore, we will derive a relative perturbation bound for the Lyapunov

equation (2.20). Note that Equation (2.20) can be considered as a perturbation

of the Lyapunov equation A11X̃11 + X̃11A
T
11 = −I with X11 = X̃11 + ∆X11.

Since there is no perturbation in A11, in (2.23) we set α = β = 0 and γ =

‖I‖F =
√
n. Then (2.23) yields

‖∆X11‖F ≤
√
3‖P−1

2 ‖‖ε(EXT
12 +X12E)‖F

≤ 2
√
3‖P−1

2 ‖‖X12‖Fε, (2.26)

where P2 = I ⊗ A11 + A11 ⊗ I.
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Now, from (2.24), (2.25) and (2.26) it follows

‖∆X11‖F
‖X11‖F + ‖X22‖F

≤ 6
1

sep(A11,−ÃT
22)

1

sep(A11,−AT
11)

ε2. (2.27)

Similarly, one can obtain the relative perturbation bound for the Lyapunov

equation (2.21). Let Equation (2.21) be the perturbed equation related to

Ã22X̃22 + X̃22Ã
T
22 = −I, where X22 = X̃22 +∆X22. Here α = β = ‖Ã22‖F and

γ =
√
n, thus from Equation (2.23) it follows

‖∆X22‖F ≤
√
3‖P−1

3 ‖
(
2‖Ã22‖F‖X̃22‖F +

√
n
)
η2, (2.28)

where P3 = I⊗Ã22+Ã22⊗I and η2 = max
{

‖∆A22‖F
‖Ã22‖F

,
‖ε(ETX12+XT

12E)‖F
γ

}
. Since

‖E‖F = 1, using the triangle inequality we have

η2 ≤ max

{
‖∆A22‖F
‖Ã22‖F

, ε
‖2X12‖F√

n

}
. (2.29)

From (2.25) it follows that ‖X12‖F is bounded by an O(ε) term, thus for small

ε it yields

max

{
‖∆A22‖F
‖Ã22‖F

, ε
‖2X12‖F√

n

}
=

‖∆A22‖F
‖Ã22‖F

.

Now, (2.28) can be written in the form

‖∆X22‖F ≤
√
3‖P−1

3 ‖
(
2‖X̃22‖F +

√
n

‖Ã22‖F

)
‖∆A22‖F .

In order to express the previous bound in a relative form, divide the above

equation by ‖X̃22‖F and express ‖P−1
3 ‖ in terms of sep, then we have

‖∆X22‖F
‖X̃22‖F

≤
√
3

sep(Ã22,−ÃT
22)

(
2 +

√
n

‖Ã22‖F ‖X̃22‖F

)
‖∆A22‖F . (2.30)

Note that ‖X̃22‖F and ‖Ã22‖F are easy to calculate since X̃22 and Ã22 are

block diagonal matrices with 2 × 2 blocks on their diagonals which can be
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expressed by analytic formulas.

To sum up, we obtain an error bound for the solution of the Lyapunov equation

(2.14) computed by Algorithm 2.2.1. As we are interested in the trace, we only

provide the bounds for the diagonal blocks of the solution.

Theorem 2.3.1. With A11, which is given in Algorithm 2.2.1, Ã22 = Âp(1) ⊕
· · · ⊕ Âp(n−r), ∆A22 = C(p, p), and Xii (i = 1, 2) being the exact solu-

tions of equations (2.20), (2.21), X̃ii their approximations computed by Al-

gorithm 2.2.1, the error matrices ∆Xii = Xii − X̃ii satisfy

‖∆X11‖F
‖X11‖F + ‖X22‖F

≤ 6
1

sep(A11,−ÃT
22)

1

sep(A11,−AT
11)

ε2 , (2.31)

‖∆X22‖F
‖X̃22‖F

≤
√
3

‖∆A22‖F
sep(Ã22,−ÃT

22)

(
2 +

√
n

‖Ã22‖F‖X̃22‖F

)
, (2.32)

where ε = ‖C(p, p)‖F and the vectors p and p are calculated in Steps 1 and 2

of Algorithm 2.2.1, respectively.

In bound (2.32) we can use that ‖X̃22‖F = 1
2

√
(6 + 8

α2 + α2)
∑n−r

k=1 ω
−2
p(k).

The right-hand sides in (2.31) and (2.32) thus also provide the desired, though

conservative, bounds for the traces computed using the approximate Lya-

punov solution rather than the exact ones. These bounds do not account

for numerical errors made due to roundoff during the actual computations in

finite-precision arithmetic, but if the analytical formula (2.7) is used for X̂i,

X11 is computed by a numerically stable algorithm like the Bartels-Stewart

method [5; 45] or Hammarling method [28], and ε is significantly larger than

machine precision (which will usually be the case in applications), then the

bounds (2.31) and (2.32) will dominate the numerical errors by far.

To make the bounds (2.31) and (2.32) operable we must estimate sep(·, ·).
More about estimation of the separation can be found in [17; 22; 27; 46]. A

survey of condition number estimation can be found in [31]. In [17], for the

estimation of sep(A,B), one must solve a Sylvester equation with coefficient

matrices A and B. For solving this Sylvester or Lyapunov equation with
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standard solvers (for example, the Bartels-Stewart algorithm [5]), the main

costs are the calculation of Schur decompositions. In our case, we need Schur

decompositions of matrices A11 and Ã22. The Schur decompositions of Ã22

can be calculated easily since Ã22 is a block diagonal matrix which does not

depend on external damping (thus in the optimization process this must be

calculated only once). The Schur decompositions of the matrix A11 have

already been obtained since in the calculation of the approximation of the

solution we have already solved Lyapunov equations with matrices A11. The

availability of Schur decompositions cannot be utilized using the Lyapunov

solvers in the MATLAB Control System ToolboxTM, but this is possible, for

example in SLICOT (Subroutine Library In Control Theory1) [44] and the

SLICOT Basic Systems and Control Toolbox for MATLAB [7]. Employing

the Schur decomposition usually accelerates the Lyapunov solver by a factor

of 5 or more. Furthermore, in the estimation of the separation, the block

diagonal structure of Ã22 can be used, too. Thus, separation estimation can

be done efficiently.

In the following section we will propose an algorithm which uses these error

bounds in the determination of optimal viscosity for given dampers’ positions.

2.4 Calculation of the optimal viscosities

The algorithm for calculation of the optimal viscosities calculates the trace

approximation using Algorithm 2.2.1. In the algorithm for viscosity optimiza-

tion we check whether reduced dimension is good for a given accuracy. In

order to check this efficiently we will use the new error bounds (2.31) and

(2.32).

During the optimization process we do not check the error bounds, except

when we determine suboptimal viscosity. Then we calculate the error bounds

(2.31) and (2.32), and if the errors are small enough, we stop the optimization

1See http://www.slicot.org.

http://www.slicot.org
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process (then our suboptimal viscosity is close to optimal) or if errors are too

large, we repeat the optimization process with a smaller tolerance, that is,

with a larger reduced dimension r. All this is included in Algorithm 2.4.1. In

Algorithm 2.4.1 parameter u stands for machine precision.

Algorithm 2.4.1 (Computation of optimal viscosity at given damper posi-
tions)

Input: α, κ ≥ 1;
d1, d2, . . . , dk – dampers’ positions;
Φ – such that ΦTKΦ = Ω2 = diag(ω2

1, . . . , ω
2
n) and ΦTMΦ = I;

ε1, ε2 – the tolerances for the bounds (2.31) and (2.32), respectively;
tolstart – the starting tolerance for Algorithm 2.2.1;
c1 – a constant for scaling a tolerance (c1 < 1).

Output: Optimal viscosities v̂1, . . . , v̂k.
1: tol = tolstart
2: while tol > κ · u do

3: Find suboptimal viscosities with an optimization algorithm, in the opti-
mization process calculate the traceX(v1, . . . , vk) using Algorithm 2.2.1
with tolerance tol, and denote them with v̂1, . . . , v̂k.

4: Calculate the right-hand sides of the bounds (2.31) and (2.32) for sub-
optimal viscosities v̂1, . . . , v̂k, and denote them by b1 and b2, resp.

5: if b1 < ε1 and b2 < ε2 then

6: return optimal viscosities v̂1, . . . , v̂k
7: break

8: else

9: tol = c1 · tol
10: end if

11: end while

Note that in Step 3, each time we start the optimization process for deter-

mining optimal viscosities. Moreover, in order to accelerate the optimization

process our algorithm should use the information of suboptimal viscosities ob-

tained in the previous step. For example, if we optimize with the Nelder-Mead

method (as in the MATLAB function fminsearch, see for example [40]) in

Step 3, then in the optimization process the starting values are the subopti-

mal viscosities obtained in the previous step, except for the first time when we

take some fixed starting viscosities. Similarly, we can adopt our optimization

process if we optimize with the Brent method (as in the MATLAB function
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fminbnd see for example [15]). The application of the optimization method

will be illustrated in the example in the next section.

2.5 Numerical experiments

In this section we will compare the application of the new algorithm for vis-

cosity optimization using dimension reduction with the same optimization

method without dimension reduction, based on the Bartels-Stewart Lyapunov

solver. For that purpose we will consider the following example.

Example 2.1. Consider the mechanical system shown in Figure 2.2 with two

dampers of the same viscosity and 3d + 1 masses, consisting of three rows of

masses with d+1 springs. Each row has springs of the same stiffness equal to

k1, k2, k3, respectively. On the left-hand side, rows of the springs are connected

to the fixed base, and on the right-hand side they are connected to the last mass

(m3d+1), which is connected to the fixed base with the spring with stiffness k4.

Figure 2.2: 3d+ 1 mass oscillator
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The mathematical model for the considered vibrational system is given by equa-

tion Mẍ +Dẋ+Kx = 0, where the mass matrix is

M = diag(m1, m2, . . . , mn).

The stiffness matrix is defined as

K =




K11 −κ1

K22 −κ2

K33 −κ3

−κT
1 −κT

2 −κT
3 k1 + k2 + k3 + k4



,

where

Kii = ki




2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1

−1 2




, κi =




0
...

0

ki



, i = 1, 2, 3.

In this example we will consider the following configuration

d = 500, n = 3d+ 1 = 1501;

mk = k, k = 1, . . . , n;

k1 = 1, k2 = 50, k3 = 100, k4 = 200.

Our example has two dampers with the same viscosity v. Thus the damping

matrix is equal to

D = Cu + Cext, where Cext = veie
T
i + veje

T
j , Cu = 0.005 · Ccrit,

where Ccrit is critical damping given in (1.3).

Since the considered optimization process is extremely demanding, instead of

performing complete optimization (consisting of all dampers’ positions) we
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will relax the problem. We will compare our algorithm with the standard

algorithm without dimension reduction on the equidistant mesh of dampers’

positions:

i = 1 : 70 : n, j = i + 5 : 70 : n,

where i is the position of the first damper and j is the position of the second

damper, which results in 253 different positions.

In this example, we have two dampers of the same viscosity. Thus in Step 3

of Algorithm 2.4.1, for the optimization process, we will use the MATLAB

function fminbnd with termination tolerances for the viscosity and for the

function values equal to 10−4.

Furthermore, in our application we have noticed that in Algorithm 2.4.1, if

we set ε1 = ε2 = 0.2, then the relative errors for the approximation are good

enough (relative errors are presented in Figure 2.3).

We have used the following configuration in Algorithm 2.4.1:

αc = 0.005; tolstart = 3 · 10−5;

c1 = 0.2; κ = 104.

The optimization process with fminbnd begins in the interval [10−4, 103]. Once

we have obtained the suboptimal viscosity v̂opt (in Step 3 of Algorithm 2.4.1),

we check the error bounds in Step 5 of Algorithm 2.4.1. If the error bounds

are small enough, the optimization process will be terminated (the suboptimal

viscosity is then close enough to the optimal one). On the other hand, if the

errors are not small enough, we continue with the process with the interval

[v̂opt − v̂opt · p, v̂opt + v̂opt · p], where we set p = 0.01.

Note that if fminbnd finds a suboptimal viscosity v̂opt at one of the interval

boundaries, we will expand the interval around v̂opt, that is, we will restart

the optimization process in the interval [v̂opt − v̂opt · p, v̂opt + v̂opt · p].
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In the following figures we have plotted data which corresponds to 100 small-

est traces sorted by magnitude. The first result corresponds to the optimal

position (the position which corresponds to the smallest trace).

Figure 2.3 shows relative errors for the optimal viscosity and the optimal trace.

Relative errors for the trace are calculated using | traceX− trace X̂|/ traceX,

where traceX is the optimal trace for the given position obtained with the

algorithm without dimension reduction, and trace X̂ is the approximation of

the optimal trace calculated with Algorithm 2.2.1. Similarly, relative errors

for the optimal viscosity are calculated by |v̂opt − vopt|/vopt, where v̂opt is the

optimal viscosity obtained by Algorithm 2.4.1 and vopt is the exact optimal

viscosity obtained by optimization without dimension reduction.

Both algorithms (with and without dimension reduction) obtain the same op-

timal damper position (i, j) = (211, 426). According to the algorithm without

dimension reduction, the optimal viscosity at this position is 32.75013 with

the corresponding trace 2990313.07995, while with Algorithm 2.4.1 we obtain

32.74978 for the viscosity and 2990322.73886 for the trace.

Figure 2.3: Relative errors
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In the optimization process with the MATLAB function fminbnd, tolerances

were equal to 10−4, thus relative errors in Figure 2.3 are given in terms of

tolerances for the optimization process. For all these results the while loop in

Algorithm 2.4.1 just needed two iterations in order to satisfy inequalities in

Step 5.

Reduced dimension r varies during the optimization process and Figure 2.4

shows the percentage of dimension reduction (calculated by r
n
· 100) at the

optimal viscosity obtained when computing the 100 smallest traces. Each

point in Figure 2.4 corresponds to such tolerance tol in Algorithm 2.4.1 that

the inequalities in Step 5. of Algorithm 2.4.1 are satisfied.

We can see that the reduced dimension varies from 27% to 86% of the start-

ing dimension. It is important to note that at the positions which have the

smallest traces, the reduced dimension is the best. This is good because in

calculating the optimal dampers’ position with some heuristic we must calcu-

late the optimal viscosity in a large number of dampers’ positions which are

close to the optimal damper position. Heuristics for determination of optimal

damping (dampers’ positions and corresponding viscosities) will be presented

in Chapter 4.

In order to demonstrate how much the reduced dimension accelerates the op-

timization process, in Figure 2.5 we show the time ratio for calculating the

optimal viscosity at given dampers’ positions with Algorithm 2.4.1 and by the

algorithm without dimension reduction. These times were calculated using an

Intel(R) Core(TM) i7 CPU 920 with 12GB of RAM and 8 MB cache. From

Figure 2.5 we can see that near the optimal trace, the new algorithm is about

15 times faster than the one without dimension reduction. If we are interested

in the total time needed for calculating the optimal viscosities at the 100 small-

est traces, then the algorithm without dimension reduction has needed 94.7

hours, while the algorithm with dimension reduction would needed 45.8 hours

for the whole optimization process. Although for many positions the times

are comparable or only a slight acceleration is observed, there are numerous

instances where significant time savings are achieved, so that altogether, a
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Figure 2.4: Reduced dimension

considerably shorter computation time for the whole optimization process is

achieved.

Also, as we have mentioned above, at the positions which have the smallest

traces the time ratio is better than in the other positions. Because of that, in

calculating the optimal dampers’ positions with some heuristic (for example

some introduced in Chapter 4), we must calculate optimal viscosity in a large

number of dampers’ positions which are close to the optimal damper position

and this will altogether accelerate the optimization process more.

In the next section we will consider the case of damping of selected eigenfre-

quencies, which will result in more significant acceleration of the optimization

process.

2.6 Conclusions

Since the optimization process is extremely demanding, in this chapter we have

suggested a dimension reduction technique that can significantly accelerate the
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Figure 2.5: Time ratio

computation of traces. The idea is based on exploiting the structure of the

coefficient matrices of the resulting Lyapunov equations and considering the

terms introduced by damping as perturbations. Error bounds obtained from

perturbation theory then guide us to those parts of the matrix that can be

neglected so that parts of the trace calculation can then be obtained from

analytical formulas and only a Lyapunov equation of much smaller size needs

to be solved. Numerical experiments confirm the ability of this approximation

technique to accelerate the optimization process significantly while ensuring

that we still find the optima. In this chapter we have considered only the case

when all undamped eigenfrequencies have to be damped and results which

include damping of selected undamped eigenfrequencies will be presented in

the following chapter.





Chapter 3

Optimal damping of selected

eigenfrequencies using

dimension reduction

In this chapter we will consider the case where selected undamped eigenfre-

quencies have to be damped. Matrix Z, that determines which part of eigen-

frequencies has to be damped, is equal to Z = GGT . Since we are interested

in damping selected eigenfrequencies, that is, we are interested in damping of

just the s (s � n) eigenfrequencies of the undamped system (s of them which

correspond to the critical part), the matrix G has the following form

G =




Is 0

0 0

0 Is

0 0



. (3.1)

The corresponding Lyapunov equation is equal to

AX +XAT = −GGT , A =

[
0 Ω

−Ω −ΦTDΦ

]
. (3.2)

43
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Recall that matrix Φ is a matrix that simultaneously diagonalizes M and K,

that is

ΦTKΦ = Ω2 = diag(ω2
1, . . . , ω

2
n) and ΦTMΦ = I. (3.3)

For the internal damping Cu it holds that ΦTCuΦ = αΩ and D = Cu + Cext,

where Cext describes external damping. With the above matrix G we will

damp undamped eigenfrequencies ω1, ω2, . . . , ωs.

The main idea in this chapter is similar to the approach described in Chapter

2 where damping of the whole undamped spectrum was considered. The same

approach as in Chapter 2 is possible, but this will not use all the benefit of

the structure of the right-hand side of Equation (3.2). Particularly, if s � n,

where 2s is the rank of G from (3.1), we can use the structure of the system

more efficiently. Hence, the goal of this chapter is to derive a new error bound

for the trace of the solution of the Lyapunov equation (3.2) and to construct

a corresponding efficient numerical algorithm for the trace approximation.

Using the structure of our system

Mẍ +Dẋ+Kx = 0, (3.4)

first we will derive an approximation of the trace of the solution of the Lya-

punov equation (3.2) and a corresponding error bound for the approximation.

Our algorithm for approximation of optimal damping will employ this ap-

proximation in order to efficiently determine optimal viscosities. Also, for

structured systems using this approach we can efficiently determine the area

where optimal dampers’ positions are located, which will be presented in Sec-

tion 4.5. Numerical results illustrate the efficiency of our approaches.

Similarly to the Chapter 2, here we construct one truncation matrices Q such

that system (3.4) can be approximated with following system of smaller di-

mension

Mrÿ +Drẏ +Kry = 0, (3.5)
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where x = Qy and

Mr = QTMQ,

Dr = QTDQ,

Kr = QTKQ.

Matrix Q is an n× r matrix with full column rank. From the above reduced

system we can derive a corresponding Lyapunov equation (of smaller dimen-

sion 2r×2r (r < n)) from which we can obtain an approximation for the trace

of the solution of the Lyapunov equation.

3.1 Approximating the trace of the solution

of the Lyapunov equation

In this section we will present an algorithm which calculates an approximation

of the trace of the solution of the structured Lyapunov equation (3.2). For that

purpose, similarly to Section 2.1 , we apply the perfect shuffle permutation

matrix P , which yields the Lyapunov equation

APXP +XPA
T
P = −P TGGTP, (3.6)

with AP = P TAP and XP = P TXP , where A is given in Equation (3.2) and

G is given in Equation (3.1).

Our approach is based on dimension reduction of the Lyapunov equation (3.6).

That is, we will construct an approximation of the Lyapunov equation (3.6)

as follows:

ÃP X̃P + X̃P Ã
T
P = −GPG

T
P ,

where Ĝ = P TG and AP is approximated by

ÃP =

[
Ã11 0

0 Ã22

]
.
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Now we will describe the construction of Ã11, Ã22 in more details. For this,

we will need the additional permutation matrix P̂ which will bring up the

dominant part of the damping matrix D to the upper block diagonal part.

Recall that the given damper positions and corresponding viscosities are in-

cluded in the matrix C = ΦTCextΦ, where Φ is given in (3.3).

Let the vectors p ∈ Nr and p ∈ Nn−r be chosen such that the following

conditions hold:

i) p ∪ p = {1, 2, . . . , n};

ii) p is the vector of indices of dimension s+ ŝ, where the first s correspond

to the eigenfrequencies which have to be damped, and the ŝ closest

indices;

iii) p and p are the vectors of indices such that maxij |C(p(i), p(j))| ≤ tol,

for a given tolerance tol.

The vectors p ∈ Nr and p ∈ Nn−r should be chosen such that r is as small as

possible for given parameters s, ŝ and tol. A strategy for determining p ∈ Nr

and p ∈ Nn−r will be discussed below.

The vector w ∈ N
n is defined by w(i) = p(i) for i = 1, . . . , r and w(i) = p(i−r)

for i = r + 1, . . . , n.

Now, instead of the Lyapunov equation (3.2), we solve the permuted Lyapunov

equation

P̂ TP TAPP̂X̂P + X̂P P̂
TP TATPP̂ = −ĜĜT , (3.7)

where X̂P = P̂ TXP P̂ , Ĝ = P̂ TP TG, the matrix P is the perfect shuffle

permutation matrix and P̂ = I(:, w) ⊗ I2. Note that for these permutations
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it holds

ÂP =




0 ωw(1) · · · 0 0

−ωw(1) −αωw(1) − cw(1)w(1) · · · 0 −cw(1)w(n)

...
...

. . .
...

...

0 0 · · · 0 ωw(n)

0 −cw(1)w(n) · · · −ωw(n) −αωw(n) − cw(n)w(n)




,

where

ÂP = P̂ TP TAPP̂ . (3.8)

Since P̂ and P are permutation matrices, it holds that trace X̂P = traceX,

where X is the solution of Equation (3.2).

We are interested in dimension reduction which will allow us to solve the

approximated Lyapunov equation of smaller dimension instead of solving the

Lyapunov equation (3.7). The approximated Lyapunov equation will have the

following form:

ÃP X̃P + X̃P Ã
T
P = −ĜĜT , (3.9)

where

ÃP =

[
Ã11 0

0 Ã22

]
,

and

Ã11 = ÂP (1 : 2r, 1 : 2r) and Ã22 = ÂP (2r + 1 : 2n, 2r + 1 : 2n),

where ÂP is given in Equation (3.8). Because of the block structure of ÃP and

Ĝ =
[
I2s 0

]T
, the approximation of the solution of the Lyapunov equation

(3.7) is given by

X̃P =

[
X̃11 0

0 0

]
,

where X̃11 is the solution of the Lyapunov equation

Ã11X̃11 + X̃11Ã
T
11 = −G̃G̃T (3.10)
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with G̃ = Ĝ(1 : 2r, :).

Since X̃P is the approximation of the solution X of the Lyapunov equation

(3.7) we can use it for the trace approximation. This approximation will be

obtained by solving a Lyapunov equation of dimension 2r × 2r, thus we will

call the parameter r the reduced dimension.

Note that the reduced dimension will be smaller if the matrix C has more ele-

ments small by magnitude. The matrix C is obtained from the corresponding

rows of the matrix Φ from (3.3), which is explained in Section 2.1.1. Thus,

the structure of the matrix Φ is related to the magnitude of the elements of

the matrix C.

Now we will present Algorithm 3.1.1 for the construction of vectors p and p.

Algorithm 3.1.1 (construction of p and p)

Input: tol;
vi, Ci, i = 1, . . . , k, – (Ci describes the geometry of the ith damper position
with viscosity vi);
u1, u2, . . . , us, – s indices of those eigenfrequencies which have to be
damped;
û1, û2, . . . , ûŝ, – ŝ indices of the eigenfrequencies closest to the eigenfre-
quencies which have to be damped.

Output: p, p
1: p = [ u1, u2, . . . , us, û1, û2, . . . , ûŝ ]
2: Determine vector p such that p ∪ p = {1, 2, . . . , n}.
3: T=1
4: C = ΦT (v1C1 + v2C2 + · · ·+ vkCk)Φ
5: while T=1 do

6: Ĉ = C(p, p) and M = maxij |Ĉi,j|.
7: if M > tol then
8: Determine indices i0, j0 such that M = |Ci0,j0| (ensuring that j0 is

not used before and i0 is index which is element of p).
9: p = [ p, j0 ].
10: Determine the vector p such that p ∪ p = {1, 2, . . . , n}.
11: else

12: T = 0
13: end if

14: end while
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We like to emphasize that in Algorithm 3.1.1, the indices û1, û2, . . . , ûŝ are

included in vector p in order to obtain a better approximation of the eigenfre-

quencies which are closest to the eigenfrequencies to be damped. Furthermore,

numerical experiments suggest that ŝ should be around 1− 4% of the dimen-

sion n.

Besides the indices determining the eigenfrequencies to be damped and their

closest neighbors, the algorithm chooses the indices to be included in the ap-

proximation (3.9) of the Lyapunov equation (3.6) by ensuring that all elements

of the matrix C to be omitted are smaller than the chosen tolerance tol. Note

that we use the term maxi,j |C(p(i), p(j))| < tol since our error bound will

be given in the absolute terms. On the other hand, one can use the relative

terms, such as |C(p(i), p(j))| < tol||C||∞, then error bound should be also in

the relative terms.

Once we obtain the vectors p and p we can introduce Algorithm 3.1.2 for

calculating the trace approximation.

Remark 3.1.1. Approximation of the trace of the Lyapunov equation cal-

culated with Algorithm 3.1.2 corresponds to the trace of the solution of the

Lyapunov equation which is obtained from the reduced system (3.5) using the

truncation matrix Q = Φ( : , p) where Φ is defined in (3.3) and p is calculated

with Algorithm 3.1.1.

Remark 3.1.2. Note that in our approximation algorithm we have assumed

that internal damping is defined as in (1.3-1.4) but this algorithm can be easily

extended to the proportional damping defined in (1.5) or to general case where

system is modally damped (Cu is diagonalized by matrix Φ). This is also the

case for the dimension reduction described in Chapter 2.

The question is: how accurate is Algorithm 3.1.2? The following section

provides an error bound for the approximation given by Algorithm 3.1.2.
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Algorithm 3.1.2 (Approximation of the trace of the solution of the Lyapunov
equation (3.2))

Input: α, Φ – such that ΦTKΦ = Ω2 = diag(ω2
1, . . . , ω

2
n) and ΦTMΦ = I;

vi, Ci, i = 1, . . . , k, – (Ci describes the geometry of the ith damper
position with viscosity vi);
p(1), p(2), . . . , p(s) – indices of the eigenfrequencies which have to be
damped;
ŝ – number of additional indices which are needed for Algorithm 3.1.1;
tol – tolerance needed for Algorithm 3.1.1.

Output: traceX(C)
1: Determine vectors p ∈ N

n−r and p ∈ N
r using Algorithm 3.1.1.

2: Ωr = diag(ωp(1), ωp(2), . . . , ωp(r))
3: C = ΦT (v1C1 + v2C2 + · · ·+ vkCk)Φ
4: Calculate X11, where

A11X11 +X11A
T
11 = −G̃G̃T , A11 = P T

[
0 Ωr

−Ωr −αΩr − C(p, p)

]
P,

G̃ =
[
I2s 0

]T
, P is the perfect shuffle permutation matrix.

5: traceX(C) ≈ traceX11.

3.2 Error bound

Consider the partitioned form of permuted Lyapunov equation (3.7):

[
A11 A12

AT
12 A22

][
X11 X12

XT
12 X22

]
+

[
X11 X12

XT
12 X22

][
AT

11 A12

AT
12 AT

22

]
= −ĜĜT , (3.11)

where

A =

[
A11 A12

AT
12 A22

]
, X =

[
X11 X12

XT
12 X22

]
. (3.12)

The matrix Ĝ has rank 2s and has the form Ĝ =
[
I2s 0

]T
, where s ≤ r

( r is the reduced dimension and according to our approximation algorithm

dim(A11) = 2r ≥ 2s).
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Equation (3.11) can be considered as the perturbed equation of

[
A11 0

0 A22

][
X̃11 X̃12

X̃T
12 X̃22

]
+

[
X̃11 X̃12

X̃T
12 X̃22

][
AT

11 0

0 AT
22

]
= −ĜĜT . (3.13)

For the sequel, we define

Ã =

[
A11 0

0 A22

]
, X̃ =

[
X̃11 X̃12

X̃T
12 X̃22

]
. (3.14)

Note that X̃12 = 0, X̃22 = 0 and X̃11 is the solution of the equation

A11X̃11 + X̃11A
T
11 = −G̃G̃T , (3.15)

where G̃ = Ĝ(1 : 2r, 1 : 2s). Observe that in Algorithm 3.1.2 we solve Equa-

tion (3.13) instead of (3.11), thus we are interested in the error bound for

| trace (X)− trace(X̃11)|
trace(X)

, (3.16)

where X is the solution of (3.11) and X̃11 is the solution of (3.15).

Our error bound will be based on the results from [18], where the authors

considered the Sylvester equation

AX −XB = C, (3.17)

perturbed such that

(A +∆A)(X +∆X)− (X +∆X)(B +∆B) = C +∆C.

As one can find in [18], the first order approximation for a change in a scalar

function g with respect to perturbations is given by

|g(X(0))− g(X(η))| ≈
∑

η

∣∣∣∣
dg

dη

∣∣∣∣|η|. (3.18)
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First we need to say that we consider X̃ as a perturbation of X =: X(0)

with respect to a parameter η and that we are merely interested in the scalar

function trace(X) rather than X itself.

The approximation (3.18) corresponds to a first order approximation using

Taylor expansion and the perturbation η determines the absolute change of

the corresponding elements of the solution X(0). When the perturbation η is

small (|η| ≤ ε, ∀η) we have

|g(X(0))− g(X(η))| / ε
∑

η

∣∣∣∣
dg

dη

∣∣∣∣. (3.19)

Let aij = (A)ij, bij = (B)ij, cij = (C)ij be the entries of A, B, C, respectively.

A bound for
∑

η | dgdη | from (3.19), which is independent of the perturbation η,

is given in [18, (33)] with

∑

η

∣∣∣∣
dg

dη

∣∣∣∣ ≤ trace(|Λ|T |C|) +
∑

i,j

∣∣∑

k

ajiλikxjk

∣∣+
∑

i,j

∣∣∑

k

bijλkjxki

∣∣

= trace(|Λ|T |C|) +
∑

i,j

|aji||(ΛX)ij|+
∑

i,j

|bij||(ΛX)ji|, (3.20)

where Λ is the solution of the Sylvester equation

ATΛ− ΛBT =
dg

dX
.

For the error bound (3.16), the scalar function g from (3.19) is g(X) = traceX.

Using that d trace(AX)
dX

= AT (see for example [23]) it yields that

dg

dX
=

d trace(X)

dX
= I.

Hence, in our case we have to calculate Λ from the equation

ÃTΛ + ΛÃ = I.
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As one can see from Equation (3.14), matrix Ã has block diagonal form, which

means that Λ is block diagonal matrix of the form

Λ =

[
Λ11 0

0 Λ22

]
, (3.21)

where the diagonal blocks of Λ are the solutions of the following Lyapunov

equations

AT
11Λ11 + Λ11A11 = I, (3.22)

AT
22Λ22 + Λ22A11 = I.

Further we will show that we can bound (3.16) using only Λ11.

From (3.19) and (3.20) with g(X) = trace(X) it follows that

| trace (X)− trace(X̃11)| /

/ ε

(
trace(|Λ|T |ĜĜT |) +

∑

i,j

|ãji||(ΛX̃)ij|+
∑

i,j

|ãji||(ΛX̃)ji|
)
, (3.23)

where ε satisfies |(A12)ij| ≤ ε, ∀i, j, (Ã)ij = ãij and X̃ are given in (3.14).

Note that the vector p from Algorithms 3.1.1 and 3.1.2 determines the per-

mutations such that the elements of A12 are small by absolute value (they are

smaller than tolerance tol), which means that ε will be small, too.

Now, we can state the following theorem.

Theorem 3.2.1. Let vectors p, p be determined by Algorithm 3.1.1. Let X

be the exact solution of (3.11) with approximation X11 computed by Algorithm

3.1.2, and let Λ11 be the solution of (3.22). For ε = maxi,j |C(p, p)|, if ε is

small enough it holds

| trace (X)− trace(X̃11)|
trace(X̃11)

/
ε

trace(X̃11)

(
trace(|Λ11|T |G̃G̃T |)

+
2r∑

i,j=1

|ãji||(Λ11X̃11)ij|+
2r∑

i,j=1

|ãji||(Λ11X̃11)ji|
)
, (3.24)
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where (A11)ij = ãij and A11 is determined by Algorithm 3.1.2.

Proof. The local first-order bound (3.24) is obtained directly from the local

first-order bound (3.23), using the block structure of Λ defined in (3.21) and

X̃ defined in (3.14).

Note that ε from the right-hand side of the above error bound, in the terms

of Algorithms 3.1.1 and 3.1.2, is equal to ε = maxi,j |C(p(i), p(j))|. Also, this
error bound now includes the structure of the right-hand side (Λ11 is multiplied

with the right hand side of the Lyapunov equation), and the structure of Ã.

Since
| trace (X)− trace(X̃11)|

trace(X)
≈ | trace (X)− trace(X̃11)|

trace(X̃11)
,

we will use the bound (3.24) as an estimate for the relative error given in

(3.16).

For calculating the upper error bound (3.24), we need to solve the Lyapunov

equations (3.15) and (3.22) which have dimension 2r×2r (the same matrix A11

determines the Lyapunov equation), which makes this bound easy to calculate.

3.3 An algorithm for the approximation of op-

timal viscosities

We will present an algorithm which calculates an approximation of the optimal

viscosities using Algorithm 3.1.2 and the error bound (3.24).

In the optimization process we do not check the error bound for each approx-

imation. When we determine a suboptimal viscosity we calculate the error

bound (3.24) and if the error is small enough we stop the optimization pro-

cess (then our suboptimal viscosities are expected to be close to the optimal

ones). On the other hand, if the error is too large we repeat the optimization
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process with a smaller tolerance, that is, we increase the reduced dimension

r.

In Algorithm 3.3.1 we present an algorithm for calculation of the optimal vis-

cosity at given dampers’ positions. Each time we start a new optimization pro-

cess for determination of the optimal viscosities in Step 4 of Algorithm 3.3.1,

thus in order to accelerate the optimization process, our algorithm should use

the information of suboptimal viscosities obtained in the previous step. This

means that if we optimize with the Nelder-Mead method in Step 4 of Al-

gorithm 3.3.1, first time we take some fixed starting viscosities v01, v
0
2, . . . , v

0
k,

then in every other step of the optimization process the starting values are the

suboptimal viscosities obtained from the previous step. In Algorithm 3.3.1,

the parameter u denotes the machine precision.

Remark 3.3.1. Note that the reduced dimension r changes during the vis-

cosity optimization. Because of that, in optimizing with Nelder-Mead algo-

rithm, we have noticed some technical details which can improve numerical

performance of our method. In order to improve convergence of our opti-

mization algorithm we do not need to recalculate vectors p and p each time

(in Step 1 of Algorithm 3.1.2), that is, in procedure of viscosity optimization

by Nelder-Mead algorithm if viscosities are changed for just small percentage

(e.g. smaller than 10%) we can use the same vectors p and p. Furthermore,

when the reduced dimension is changed during the optimization process, it is

good to ensure that all points in corresponding simplex, correspond to the same

reduced dimension.

3.4 Numerical experiments

In this section we will present examples which compare the new algorithm for

viscosity optimization using dimension reduction with the same optimization

method without dimension reduction. In these examples Lyapunov equa-

tions have been solved by the Bartels-Stewart Lyapunov solver implemented

in MATLAB function lyap.
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Algorithm 3.3.1 (Computing optimal viscosities at given dampers’ posi-
tions)

Input: α, κ ≥ 1;
Φ – such that ΦTKΦ = Ω2 = diag(ω2

1, . . . , ω
2
n) and ΦTMΦ = I;

p(1), p(2), . . . , p(s) – indices of eigenfrequencies which have to be damped;
ŝ – number of additional indices which are needed for Algorithm 3.1.1;
ε – the tolerance for the relative error bound (3.24);
tolstart – the starting tolerance for viscosity optimization;
c1 – a positive constant for scaling a tolerance (c1 < 1);
v01, v

0
2, . . . , v

0
k – starting viscosities for the optimization process;

d1, d2, . . . , dk – dampers’ position at which viscosity should be optimized.
Output: Optimal viscosities v̂1, . . . , v̂k
1: tol = tolstart
2: v̂1 = v01, v̂2 = v02 , . . . , v̂k = v0k
3: while tol > κ · u do

4: Calculate new suboptimal viscosities using an optimization algorithm
(e.g. Nelder-Mead), based on Algorithm 3.1.2 for calculation of the
traceX(v1, . . . , vk) with starting points v̂1, v̂2, . . . , v̂k and tolerance tol.

5: Calculate the right-hand side of the bounds (3.24) at suboptimal vis-
cosities v̂1, . . . , v̂k, and denote it by η.

6: if η < ε then

7: return optimal viscosities are v̂1, . . . , v̂k
8: break

9: else

10: tol = c1 · tol
11: end if

12: end while

Example 3.1. We will consider an n-mass oscillator or oscillator ladder with

two dampers, shown in Figure 3.1, which describes the mechanical system of n

masses and n+ 1 springs with stiffness being equal to k. Recall that, for such

a mechanical system the mathematical model is given by Mẍ +Dẋ+Kx = 0
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where for the mass and stiffness matrices we have that

M = diag(m1, m2, . . . , mn),

K = k ·




2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1

−1 2




.

The damping matrix is

D = Cu + Cext, where the internal damping Cu is defined as in (1.3).

Since we will consider two dampers of different viscosity, the external damping

is defined by Cext = v1eie
T
i + v2eje

T
j , where 1 ≤ i < j ≤ n.

We will consider the following configuration

n = 1600;

mi = 120− (i− 1)/5, i = 1, . . . , 100; (3.25)

mi = i, i = 101, . . . , n;

k = 4.

We would like to damp all the eigenfrequencies of the undamped system, which

are smaller than 0.005 by magnitude. Thus, for the above configuration, we

Figure 3.1: n-mass oscillator with two dampers
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obtain s = 34 (s determines the matrix G from (3.1)).

Recall that considered optimization process is extremely demanding, because

it requires solving the Lyapunov equation (3.2) numerous times (for more

details see Chapter 4). Thus, instead of performing optimization over all

dampers’ positions (which is described by Algorithm 4.1.1), we will compare

the new algorithm with the standard algorithm (optimization without dimen-

sion reduction) on the equidistant mesh of dampers’ positions

i = 51 : 50 : n, j = i+ 51 : 50 : n (3.26)

which will give 465 different dampers’ positions. Furthermore, for the purpose

of better illustration of obtained results, we will restrict our comparison on

the data which corresponds to the 99 smallest traces (sorted by magnitude).

We have used the following configuration in Algorithm 3.3.1 (the undamped

eigenfrequencies are sorted such that ω1 < ω2 < · · · < ωn):

αc = 0.001; κ = 104;

p(i) = i, i = 1, . . . , s; ŝ = 60;

ε = 0.1; tolstart = 0.002;

c1 = 0.5; v01 = v02 = 50.

For the viscosity optimization we have used the Nelder-Mead algorithm [40]

implemented in MATLAB function fminsearch. The termination tolerance

for the function value is 0.1 and the termination tolerance for the optimization

variable is set to 0.001. Note that these tolerances are absolute, thus they are

appropriate for our optimization since the function values is around 106 and

optimal viscosities vary from 10 to 1000.

With both algorithms (with and without dimension reduction) we obtain

the same optimal positions (with respect to the mesh given by configura-

tion (3.26)) and these are the positions (i, j) = (651, 1352) with the opti-

mal viscosities (v1, v2) = (107.03009, 150.49333) while the optimal trace is
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trace(X(v1, v2)) = 993 067.32851.

Figures 3.2-3.4 present comparisons between results obtained with the new al-

gorithm with dimension reduction and with the standard approach (algorithm

without dimension reduction). As we have mentioned above, we have plotted

the data which corresponds to the 99 smallest traces sorted by magnitude.

The first data point corresponds to the optimal position which is given above,

that is the position which corresponds to the smallest trace.

Figure 3.2 shows the relative errors for the optimal trace at the given dampers’

positions. The relative errors for the trace are calculated using | traceX −
trace X̃11|/ traceX, where traceX is the optimal trace for the given position

obtained with the algorithm without dimension reduction, and trace X̃11 is

the approximation of the optimal trace calculated by Algorithm 3.3.1.

Figure 3.2: Relative error for the trace

Figure 3.3 shows the relative errors for the optimal viscosities (first and second

viscosity). The relative error for ith viscosity (i = 1, 2) is calculated as |ṽopti −
vopti |/vopti , where ṽopti is the ith optimal viscosity obtained by Algorithm 3.3.1

and vopti is the ith exact optimal viscosity obtained by optimization without

dimension reduction.
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Figure 3.3: Relative errors for the optimal viscosities

Dimension of the reduced system varies in optimization procedure thus we

present time ratio for this example. In Figure 3.4 we compare the times

required by each of the algorithms. This figure shows the time ratio for cal-

culating the optimal viscosities at given dampers’ positions using the new

algorithm and using the algorithm without dimension reduction. Times were

calculated using an Intel(R) Core(TM) i7 CPU 920 with 12GB of RAM and

8 MB cache.

For example, at the optimal dampers’ positions, the algorithm without dimen-

sion reduction have needed 5.726 hours to calculate optimal viscosities while

the new algorithm have only needed 0.42 minutes on the same computer. This

means that the new algorithm is faster by a factor of 818. From Figure 3.4 we

can also see that there are numerous positions with similar time ratio which

in global give much shorter time for computation.

Following example illustrates similar performance of the dimension reduction

approach on the example with three rows of masses.
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Example 3.2. We will consider vibrational system which is described in Ex-

ample 2.1 (see Figure 2.2). Recall that the damping matrix is

D = Cu + Cext, where the internal damping Cu is defined as in (1.3).

Since we will consider two dampers of different viscosity we have that external

damping is defined by Cext = v1eie
T
i + v2eje

T
j , where 1 ≤ i < j ≤ n.

In Example 3.2 we will consider the following configuration:

d = 400, n = 3d+ 1 = 1201;

mi = i, i = 1, . . . , n;

k1 = 1, k2 = 20, k3 = 40, k4 = 50.

Similarly to the previous example we would like to damp all the eigenfrequen-

cies of the undamped system, which are smaller than 0.005 by magnitude.

For the above configuration this implies that s = 14, where s determines the

matrix G from Equation (3.1).

Figure 3.4: time ratio
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For the sake of comparison, instead of performing viscosity optimization in

all dampers’ positions, we will compare the new algorithm with the standard

algorithm on the equidistant mesh of dampers’ positions

i = 34 : 50 : n, j = i + 33 : 100 : n (3.27)

which will gives 144 different dampers’ positions. As in the previous example,

for the purpose of better illustration of obtained results we will restrict our

comparison on the data which corresponds to the 79 smallest traces (sorted

by magnitude).

We have used the following configuration in Algorithm 3.3.1 (the undamped

eigenfrequencies are sorted such that ω1 < ω2 < · · · < ωn):

αc = 0.002; κ = 104;

p(i) = i, i = 1, . . . , s; ŝ = 30;

ε = 0.1; tolstart = 0.005;

c1 = 0.5; v01 = v02 = 50.

Like in the previous example, viscosity was optimized with MATLAB function

fminsearch, with the same tolerances (0.1 is the termination tolerance for

function value and 0.001 for the optimization variable).

With both algorithms (with and without dimension reduction) we obtain the

same optimal position (at mesh given by (3.27)) and this is the position

(i, j) = (84, 517) with optimal viscosities (v1, v2) = (16.52987, 149.93077),

at this position optimal trace is trace(X(v1, v2)) = 706 752.97633.

Figures 3.5-3.7 present comparison between results obtained with the new

algorithm and the standard approach. In these figures we have plotted the

data which corresponds to the 79 smallest traces sorted by magnitude. The

first data point corresponds to the optimal position which is given above, these

positions correspond to the smallest trace.
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Relative errors for optimal trace at the given dampers’ positions are shown

in Figure 3.5. Similarly as in the previous example, the relative errors for

the trace are calculated using | traceX − trace X̃11|/ traceX, where traceX is

the optimal trace for the given position obtained with the algorithm without

dimension reduction, and trace X̃11 is the approximation of the optimal trace

calculated by Algorithm 3.3.1.

Figure 3.5: Relative error for the trace

Similarly, Figure 3.6 shows the relative errors for the first and the second

optimal viscosity. The relative error for ith viscosity (i = 1, 2) is calculated as

|ṽopti −vopti |/vopti , where ṽopti is the ith optimal viscosity obtained by Algorithm

3.3.1 and vopti is the ith exact optimal viscosity obtained by optimization

without dimension reduction.

Figure 3.7 shows the time ratio for calculating the optimal viscosities at given

dampers’ positions using the new algorithm and using the algorithm without

dimension reduction. Times were calculated using an Intel(R) Core(TM)2

Duo CPU E7300, 2.00 GB of RAM.

For example, at the optimal dampers’ positions, the algorithm without dimen-

sion reduction have needed 3.809 hours to calculate optimal viscosities while
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the new algorithm is faster by a factor of 709.33. From Figure 3.7 we can see

that there are numerous positions with similar time ratio which in global give

much shorter time for computation.

Remark 3.4.1. From the above numerical examples, we can conclude that in

the case of damping of the selected eigenfrequencies (see Figures 3.4 and 3.7),

the time ratio is much better than in the case of damping of all eigenfrequencies

(see Figure 2.5). We have expected this effect, because of the small rank of the

right-hand side of the Lyapunov equation (3.2), which has strong influence on

the solution of the corresponding Lyapunov equation. Note that, the decay in

the magnitude, of the diagonal elements of our solution of the corresponding

Lyapunov equation, is much stronger if the right-hand side of the Lyapunov

equation has small rank.

Figure 3.6: Relative errors for the optimal viscosities
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3.5 Conclusions

Damping optimization in a mechanical vibrating system is a very demanding

problem due to the numerous Lyapunov equations which have to be solved.

In this chapter, we have considered the case when just a certain part of the

spectrum has to be damped (the critical part). In this case, the right-hand side

of the considered Lyapunov equation has a small rank, thus we propose a new

algorithm for dimension reduction which uses this property and also exploits

the structure of the system. An error bound obtained from perturbation

theory is employed to determine which part of the matrix can be neglected

in order to have a good approximation of the trace by solving a Lyapunov

equation of much smaller size. Numerical experiments confirm the efficiency

of the new algorithm for viscosity optimization, which considerably accelerates

the optimization process, while ensuring that we still find the optima within

the limit of tolerance.

Figure 3.7: time ratio





Chapter 4

Determination of the optimal

dampers’ positions

Throughout this thesis we try to determine optimal damping. In this chapter

we will present results on determination of optimal damping which includes

optimal dampers’ positions as well as corresponding viscosities.

Let the external damping is given by

Cext = v1ei1e
T
i1 + v2ei2e

T
i2 + · · ·+ vkeike

T
ik

(4.1)

where ij, j = 1, . . . , k corresponds with dampers’ positions with viscosities

vj, j = 1, . . . , k. It yields directly from Equation (4.1) that it is sufficient

to find optimal positions such that 1 ≤ i1 < i2 < . . . < ik ≤ n. Since we

are interested in determination of the optimal dampers’ positions and viscosi-

ties, we will use a new notation for the traceX which is now the function

of dampers’ positions (i1, . . . , ik) and corresponding viscosities (v1, . . . , vk).

Thus, let X(C(v1, . . . , vk; i1, . . . , ik)) be the solution of the Lyapunov equa-

tion

AX(C(v1, . . . , vk; i1, . . . , ik)) +X(C(v1, . . . , vk; i1, . . . , ik))A
T = −Z, (4.2)

67
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where (i1, . . . , ik) are dampers’ positions and (v1, . . . , vk) corresponding vis-

cosities. Similarly to previous chapters, the matrix Z determines which part

of the undamped eigenfrequencies has to be damped. Matrix A is equal to

A =

[
0 Ω

−Ω −αΦTCcritΦ− C(v1, . . . , vk; i1, . . . , ik)

]
, (4.3)

where

C(v1, . . . , vk; i1, . . . , ik) = ΦTCextΦ = ΦT (v1ei1e
T
i1
+ v2ei2e

T
i2
+ · · ·+ vkeike

T
ik
)Φ

(4.4)

and Φ is the matrix which simultaneously diagonalizes the pair (M,K).

For a given mass matrix M , stiffness matrix K, internal damping Cu and k

dampers, we are interested in determination of the optimal positions and cor-

responding viscosities such that the total energy of the system is minimal. In

this chapter by total energy we imply the total energy used in criterion (1.14).

Recall that total energy is obtained in the Introduction with described averag-

ing. In terms of new notations, the total energy for given viscosities (v1, . . . , vk)

and dampers’ positions (i1, . . . , ik) is equal to traceX(C(v1, . . . , vk; i1, . . . , ik))

obtained as the trace of the solution of the Lyapunov equation (4.2).

Then, the optimal viscosities and dampers’ positions are given by

(vopt1 , . . . , voptk ; iopt1 , . . . , ioptk ) = argmin
1≤i1<i2<...<ik≤n

(i1,...,ik)∈Nk

(v1,...,vk)∈Rk+

traceX(C(v1, . . . , vk; i1, . . . , ik)).

If we consider k different dampers with the same viscosity, then for external

damping we have Cext = v(ei1e
T
i1+ei2e

T
i2+· · ·+eike

T
ik
), and let the corresponding

solution of the Lyapunov equation be X(C(v; i1, . . . , ik)).

In the next section we will present main difficulties in the process of damping

optimization.
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4.1 Optimization of dampers’ positions

This section will be mainly devoted to the calculation of the optimal dampers’

positions. The problem of determining optimal damping is extremely de-

manding, because numerous Lyapunov equations have to be solved. We will

illustrate the complexity of damping optimization on an n-mass oscillator pre-

sented in Example 1.1 with n masses, n + 1 springs (see Figure 1.2) and two

dampers of the same viscosity. The optimization problem includes determina-

tion of the optimal positions i, j and viscosity v, such that trace(X(C(v; i, j))

is minimal. Recall that external damping is given by:

Cext = veie
T
i + veje

T
j , 1 ≤ i < j ≤ n. (4.5)

This damping optimization with 2 dampers of the same viscosity leads to

the problem of discrete optimization over n(n− 1)/2 different positions. One

approach to determination of optimal dampers’ positions is the ”Direct” ap-

proach, which includes viscosity optimization for all positions for the configu-

ration (4.5), then the optimal positions are these positions which correspond

to minimal traceX. Thus, if we use the ”Direct” approach, then for each

configuration of dampers’ positions we have to calculate optimal viscosity and

for this we need to solve Lyapunov equations of dimension 2n× 2n around 15

times (for the dampers of the same viscosity). This means that for external

damping defined in (4.5), for example if n = 1000, we have to solve more than

7 million Lyapunov equations with matrices of dimension 2000.

On the other hand, for systems with larger dimensions, even solving Lyapunov

equations with direct solvers (such as Bartels-Stewart algorithm) becomes very

demanding. This can be accelerated with algorithms based on iterative solvers

like ADI methods (for example see [8; 53; 60]). Still there is a large number

of Lyapunov equations which have to be solved, and this makes optimization

very demanding.

Generally, the ”Direct” approach for determination of the optimal dampers’

positions and corresponding viscosities is given in Algorithm 4.1.1.
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Algorithm 4.1.1 ( ”Direct” approach for determination of optimal damping)

1: for i1 = 1 : n do

2: for i2 = i1 + 1 : n do

3: · · ·
4: for ik = ik−1 + 1 : n do

5: calculate optimal viscosities
(vopt1 , . . . , voptk ) = argmin

(v1,...,vk)∈Rk
+

traceX(C(v1, . . . , vk; i1, . . . , ik))

6: calculate traceX(C(vopt1 , . . . , voptk ; i1, . . . , ik))
7: end for

8: · · ·
9: end for

10: end for

11: Optimal positions iopt1 , . . . , ioptk are the positions that correspond to the
minimal value calculated in Step 6 (corresponding viscosities are the op-
timal ones).

As described above, efficient determination of optimal damping is very de-

manding due to numerous Lyapunov equations which have to be solved. Fur-

thermore, this problem is demanding since our penalty function, which has to

be minimized, has many local minima. In order to illustrate difficulties, which

arise in the optimization process, we will consider the following example.

Example 4.1. Consider the n-mass oscillator from Example 1.1 with the

following configuration:

n = 400;

mi = 500 +
5

2
(101− i), for i = 1, . . . , 100;

mi = 5 · i, for i = 101, . . . , n; (4.6)

ki = 8, ∀i;
D = 0.001 · Ccrit + Cext, where Ccrit is given by (1.3);

Cext = veie
T
i + veje

T
j , 1 ≤ i < j ≤ n.

In this example our aim is to damp all undamped eigenfrequencies, thus s = n.
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In Figure 4.1 and 4.2 we have presented the function

(i, j) 7→ min
v

trace(X(C(v; i, j)))

for i, j such that 1 ≤ i < j ≤ n. Matrix X(C(v; i, j)) is defined in Equation

(4.2) and the trace of the matrix X(C(v; i, j)) represents the total energy of

the system at the optimal viscosity for the position (i, j). Figure 4.1 shows

a surface plot where the first damper’s position i is represented on the x-

axis, the second damper’s position j is represented on the y-axis while z-axis

represents the value of the plotted function. Contour plot of the same function

is presented in Figure 4.2. From these figures it can be seen that our penalty

function has many local minima (where some of them are very close).

In Figure 4.2 the black circle represents the optimal position obtained by the

”Direct” approach described in Algorithm 4.1.1. This corresponds to the posi-

tion (i, j) = (115, 280) with corresponding optimal viscosity 144.93268, which

yields to the trace of the Lyapunov equation trace(X(C(144.93268; 115, 280)) =

1 995 235.75057. It is important to note that if we sort the minimal total en-

ergies (at given dampers’ positions), by the magnitude, we will see that 36

of them are close to the optimal one since the relative error (with respect

to optimal) is less then 0.005. These 36 positions are plotted in Figure 4.2

using a blue dots. Optimal viscosity at each position was calculated using the

MATLAB function fminbnd with termination tolerances for the viscosity and

for the function values equal to 10−4 (this will give relative error which is less

than 10−10). Note that for Algorithm 4.1.1 we have needed to solve 1 195 278

Lyapunov equations.

In the next section we will show that for some cases, even with the ”Direct”

approach, we can efficiently determine optimal damping.
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Figure 4.1: Surface plot of the function (i, j) 7→ min
v

trace(X(C(v; i, j)))

4.1.1 Determination of optimal damping for a

one-dimensional case

In this section we will consider the case of damping where the trace of the

Lyapunov equation is given by a formula, thus viscosity optimization can

be performed very efficiently. We are interested in optimal damping of a

system without internal damping (Cu = 0) and with one damper that yields

to a damping matrix D which is the rank 1 matrix (thus we call it a one-

dimensional case). Then in Algorithm 4.1.1 we have to find an optimal position

i which requires n viscosity optimizations that have to be calculated in Step

5 of Algorithm 4.1.1.

This can be done very efficiently by using the formula for the trace of the

corresponding Lyapunov equation, for more details see [14; 57]. Then the

optimal viscosity can be calculated with a simple formula

trace(X(v)) = c +
a

v
+ bv (4.7)
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Figure 4.2: Contour plot of the function (i, j) 7→ min
v

trace(X(C(v; i, j)))

where v is viscosity which has to be optimized, X(v) is the corresponding

Lyapunov solution and a, b > 0 and c are constants depending on M,K only.

Now, the optimal viscosity vopt is given by

vopt =

√
a

b
. (4.8)

If we damp all undamped eigenfrequencies, with internal damping being equal

to zero, for the above mentioned parameters a, b and c from [14, Lema 4.3] it
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yields

a =

n∑

i=1

2

c2i
, c = 0,

b =
n∑

i=1

n∑

j=1
j 6=i

3ω2
i c

2
j + c2iω

2
i

(ω2
i − ω2

j )
2

+
n∑

i=1

2ω2
i

c2i

( n∑

k=1
k 6=i

c2k
ω2
k − ω2

i

)2

+

n∑

i=1

c2i
2ω2

i

+

n∑

i=1

n∑

j=1
j 6=i

ω2
j (c

2
j + c2i )

(ω2
i − ω2

j )
2
.

From the above, we can conclude that optimization in Step 5 of Algorithm

4.1.1 can be calculated very efficiently. This makes even the ”Direct” approach

applicable for moderate dimensions (where dimension n is few thousands and

a simultaneous diagonalization of a pair (M,K) can be performed).

Example 4.2. We will illustrate optimization using a formula and the ”Di-

rect” approach to an n-mass oscillator introduced in Example 3.1 (the system

is given in Figure 3.1). We will use the same configuration for masses and

stiffnesses given in (3.25). Our aim is to apply results from [57], thus we

take internal damping to be zero (Cu = 0). Furthermore, we have one damper

giving that the damping matrix is defined with D = veie
T
i . In this example,

we will damp all the undamped eigenfrequencies which means that the matrix

Z from Equation (4.2) is equal to identity.

We will use Algorithm 4.1.1 for determination of optimal viscosity and damp-

er’s position. In Step 5 and 6 we use formula (4.8) for calculation of optimal

viscosity vopt and the corresponding trace is given by Equation (4.7). Using

this algorithm we will obtain that the optimal viscosity is equal to 335.39265

and the optimal damper’s position is equal to 90. The trace of the Lyapunov

equation for optimal damping is equal to 1.24291 · 109. Instead of using Al-

gorithm 4.1.1, we can accelerate the optimization process using heuristic that

will be presented in the next section.

One generalization of the optimization problem with two dampers of the same

viscosity will be considered in Section 4.6, where we will give a similar, but



Chapter 4 Determination of the optimal dampers’ positions 75

much more complicated formula for the trace of the Lyapunov equation. This

formula is not explicit, as in a one-dimensional case described above, since an

additional linear system has to be solved for each calculation of the trace of

the Lyapunov equation. In the case of two dampers’ positions, the number of

different positions is larger and then the ”Direct” approach can be accelerated

with a heuristic which will be introduced in the following section.

Since generally the ”Direct” approach is computationally very demanding,

we will propose approaches where some of them rely on heuristics that effi-

ciently calculate the approximation of optimal damping. The first one is the

”Multigrid-like” approach which is introduced in the next section.

4.2 The ”Multigrid-like” optimization

approach

In this section we will present the ”Multigrid-like” heuristic for the determi-

nation of the optimal dampers’ positions. One version of this algorithm is also

given in [51].

The basic idea of the ”Multigrid-like” approach is that we first calculate op-

timal viscosities for some grid of the dampers’ positions, that is sparsely dis-

tributed over the set of admissible dampers’ positions. Then, around the best

positions we refine the grid and continue searching for the optimal positions.

Before we describe our ideas in detail we will introduce some notations. Let

d1 be the step that determines how fine the first grid will be (the first grid is

defined in Steps 1 to 4 of Algorithm 4.2.1). Similarly, let d2 be the parameter

which determines the second grid (the second grid is defined in Steps 12 to 15

of Algorithm 4.2.1). The ”Multigrid-like” approach is presented in Algorithm

4.2.1.

In Algorithm 4.2.1, in Steps 12 to 15, we have min and max terms in order to

ensure that 1 ≤ i1 < i2 ≤ n.
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Algorithm 4.2.1 (”Multigrid like” approach for determination of optimal
damping)

Input: d1, d2 – parameters that determine the first and the second grid;
Output: Optimal dampers’ positions iopt1 , . . . , ioptk and optimal viscosities

vopt1 , . . . , voptk .
1: for i1 = 1 + d2 : d1 : n do

2: for i2 = i1 + d2 : d1 : n do

3: · · ·
4: for in = ik−1 + d2 : d1 : n do

5: calculate optimal viscosities
(vopt1 , . . . , voptk ) = argmin

(v1,...,vk)∈Rk
+

traceX(C(v1, . . . , vk; i1, . . . , ik))

6: calculate traceX(C(vopt1 , . . . , voptk ; i1, . . . , ik))
7: end for

8: · · ·
9: end for

10: end for

11: Denote positions that correspond to the minimal value calculated in Step
6 with (̂i1, . . . , îk).

12: for i1 = max{̂i1 − d2, 1} : min{̂i1 + d2,n} do

13: for i2 = max{̂i2 − d2, i1 + 1} : min{̂i2 + d2, n} do

14: · · ·
15: for ik = max{̂ik−1 − d2, ik−1 + 1} : min{̂ik−1 + d2, n} do

16: calculate optimal viscosities
(vopt1 , . . . , voptk ) = argmin

(v1,...,vk)∈Rk
+

traceX(C(v1, . . . , vk; i1, . . . , ik))

17: calculate traceX(C(vopt1 , . . . , voptk ; i1, . . . , ik))
18: end for

19: · · ·
20: end for

21: end for

22: Optimal positions iopt1 , . . . , ioptk are the positions that correspond to the
minimal value calculated in Step 17 (corresponding viscosities are the
optimal ones).
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Remark 4.2.1. Optimal parameters d1 and d2 should be determined in order

to reduce the number of equations which have to be solved. For the sake of

determination of optimal parameters d1 and d2, we suppose the following:

• at given damper positions we have a constant number of evaluations in

order to determine optimal viscosity (usually this number does not vary

too much);

• we take that d2 = bpd · d1c, where pd is a ratio that determines d2 in

terms of d1, for example pd =
2
3
;

• suppose that (̂i1, . . . , îk) is not too close to the edge of the area where

optimization is performed. This assumption is in order to estimate the

number of evaluations needed for generating the second mesh.

Now, for a given number of masses n, a number of dampers k and pd, we

can determine d1 such that a number of function evaluations is minimal. For

configuration (4.6), this will give that d1 = 13 and d2 = 8.

Example 4.3. In order to show the advantage of the ”Multigrid-like” opti-

mization approach we will compare this method with the approach that uses

the ”Direct” approach defined in Algorithm 4.1.1. For that purpose we will

again consider Example 4.1.

Using Remark 4.2.1, for pd = 2/3 we will obtain that d1 = 13 and d2 = 8.

At given dampers’ positions optimal viscosity was calculated using the MAT-

LAB function fminbnd with termination tolerances for viscosity and for func-

tion values equal to 10−4. With the ”Multigrid-like” optimization approach we

needed 11284 of function evaluations, which is less than 1% of the total number

of evaluations needed in the ”Direct” approach. An optimal position using the

Multigrid-like optimization approach is equal to (101, 299) and that is not so

close to the optimal one. However, this is the one of the local minima whose

total energy is close to the optimal total energy, that is, the relative error for

the corresponding trace is equal to 0.001894. Moreover, if we sort local min-

ima by magnitude of the total energy, then, this optimal position corresponds
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to the 4th smallest energy. Note that the total number of positions is equal to

79800.

In Figure 4.3 we have illustrated optimal values and grids generated during

the optimization process. More precisely, the optimal position calculated by

Algorithm 4.1.1 was denoted by a black circle, points of the grid generated in

Steps 1 to 4 of Algorithm 4.2.1 were plotted using green ×-es, points of the

grid generated in Steps 12 to 15 of Algorithm 4.2.1 were plotted using blue

dots and the optimal position calculated with Algorithm 4.2.1 was denoted by

a black star.

The ”Multigrid-like” approach can also be used in the case of one-dimensional

damping, which was considered in the previous section. In Example 4.2, we

have shown that optimal damping can determined by the ”Direct” approach

where viscosity was optimized by the formula (4.7). Now, we can additionally

accelerate the optimization process with the ”Multigrid-like” approach.

For the purpose of illustration we will consider Example 4.2. For determina-

tion of optimal damping we will use Algorithm 4.2.1 where in Steps 5 and

16 we will calculate optimal viscosity with formula (4.7). Similarly to the

above, using Remark 4.2.1 for pd = 2/3, we will obtain that d1 = 34 and

d2 = 22. Now, with this approach we will obtain that optimal damper’s po-

sition is equal to 90 with the corresponding viscosity 335.39265. Note that

the optimal parameters are the same as the ones obtained using the ”Direct”

approach. Recall that with the ”Direct” approach we needed to optimize vis-

cosity for 1600 damper’s positions, while with the ”Multigrid-like” approach

we needed to optimize viscosity for just 92 damper’s positions. Thus, we have

additionally accelerated the optimization process and we have obtained the

same optimal damping.

Note that for the Lyapunov equations of a bigger dimension, we use optimal

parameters d1 and d2 (see Remark 4.2.1) in Algorithm 4.2.1, but the number
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Figure 4.3: Contour plot of the function (i, j) 7→ min
v

trace(X(C(v; i, j)))

and data from the ”Multigrid-like” approach

of Lyapunov equations which have to be solved can be large. Thus in the

next section we propose another heuristic approach which will also have a

good performance on numerical examples. Furthermore, with this approach

we can additionally reduce the number of Lyapunov equations which have to

be solved.
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4.3 The ”Discrete to continuous” optimiza-

tion approach

The ”discrete to continuous” heuristical approach relies on the optimization of

the function of real variables. First we will define an additional function which

will be used in the optimization procedure. We want to determine optimal

damping for k dampers with different viscosities. Thus, for D ⊂ R2k we define

a function f : D → R with

f(v1, . . . , vk; i1, . . . , ik) = trace(X(C(v1, . . . , vk; [i1], . . . , [ik]))), (4.9)

where [ · ] stands for the rounding (we have used MATLAB function round)

and the matrix X(C(v1, . . . , vk; [i1], . . . , [ik])) is the solution of the Lyapunov

equation (4.2). Here ik is considered as a continuous variable and dampers’ po-

sitions [i1], [i2], . . . , [ik] with corresponding viscosities v1, v2, . . . , vk determine

C.

Now, we reduce our optimization problem to minimization of the function

(4.9). Thus, for minimization of this function we can use standard methods

like Nelder-Mead or, for example, Newton like methods. When we determine

the minimum of the function (4.9) we will denote the point where the mini-

mum is achieved with (v̂1, v̂2, . . . , v̂k; î1, î2, . . . , îk). Then optimal positions are

[̂i1], [̂i2], . . . , [̂ik] with corresponding optimal viscosities equal to v̂1, v̂2, . . . , v̂k.

Apart from the above mentioned minimization procedure like the Nelder-Mead

method (implemented in the MATLAB function fminsearch) or the Newton-

like methods (implemented in the MATLAB function fmincon or fminunc),

one can also use a genetic algorithm (implemented in the MATLAB function

ga). In the optimization process we will use the Nelder-Mead method which

is much more robust than the other mentioned methods for our minimization

problem. A further question in minimization with a Nelder-Mead method are

starting points and for that we will define a grid of starting points for dampers’

positions, which will correspond to starting points generated in Steps 1 to 4
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of Algorithm 4.3.1. Some fixed points v̂s1, v̂
s
2, . . . , v̂

s
k will be taken for starting

viscosities.

First, we have to define parameters d3 and d4 which determine the grid of

starting points (is1, . . . , i
s
k).

Algorithm 4.3.1 (”Discrete to continuous” approach for determination of
optimal positions)

Input: d3, d4 – parameters which determine the first and the second grid;
Output: Optimal dampers’ positions iopt1 , . . . , ioptk and optimal viscosities

vopt1 , . . . , voptk .
1: for is1 = 1 + d4 : d3 : n− d4 do

2: for is2 = is1 + d4 : d3 : n− d4 do

3: · · ·
4: for isk = isk−1 + d4 : d3 : n− d4 do

5: Using starting points (vs1, . . . , v
s
k; i

s
1, . . . , i

s
k)

calculate (for example with Nelder-Mead)
min

(v1,...,vk)∈Rk+
1≤i1<i2<...<ik≤n

(i1,...,ik)∈Nk

f(v1, . . . , vk; i1, . . . , ik).

6: end for

7: · · ·
8: end for

9: end for

10: Parameters which correspond to the minimal value calculated in Step 5
determine optimal parameters (vopt1 , . . . , voptk ; iopt1 , . . . , ioptk ), where ioptj =
[ij], j = 1, . . . , k.

As can be seen from Algorithm 4.3.1, the parameter d3 determines the differ-

ence between points inside the region where optimal position is to be found,

while the parameter d4 defines the distance to the edge of the region where

the optimal position is to be found.

Example 4.4. In this example we will present performance of the ”Discrete

to continuous” optimization approach on Example 4.1. First, we will compare

this method with the ”Direct” approach defined in Algorithm 4.1.1 and then

with the ”Multigrid-like” optimization approach defined in the previous section.
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In Algorithm 4.1.1 we have used following configuration:

d3 = 40;

d4 = 20;

vs = 100.

For the minimization in Step 5 of Algorithm 4.3.1 we have used MATLAB’s

function fminsearch with termination tolerances for variables and for func-

tion values equal to 10−4. With the ”Discrete to continuous” optimization

approach we needed 11921 function evaluations, which is slightly less than 1%

of the number of evaluations needed in the ”Direct” approach. Compared to

the ”Multigrid-like” optimization approach, the number of function evaluations

has a relatively similar order of magnitude. The optimal position here is equal

to (118, 281) and this is also one of the local minima whose total energy is

close to the optimal one, that is, the relative error is equal to 0.0037584. If we

sort local minima by magnitude of the total energy, then this optimal position

corresponds to the 15th position which is a good approximation, since the total

number of positions is equal to 79800.

In Figure 4.4 we have illustrated optimal values and a grid generated during

the optimization process. All this is plotted on the contour plot given in

Figure 4.2. The optimal position calculated with Algorithm 4.1.1 was denoted

by a black circle, the grid of the starting points generated in Steps 1 to 4

of Algorithm 4.2.1 was plotted using blue pluses, and the optimal position

calculated with Algorithm 4.3.1 was denoted by a blue triangle.

Remark 4.3.1. Nelder-Mead [40] is an unconstrained multidimensional opti-

mization method. In numerical experiments the optimization procedure could

require an evaluation at the points that are not in domain (for example, vis-

cosity becomes negative). Thus, at points that are outside domain (where opti-

mization is performed) in our optimization procedure we have set the function

value to some constant large enough. With this, our optimization procedure
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will always return a minimum which is inside the domain of our function that

has to be minimized.
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Figure 4.4: Contour plot of the function (i, j) 7→ min
v

trace(X(C(v; i, j)))

and data from the ”Discrete to continuous” approach
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4.4 Damping optimization based on dimen-

sion reduction and continuous minimiza-

tion

In previous sections we have introduced approaches which optimize dampers’

positions using heuristic approaches which can be applied to moderate or large

dimensions. However, for large systems even solving the corresponding Lya-

punov equation is demanding for itself. Thus, in this section we propose a

new heuristic which will combine approximation algorithms with dimension

reduction techniques and heuristical approaches introduced in previous sec-

tions. In the case where we damp all undamped eigenfrequencies we will use

approximation algorithms introduced in Chapter 2. Contrary to this, in the

case when we damp the selected part of undamped eigenfrequencies we will

use algorithms derived in Chapter 3.

We will compare an approach that uses the ”Multigrid-like” optimization ap-

proach described in Section 4.2 with the ”Discrete to continuous” approach

described in Section 4.3.

An algorithm that uses the ”Multigrid-like” optimization approach can be

applied directly, that is, we can apply Algorithm 4.2.1 where in Steps 5 and 16

we calculate the minimum using the corresponding algorithm with dimension

reduction. In the case of damping all undamped eigenfrequencies, we will use

Algorithm 2.4.1 and in the case of damping of selected eigenfrequencies, we

will use Algorithm 3.3.1.

An algorithm that relies on the ”Discrete to continuous” approach has to be

modified. In the minimization process we cannot directly apply the exist-

ing algorithm that uses a dimension reduction, since these algorithms opti-

mize viscosities at given damping positions, while in the ”Discrete to continu-

ous” approach we change damping positions during the optimization process.

This modification includes checking of the corresponding error bound at each

step of the optimization procedure. More precisely, for the approximation
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of f(v1, . . . , vk; i1, . . . , ik) given in Equation (4.9), we have two cases which

depend on the eigenfrequencies which have to be damped.

If we damp all eigenfrequencies, in Step 5 of Algorithm 4.3.1 we need to calcu-

late an approximation of the function f(v1, . . . , vk; i1, . . . , ik) with given toler-

ances ε1, ε2. This approximation is given in Algorithm 4.4.1. In the following

two algorithms parameter u represents machine precision. For the purpose of

simplification, on the input we give just parameters that are essential for the

corresponding algorithm.

Algorithm 4.4.1 (Approximation of the function f(v1, . . . , vk; i1, . . . , ik))

Input: κ ≥ 1;
ε1, ε2 – tolerances for bounding the approximation error;
c1 – a positive constant for scaling a tolerance (c1 < 1);

Output: fapprox – approximation of the function f(v1, . . . , vk; i1, . . . , ik).
1: tol = tolstart
2: while tol > 104u do

3: Calculate approximation of the function f(v1, . . . , vk; i1, . . . , ik) with Al-
gorithm 2.2.1 using tolerance tol, and denote the approximation by
fapprox.

4: Calculate the right-hand sides of bounds (2.31) and (2.32) for the ap-
proximation and denote them by b1 and b2, resp.

5: if b1 < ε1 and b2 < ε2 then

6: return fapprox
7: break

8: else

9: tol = c1 · tol
10: end if

11: end while

Similarly, in the case of damping selected eigenfrequencies, in Step 5 of Algo-

rithm 4.3.1, we need to calculate an approximation of the function

f(v1, . . . , vk; i1, . . . , ik). Algorithm 4.4.2 gives an approximation with a given

tolerance ε.

Note that, in Step 5 of Algorithm 4.3.1, if we minimize our penalty function

for example with Nelder-Mead method, using Remark 3.3.1 we can also we

improve the optimization process.
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Algorithm 4.4.2 (Approximation of the function f(v1, . . . , vk; i1, . . . , ik))

Input: κ ≥ 1;
tolstart – tolerance for the first approximation;
ε – tolerance for bounding the approximation error;
c1 – a positive constant for scaling a tolerance (c1 < 1);

Output: fapprox – approximation of the function f(v1, . . . , vk; i1, . . . , ik).
1: tol = tolstart
2: while tol > 104u do

3: Calculate an approximation of a function f(v1, . . . , vk; i1, . . . , ik) with
Algorithm 3.1.2 using tolerance tol, and denote the approximation by
fapprox.

4: Calculate the right-hand side of the bound (3.24) and denote it by b1
5: if b1 < ε then

6: return fapprox
7: break

8: else

9: tol = c1 · tol
10: end if

11: end while

In the following example we will show performance of damping optimization

using approximation algorithms and heuristical approaches.

Example 4.5. We will compare two previously described approaches on Ex-

ample 3.1 with configuration (3.25). We will damp the same eigenfrequencies

as in Example 3.1, thus s = 34, which means that we try to damp 34 smallest

undamped eigenfrequencies.

First, we will present results obtained with the ”Discrete to continuous” ap-

proach presented in Algorithm 4.3.1, but in Step 5 we will use the approxima-

tion of the function given by Algorithm 4.4.2.

In Algorithm 4.3.1 we will use the following configuration:

d3 = 160;

d4 = 80;

vs1 = vs2 = 50.
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Since we consider damping of selected undamped eigenfrequencies, we will use

the approximation algorithm defined in Algorithm 4.4.2. In Algorithm 4.4.2

we will use the following configuration:

tolstart = 0.02;

ε = 0.05;

c1 = 0.5.

Parameters d3 and d4 give the grid with 45 different points in Algorithm

4.3.1. The function was minimized with MATLAB’s function fminsearch and

for a termination tolerance for the function value we have taken 0.1, which

determines an absolute error, thus the relative error has magnitude O(10−7).

The termination tolerance for the optimization variable is set to 0.01 (this also

determines the absolute error). We have obtained that the optimal dampers’

positions are equal to (730, 1274) with the optimal viscosities are equal to

(120.47387, 120.38917). For these parameters the value of our penalty function

equals 987 258.34332. (This value was calculated using an algorithm without

dimension reduction.)

For the sake of comparison of our two heuristics, now we will calculate op-

timal damping using the ”Multigrid like” approach presented in Algorithm

4.2.1. In Steps 5 and 16 we will calculate the minimum using an algorithm

with dimension reduction. Since in this example we will damp selected un-

damped eigenfrequencies, for the approximation we will use Algorithm 3.3.1.

In Algorithm 3.3.1 we will use the following configuration:

αc = 0.001; κ = 104;

p(i) = i, i = 1, . . . , s; ŝ = 60;

ε = 0.1; tolstart = 0.002;

c1 = 0.5; v01 = v02 = 50.
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Viscosities were optimized by a function fminsearch. For the termination tol-

erance for the function value we have taken 0.1, and for the termination toler-

ance on viscosity we have used 0.001. Recall that these tolerances correspond

to absolute error. We have obtained that optimal dampers’ positions are equal

to (777, 1273) with optimal viscosities equal to (105.0941, 139.88212). For

these parameters, the value of our penalty function is equal to 981 799.98217

(this value was calculated using an algorithm without dimension reduction).

Note that with the ”Multigrid-like” approach we have obtained better optimal

damping (the trace of the corresponding Lyapunov equation is smaller) and

relative errors at the value of our penalty function is equal to 0.0055288.

Now, we are interested in the time ratio between these two approaches (the

”Multigrid-like” and the ”Discrete to continuous” approach with dimension re-

duction) and between ”Multigrid-like” approach without dimension reduction.

Due to the complexity, we will just estimate the time needed for calculation of

the optimal damping with the ”Multigrid-like” approach without dimension

reduction. For that purpose we can use results obtained in Example 3.1. In

Example 3.1 for one viscosity optimization we needed 5.40589 hours on aver-

age. If we apply the ”Multigrid-like” approach without dimension reduction,

we estimate that we would need to calculate optimal viscosity at 19974 dif-

ferent dampers’ positions, meaning that we would than 12 years (to complete

the optimization process). If we wanted to perform the ”Direct” approach

described in Algorithm 4.1.1 without dimension reduction, the time needed

for the calculation of optimal damping would be much longer.

On the other hand, for calculating the approximation of optimal damping

with Algorithm 4.3.1 with dimension reduction (using Algorithm 4.4.2) we

would need 0.532 days, while with Algorithm 4.2.1 with dimension reduction

we would need 11.8782 days. Although the algorithm using the ”Discrete to

continuous” approach was faster, we can conclude that both approaches with

dimension reduction are considerably faster than approaches that work with-

out dimension reduction. Thus with algorithms 4.2.1 or 4.4.2 with dimension

reduction techniques we have significantly accelerated the time needed for the

calculation of the approximation of optimal damping. The obtained results
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with corresponding times were calculated using an Intel(R) Core(TM) i7 CPU

920 with 12GB of RAM and 8 MB cache.

4.5 Area with the optimal dampers’ positions

In this section we will present an algorithm for the efficient determination of

the area where the optimal dampers are located. Since this method relies

on the new theoretical bound, this method is not a heuristical approach as

were the approaches presented in the two preceding sections. Determination

of this area is possible in a system with a special structure. Using a similar

approach that was used for derivation of the error bound (3.24), we could

derive a similar bound that would ensure determination of dampers’ positions

that have negligible impact on the overall damping of the system. With this

approach we avoid the viscosity optimization at some dampers’ positions which

can remarkably improve the efficiency of optimization algorithm.

Let τ0 be a trace of a solution to the Lyapunov equation (4.2) for a case where

external damping Cext = 0. Using a formula given in (2.8), it is easy to show

that

τ0 =

(
2

α
+

α

2

) s∑

i=1

1

ωp(i)

, (4.10)

where the vector p contains the indices of s eigenfrequencies that have to be

damped. The aim of our algorithm is to determine dampers’ positions such

that traceX(C) is very close to τ0. Thus, these dampers’ positions would have

no or only negligible impact on the system’s energy.

Recall that the matrix of the external damping is equal to

Cext = v1C1 + v2C2 + · · ·+ vkCk,

where k is the number of dampers and Ci, i = 1, . . . , k describes the geometry

of the ith damper with the corresponding viscosity vi (then C = ΦTCextΦ).

Now, for given dampers’ positions, we consider the Lyapunov equation (4.2)
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with damping C such that C(p(i), j) = 0, for i = 1, . . . , s, j = 1, . . . , n. Here

p contains just the indices of eigenfrequencies which have to be damped and

p ∪ p={1,2,. . . , n}. In this case trace(X(C)) = τ0.

The basic idea is to determine a damping matrix C with max
1≤i≤s

1≤j≤n

|C(p(i), j)| ≤ ε

for some small ε, such that trace(X(C)) ≈ τ0. If traceX(C) is very close to

τ0, this would mean that these dampers’ positions do not damp the system

significantly. In order to efficiently determine positions where the trace(X(C))

is close to τ0, we will derive a bound from which we can determine such

positions.

We will consider Equation (3.11) as a perturbed equation of:

[
Ã11 0

0 A22

][
X̃11 X̃12

X̃T
12 X̃22

]
+

[
X̃11 X̃12

X̃T
12 X̃22

][
ÃT

11 0

0 AT
22

]
= −ĜĜT , (4.11)

where

Ã =

[
Ã11 0

0 A22

]
, X̃ =

[
X̃11 X̃12

X̃T
12 X̃22

]
,

Ã11 = Âp(1) ⊕ Âp(2) ⊕ · · · ⊕ Âp(s), Âi =

[
0 ωi

−ωi −αωi

]
. (4.12)

Note that X̃12 = 0, X̃22 = 0 and X̃11 is the solution of the equation

A11X̃11 + X̃11A
T
11 = −G̃G̃T ,

where G̃ = Ĝ(1 : 2r, 1 : 2s). Since G̃G̃T = I, it is easy to observe that

X̃11 = X̂1 ⊕ X̂2 ⊕ · · · ⊕ X̂s, where X̂i =
1

ωi

[
2+α2

2α
−1

2

−1
2

1
α

]
, (4.13)

and that trace X̃ = trace X̃11 = τ0.
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Similarly to Section 3.2, we can now derive the error bound for the approx-

imation (4.11). Using that trace X̃11 = τ0 and C = ΦTCextΦ = ΦT (v1C1 +

v2C2 + · · ·+ vkCk)Φ we have that

| trace (X(C))− τ0|
τ0

≤ max
i=1,...,s
j=1,...,n

|v1CΦ
1 (p(i), j) + · · ·+ vkC

Φ
k (p(i), j)| · ξ (4.14)

with

ξ =

(
trace(|Λ11|T |G̃G̃T |) +∑2s

i,j=1 |ãji||(Λ11X̃11)ij|+
∑2s

i,j=1 |ãji||(Λ11X̃11)ji|
)

τ0
,

where (Ã11)ij = ãij, C
Φ
i = ΦTCiΦ, for i = 1, . . . , k and Ã11, X̃11 are given in

Equations (4.12) and (4.13), respectively. Recall that |G̃G̃T | = I and that Λ11

is the solution of the Lyapunov equation ÃT
11Λ11 + Λ11Ã11 = I, thus we have

that Λ11 = −X̃11 and it holds that

ξ =

(
1 + 2

∑2s
i,j=1 |ãji||(X̃2

11)ij|
τ0

)
, (4.15)

where τ0 is given in (4.10).

In order to obtain an easily computable bound for given external damping

Cext, we need to fix feasible maximal values of the dampers’ viscosities. Such

an upper bound is also usually needed in the viscosity optimization algorithm.

Let the maximal viscosity vi be vmax
i , i = 1, . . . , k, respectively. Using this to

bound right-hand side in (4.14), we obtain

| trace (X(C))− τ0|
τ0

≤ max
i=1,...,s
j=1,...,n

vmax
1 |CΦ

1 (p(i), j)|+ · · ·+ vmax
k |CΦ

k (p(i), j)| · ξ

(4.16)

where ξ is given in Equation (4.15).
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Note that in the case of dampers’ positions with the same viscosity vmax :=

v1 = · · · = vk, we can bound the right-hand side of (4.14), such that it yields

max
i=1,...,s
j=1,...,n

vmax|CΦ
1 (p(i), j) + · · ·+ CΦ

k (p(i), j)| · ξ, (4.17)

where vmax is a feasible maximal value of the dampers’ viscosities.

For dampers’ positions, such that the right-hand side of bound (4.16) is small

enough (smaller than some tolerance), we can conclude that these dampers’

positions have a negligible influence on damping of the system. Thus, in the

resulting algorithm we mark these dampers’ positions as the positions that

do not damp the system. With such approach we can efficiently determine

positions that do not damp the system. The tolerance employed here should

be of the order of the relative termination tolerance used for the viscosity

optimization.

An algorithm for computing the area which contains the optimal dampers’

positions is summarized in Algorithm 4.5.1.

Remark 4.5.1. Algorithm 4.5.1 will be efficient if the system has some spe-

cial structure, more precisely, when there are numerous positions such that the

maximum term in the bound (4.16) is small enough. That can also be checked

in advance by analyzing the magnitude of the elements of the matrix C. Par-

ticularly, if there exist numerous indices i such that ‖Φ(i, p)‖ (p corresponds

to indices of the undamped eigenfrequencies that have to be damped) is small,

then our algorithm will determine numerous positions that cannot be used to

damp the system. Our experiments have shown that, for example, if we like

to damp eigenfrequencies that are large by magnitude, for mechanical systems

with equal stiffnesses and increasing masses, we will have that ‖Φ(i, p)‖ will

be small for a large number of pairs (i, p).

Note that in the while-loop of Algorithm 4.5.1 all dampers’ positions should

be checked. Generally this means that we should check all configurations

(i1, i2, . . . , ik) ∈ Nk such that 1 ≤ i1 < i2 < · · · < ik ≤ n.
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Algorithm 4.5.1 (Determination of possible optimal dampers’ positions)

Input: Φ – such that ΦTKΦ = Ω2 = diag(ω2
1, . . . , ω

2
n) and ΦTMΦ = I;

p(1), p(2), . . . , p(s) – indices of eigenfrequencies which have to be damped;
vmax
i , i = 1, . . . , k – maximal viscosities;
tolpos.

Output: Set S of positions that contains the optimal dampers’ positions.

1: Calculate ξ =

(
1 + 2

∑2s
i,j=1 |ãji||(X̃2

11)ij |
τ0

)
from (4.15).

2: while not all configurations of the dampers’ position have been checked
do

3: For given dampers’ positions, calculate

ε = max
i=1,...,s
j=1,...,n

vmax
1 |CΦ

1 (p(i), j)|+ · · ·+ vmax
k |CΦ

k (p(i), j)|ξ.

4: if ε < tolpos then
5: Exclude the corresponding configuration from S.
6: end if

7: end while

For structured systems, Algorithm 4.5.1 is quite efficient since the main cal-

culation cost for different positions is the calculation of the corresponding

maximum in Step 3.

4.5.1 Numerical experiments

We will present examples that illustrate efficiency of Algorithm 4.5.1 for de-

termination of the area with the optimal dampers’ positions.

The first example considers a structured system with two dampers of different

viscosities.

Example 4.6. In this example we consider the mechanical system shown in

Figure 4.5 with two dampers of different viscosities, 2d+1 masses and 2d+3

springs.
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In the considered vibrational system the mass matrix is M = diag(m1, m2, . . . , mn),

while the stiffness matrix is defined as:

K =



K11 −κ1

K11 −κ1

−κT
1 −κT

1 2k1 + k2


 ,

where

K11 = k1




2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1

−1 2




, κ1 =




0
...

0

k1



.

In our example we will consider the following configuration:

d = 500, n = 2d+ 1 = 1001; k1 = 10, k2 = 20;

mi = 10 · i for i = 1, . . . , d/5;

mi = (12/5) · d+ 2− 2i for i = d/5 + 1, . . . , d;

mi = 5 · (2d+ 1− i) for i = d+ 1, . . . , 2d; m2d+1 = 500.

A damping matrix is D = Cu+Cext, where the internal damping matrix Cu is

defined as in (1.3) and external damping is defined by Cext = v1eie
T
i + v2eje

T
j ,

where 1 ≤ i < j ≤ n.

Figure 4.5: 2d+ 1 mass oscillator
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In this example we would like to damp all eigenfrequencies of the undamped

system, by magnitude larger than 1. This gives that s = 6.

We have used the following configuration in Algorithm 4.5.1, with undamped

eigenfrequencies sorted such that ω1 > ω2 > · · · > ωn:

αc = 0.001;

p(i) = i, i = 1, . . . , s;

tolpos = 10−8;

vmax
1 = vmax

2 = 1000.

Recall that in this example we consider two dampers of different viscosities;

this means that we want to determine the optimal positions i and j such that

1 ≤ i < j ≤ n. This offers n(n−1)/2 different dampers’ positions and for this

example this means that we have 500 500 different configurations. Using Al-

gorithm 4.5.1 with the tolerance tolpos = 10−8 we have obtained that 473 851

of them are not useful for damping the system. That is, a set of configurations

which contains the optimal position has 26 649 elements. Thus, with Algo-

rithm 4.5.1 we have reduced the number of different dampers’ positions to just

5.32% of the total number of the possible positions. More precisely, Algorithm

4.5.1 returned that a set that contains the optimal dampers position (iopt, jopt)

is equal to the set S = S1 ∪ S2 ∪ S3 ∪ S4, where

S1 = {(i, j) : for i ≤ 9; j is such that i+ 1 ≤ j},
S2 = {(i, j) : for i = 499, 500; j is such that i + 1 ≤ j},
S3 = {(i, j) : for j = 499, 500; i is such that i ≤ j − 1},
S4 = {(i, j) : for 986 ≤ j ≤ 1001; i is such that i ≤ j − 1}.

In order to test our algorithm we have calculated the minimal trace for the

position on the following mesh of the dampers’ positions:

i = 4 : 165 : n, j = i + 1 : 165 : n.
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A mesh is constructed such that different positions from S are included but

also some positions which are not in S.

For this mesh, the optimal position (iopt, jopt) = (4, 995), the optimal viscosi-

ties at these positions are (v1, v2) = (23.91853, 14.78638) and the correspond-

ing trace is 1839.11344. In this example the trace of the solution of the Lya-

punov equation that corresponds to the undamped system is τ0 = 4559.12291.

On the other hand, it is easy to check that for the positions that are not in

S, for example, for positions (169, 170), (334, 665) and (664, 830) the minimal

trace is equal to the trace τ0 up to O(tolpos).

Example 4.7. In this example we consider an n-mass oscillator with n masses

and n+1 springs with two dampers of the same viscosity (shown in Figure 1.2).

In the considered vibrational system the mass matrix is a diagonal matrix

M = diag(m1, m2, . . . , mn), while the stiffness matrix is defined in (1.7), where

ki > 0 represents stiffness of the corresponding spring.

In this example we will consider the following configuration:

n = 1000, ki = 4 for i = 1, . . . , n+ 1;

mi = 300 · (301− i) for i = 1, . . . , 300;

mi = i for i = 301, . . . , 400;

mi = i · (i− 400) for i = 401, . . . , n.

Recall that the damping matrix is D = Cu +Cext, where the internal damping

matrix Cu is defined as in (1.3). Since we have two dampers of the same

viscosity v, external damping is defined by Cext = v(eie
T
i + eje

T
j ), where 1 ≤

i < j ≤ n.

In this example we would like to damp all undamped eigenfrequencies ωi

such that 0.05 ≤ ωi ≤ 0.1. If we sort undamped eigenfrequencies such that

ω1 > ω2 > · · · > ωn, then we have to damp ωi for i = 899, . . . , 928 (this yields

s = 29).
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We have used the following configuration in Algorithm 4.5.1:

αc = 0.001;

p(i) = 73 + i, i = 1, . . . , s;

tolpos = 10−8;

vmax = 1000.

Since we have two dampers with the same viscosities, in Algorithm 4.5.1 in

Step 3, we will use bound (4.17).

We consider two dampers of the same viscosities. This means that we want

to determine positions i and j such that 1 ≤ i < j ≤ n. This gives that we

have n(n − 1)/2 = 499 500 different configurations. Similarly to the previous

example, here using Algorithm 4.5.1 with tolerance tolpos = 10−8 we have

obtained that 361 674 of them do not damp the system. That is, with Al-

gorithm 4.5.1 we have reduced the number of different dampers’ positions to

27.59% of the total number of dampers’ positions. Algorithm 4.5.1 returned

that the set containing the optimal dampers’ position (iopt, jopt) is equal to

the set S = S1 ∪ S2, where

S1 = {(i, j) : for 273 ≤ i ≤ 421; j is such that i + 1 ≤ j},
S2 = {(i, j) : for 273 ≤ j ≤ 421; i is such that i ≤ j − 1}.

In order to test our algorithm we have calculated a minimal trace for the

position on the following mesh of the dampers’ positions:

i = 1 : 24 : n, j = i + 1 : 24 : n.

At the above mesh, the optimal position (iopt, jopt) = (337, 386) (optimal vis-

cosities at these positions are vopt = 60.93162 with the corresponding trace

equal to 82 960.30789). The trace of the solution of the Lyapunov equation
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that corresponds to the undamped system is τ0 = 421 683.30082. Further-

more, it is easy to check that for the positions that are not in S, a minimal

trace is equal to the trace τ0 up to O(tolpos).

Observe that in the above two examples we have reduced the total number of

positions to positions given in S (using tolerance tolpos = 10−8). This means

that for determination of the optimal position we should search positions

contained in the set S. Thus we need to optimize viscosities on some mesh of

the positions contained in the set S. For this optimization process we should

again use Algorithm 3.3.1 (now, with the tolerance greater than tolpos) which

will additionally accelerate the optimization process.

4.6 Conclusions

This chapter is devoted to the efficient determination of optimal damping

focused on the optimization of dampers’ positions. In come cases, such as

for one-dimensional damping, this problem could be solved with the ”Direct”

approach using a formula for optimal viscosity.

Furthermore, the optimization could be accelerated for structured problems,

where we have given an algorithm that determines the area containing the

optimal dampers’ positions.

For the general case we have presented two heuristics (the ”Multigrid-like” and

the ”Discrete to continuous” approach) that drastically accelerate the opti-

mization process. Additionally, we have also presented an algorithm that com-

bines heuristical approaches with dimension reduction technique that makes

the optimization for moderate or large dimensions possible. Numerical exper-

iments show good performance of new approaches.



Chapter 5

Optimal damping of a system -

a case study

Constructing the efficient algorithm for determination of optimal damping has

been proved rather hard, except for rank one-dimensional damping described

in Section 4.1.1 (more details can be found in [57; 14]).

Recall that we consider a damped linear vibrational system

Mẍ +Dẋ+Kx = 0.

Contrary to the internal damping Cu which was used in previous chapters,

here we assume that internal damping is equal to zero, that is, damping matrix

D = Cext.

First, we will state the result for the rank one-dimensional damping in more

details. Recall that in the case of rank one-dimensional damping we have that

damping matrix D = vccT , where c ∈ Rn. If we consider the case where

we damp all undamped eigenfrequencies, then the corresponding Lyapunov

equation is

ATX(v) +X(v)A = −I, (5.1)

99
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for the matrix A it holds

A =

(
0 Ω

−Ω −vccT

)
,

where v > 0, c = (c1 c2 · · · cn)T , ci 6= 0 i = 1, . . . , n. The matrix Ω is

a diagonal matrix that contains undamped eigenfrequencies on its diagonal,

that is Ω = diag(ω1, . . . , ωn), where 0 < ω1 < ω2 < . . . < ωn. The trace of

the solution of the Lyapunov equation (5.1) can be calculated by a simple

formula. That is, using [14, Lema 4.3] we will obtain that the trace formula

is just

traceX(v) =
1

v

n∑

i=1

2

c2i
+ v

n∑

i=1

n∑

j=1
j 6=i

3ω2
i c

2
j + c2iω

2
i

(ω2
i − ω2

j )
2

+ v

n∑

i=1

2ω2
i

c2i

( n∑

k=1
k 6=i

c2k
ω2
k − ω2

i

)2

+ v
n∑

i=1

c2i
2ω2

i

+ v
n∑

i=1

n∑

j=1
j 6=i

ω2
j (c

2
j + c2i )

(ω2
i − ω2

j )
2
.

Here v is viscosity which has to be optimized and X(v) is the corresponding

solution of the Lyapunov equation. Using this formula we can obtain a simple

formula for the optimal viscosity. Recall that we have used this formula in

Subsection 4.1.1.

The analogous formula for Cext of rank 2 obtained in this chapter is much

more complicated; it consists of the explicit formulae, similar to those in [57]

but here we have to solve an additional linear system of order n
2
. Properties of

this system and the condition number are not easy to discover but the required

number of flops for calculation of the solution using the new formula is equal

to 4.6n3 + O(n2) flops. This is considerably less than using the standard

Bartels-Stewart algorithm which requires around 30n3. This means that by

using a new approach we can significantly accelerate our optimization process.

The main aim of this chapter is to present a similar solution in a very spe-

cial case. We will consider a damped linear vibrational system with multiple
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undamped eigenfrequencies. That is, we assume that the undamped eigenfre-

quencies are double in pairs: ω1 = ω2, ω3 = ω4, . . . or they consist of close

clusters ω1 ≈ ω2, ω3 ≈ ω4, . . .. Recall that positive numbers ω1, ω2, . . . , ωn are

eigenvalues of the undamped system Mẍ + Kx = 0, and they are diagonal

elements of matrix Ω.

Multiple eigenfrequencies are a well studied problem, for example see [35].

They appear among others in the model which describes vibration of a mem-

brane (membrane eigenfrequencies are given explicitly in [30]).

We also assume that the damping matrix has rank 2, that is

Cext = vccT , c =




c1

c2
...

cs




, ci =

(
ci11 ci12
ci21 ci22

)
∈ R

2×2,

where v stands here for viscosity. This appears to be the closest generalization

of the solution presented in [57].

Since our main problem is determination of a solution of a strongly structured

system, we will consider the so-called dual Lyapunov equation introduced in

Section 1.2, that is, we will consider the Lyapunov equation

AT X̂ + X̂A = −I, (5.2)

where

A =

(
0 Ω

−Ω 0

)
− v

(
0 0

0 ccT

)
=

(
0 Ω

−Ω −vccT

)
, (5.3)

is a m × m real matrix (m = 2n) and v ∈ R+ represents viscosity. Since

undamped eigenfrequencies are double in pairs, we have the following structure

for the matrix Ω:

Ω = diag(Ω1,Ω2, . . . ,Ωs), s =
m

4

(
=

n

2

)
, (5.4)
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Ωi = ωi

(
1 0

0 1

)
, c =




c1

c2
...

cs




, ci =

(
ci11 ci12

ci21 ci22

)
∈ R

2×2,

and each ci is non-singular and ωi 6= ωj for i 6= j. This non-singularity means

that the form xTCextx is positive definite on any eigenspace of the undamped

system, which is necessary for the system to be asymptotically stable at all.

Recall that the optimization criterion in this case is given by (see criterion

(1.19))

trace X̂Z → min, (5.5)

where Z determines which part of the undamped eigenfrequencies has to be

damped. We will consider the case when we damp all undamped eigenfre-

quencies which means that Z = I.

Remark 5.0.1. An assumption on asymptotic stability implies the uniqueness

of the solution of the Lyapunov equation (5.2). On the other hand, it can be

shown that if ci has rank one for some i, then A from Equation (5.2) has some

eigenvalues on an imaginary axis.

5.1 Solution of a structured Lyapunov equa-

tion

Our aim in this section is to derive the solution of Lyapunov equation (5.2),

then we will be able to calculate easily its trace as well.

The solution X can be represented in the block form

X̂ =

(
X11 X12

XT
12 X22

)
. (5.6)



Chapter 5 Optimal damping of a system - a case study 103

For the sake of simplicity, we will introduce d where

d =
√
v c, (5.7)

then we can write

vc cT = ddT , d =
(

dT1 . . . dTs

)T
,

where di is a corresponding 2× 2 matrix for all i, i = 1, 2, . . . , s.

Using the above notation, Equation (5.2) can be written as

(
0 −Ω

Ω −ddT

)(
X11 X12

XT
12 X22

)
+

(
X11 X12

XT
12 X22

)(
0 Ω

−Ω −ddT

)
=

(
−I 0

0 −I

)
.

(5.8)

By equalizing the corresponding blocks we obtain

ΩXT
12 +X12Ω = I, (5.9)

−ΩX22 +X11Ω−X12dd
T = 0, (5.10)

ΩX11 − ddTXT
12 −X22Ω = 0, (5.11)

ΩX12 − ddTX22 +XT
12Ω−X22dd

T = −I. (5.12)

With direct substitution we can check that solution X12 of Equation (5.9) has

the following form

X12 =
1

2
Ω−1 +

1

2
S Ω−1, (5.13)

where S is a skew-symmetric matrix to be determined. Because of the unique-

ness of the matrix X we have uniqueness of matrix X12 and matrix S.

Diagonal 2× 2 blocks from Equation (5.9) satisfy

(ΩX12 +XT
12Ω)ii = Iii. (5.14)
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Using Equation (5.14), 2 × 2 diagonal blocks from Equation (5.12) have the

following form:

diXi + X
T
i d

T
i = 2I, (5.15)

where

X ≡
[
X1, . . . ,Xs

]
= dTX22 , Xi ∈ R

2×2 . (5.16)

Equation (5.15) implies

Xi = d−1
i + σid

−1
i J, (5.17)

where J =

(
0 1

−1 0

)
and σi ∈ R, i = 1, 2, . . . , s are unknowns which have

to be found.

Note that the only unknown quantities in the above equations are σi. Thus

our aim is to construct an s× s linear system with solution σi, i = 1, 2, . . . , s.

For that purpose we will derive some auxiliary results.

Using equations (5.13) and (5.16), Equation (5.12) can be written as

ΩSΩ−1 − Ω−1SΩ = 2(dX+ X
TdT )− 4I. (5.18)

Set S = (sij) where sij are 2 × 2 matrices. By equalizing the corresponding

off diagonal blocks, from Equation (5.18), for non-diagonal blocks sij we have

sij =
2ωiωj

ω2
i − ω2

j

(
did

−1
j + d−T

i dTj + σjdid
−1
j J − σiJd

−T
i dTj

)
, i 6= j. (5.19)

As we have already mentioned above, uniqueness of the solution X implies

uniqueness of skew-symmetric matrix S. Now from Equation (5.19) follows

uniqueness of unknowns σ1, . . . , σs.
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Further, let T = X12dd
T be the matrix whose (i, j)-th 2× 2 block is denoted

by tij. Using Equation (5.13) we obtain

tij = (X12dd
T )ij

=
1

2
[(Ω−1 + SΩ−1)d]id

T
j

=
1

2ωi
did

T
j +

s∑

k 6=i

sik
dkd

T
j

2ωk
+ sii

did
T
j

2ωi
. (5.20)

Thus, if we express sii as a function of sij with i 6= j, then tij from Equation

(5.20) will be defined with known parts and σi.

Now we continue with deriving the expression for sii as a function of sij, for

i 6= j. We introduce the following notation

(X11)ij = ηij , and (X22)ij = ξij, (5.21)

where ηij and ξij denote 2 × 2 matrices. Now, considering the (i, j)-th 2 × 2

block (i 6= j), of equations (5.10) and (5.11) for ηij and ξij we have

ηij =
ωjtij − tTjiωi

ω2
j − ω2

i

, (5.22)

ξij =
ωitij − tTjiωj

ω2
j − ω2

i

. (5.23)

Further, the (i, i)-th block from Equation (5.10) can be written as

tii = −ωiξii + ωiηii. (5.24)

From the symmetry of X11 and X22 (which are diagonal blocks of symmetric

matrix X̂) and (5.24), it follows that tii = tTii. Using this and (5.20) it follows

did
T
i

2ωi

+
s∑

j=1

sij
djd

T
i

2ωj

=
did

T
i

2ωi

+
s∑

j=1

did
T
j

2ωj

sTij. (5.25)
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Recall that S is a skew-symmetric matrix which implies sij = −sTji, using this

from Equation (5.25) for sii we have the following equality

sii =

s∑

j 6=i

(−sij
djd

T
i

ωj
−

did
T
j

ωj
sji)Di J, where (5.26)

Di = (Jdid
T
i + did

T
i J)

−1 =

(
0 − 1

‖di‖2F
1

‖di‖2F
0

)

and no denominator vanishes.

Note that, using equations (5.26) and (5.19), tij from Equation (5.20) can be

expressed as a function of known quantities and σi, i = 1, . . . , s. Thus, after

some manipulations we have

tij =
s∑

k 6=i

ωi

ω2
i − ω2

k

[did
T
j + d−T

i dTk dkd
T
j − (d−T

i dTk dkd
T
i − did

T
k dkd

−1
i )DiJdid

T
j ] +

+
did

T
j

2ωi
+

s∑

k 6=i

ωi

ω2
i − ω2

k

(σkdid
−1
k J − σiJd

−T
i dTk )dkd

T
j − (5.27)

−
s∑

k 6=i

ωi

ω2
i − ω2

k

[σkdi(d
−1
k Jdk + dTk Jd

−T
k )dTi − σi(Jd

−T
i dTk dkd

T
i + did

T
k dkd

−1
i J)]×

×DiJdid
T
j .

We set

τ 0ij =
did

T
j

2ωi
+

+
∑

k 6=i

ωi

ω2
i − ω2

k

[did
T
j + d−T

i dTk dkd
T
j − (d−T

i dTk dkd
T
i − did

T
k dkd

−1
i )DiJdid

T
j ],

(note that τ 0ij is given by known quantities). Then

τ 1ij(σ1, . . . , σs) ≡ τ 1ij = tij − τ 0ij, (5.28)

depends on known quantities and σi, i = 1, . . . , s.
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Remark 5.1.1. Here we would like to emphasize that non-singularity of ci

(di =
√
vci) implies uniqueness of σ1, . . . , σs which further implies uniqueness

of tij from Equation (5.27), then from equations (5.22) and (5.23) we have

uniqueness of X11 and X22, all this together with Equation (5.13) implies

uniqueness of the solution X.

We continue the construction of the linear system with unknowns σi, i = 1, . . . , s.

From Equation (5.17) it follows

Xi = d−1
i + σid

−1
i J = (dTX22)i =

s∑

j=1

dTj ξji,

which gives

ξii = d−T
i d−1

i + σid
−T
i d−1

i J −
∑

j 6=i

d−T
i dTj ξji. (5.29)

Using the fact that ξTji = ξij from Equation (5.29) we have

σiEi =
∑

j 6=i

d−T
i dTj ξji − ξijdjd

−1
i , i = 1, . . . , s, (5.30)

where

Ei ≡ d−T
i d−1

i J + Jd−T
i d−1

i =
1

det (di)

(
0 ‖di‖2F

−‖di‖2F 0

)
.

From equations (5.23) and (5.27) it follows that Equation (5.30) determines

a system of equations with unknowns σ1, . . . σs. We will continue with refor-

mulation of Equation (5.30) in a much more appropriate form for numerical

computation.

Let

Ri =
∑

j 6=i

d−T
i dTj ξji − ξijdjd

−1
i , i = 1, . . . , s , (5.31)

be the right-hand side of Equation (5.30). Let R0
i be the part of Ri which does

not depend on σi, and let R1
i be the part of Ri which depends on σi. This
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means that, using Equations (5.23) and (5.28), Ri can be written as

Ri = R0
i − (R0

i )
T +R1

i − (R1
i )

T , (5.32)

where

R0
i =

∑

j 6=i

d−T
i dTj

ωjτ
0
ji − (τ 0ij)

Tωi

ω2
i − ω2

j

, R1
i =

∑

j 6=i

d−T
i dTj

ωjτ
1
ji − (τ 1ij)

Tωi

ω2
i − ω2

j

. (5.33)

Recall, that from Equations (5.27) and (5.28) it follows that

τ 1ij =
s∑

k 6=i

ωi

ω2
i − ω2

k

(σkdid
−1
k J − σiJd

−T
i dTk )dkd

T
j

−
s∑

k 6=i

ωi

ω2
i − ω2

k

[σkdi(d
−1
k Jdk + dTk Jd

−T
k )dTi − σi(Jd

−T
i dTk dkd

T
i + did

T
k dkd

−1
i J)]×

×DiJdid
T
j .

Inserting the above expression for τ 1
ij in R1

i from Equation (5.33) after long

and tedious calculations we obtain

R1
i =

∑

k 6=i

σk

(
∑

j 6=k,i

Ai
jk +

∑

j 6=k

Bi
jk +

∑

j 6=i

(Cext)
i
kj

)
+ σi

(
∑

j 6=i

Ai
ji − Si

)
,(5.34)
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where

Ai
jk =

ω2
jd

−T
i dTj dj[d

−1
k Jdk − (d−1

k Jdk + dTk Jd
−T
k )dTj DjJdj]d

T
i

(ω2
j − ω2

k)(ω
2
i − ω2

j )
, (5.35)

Bi
jk =

ω2
kd

−T
i dTk [−Jd−T

k dTj dj + (Jd−T
k dTj djd

T
k + dkd

T
j djd

−1
k J)DkJdk]d

T
i

(ω2
k − ω2

j )(ω
2
i − ω2

k)
,

(5.36)

(Cext)
i
kj =

ω2
i d

−T
i dTj dj[d

T
k Jd

−T
k + dTi JD

T
i di(d

T
k Jd

−T
k + d−1

k Jdk)]d
T
i

(ω2
i − ω2

k)(ω
2
i − ω2

j )
, (5.37)

Si =
∑

k 6=i

∑

j 6=i

ω2
i d

−T
i dTj dj[d

T
k dkd

−1
i J + dTi JD

T
i (did

T
k dkd

−1
i J + Jd−T

i dTk dkd
T
i )]

(ω2
i − ω2

k)(ω
2
i − ω2

j )
.

(5.38)

After inserting R1
i into Equation (5.30) we obtain the following linear system

AY = B, (5.39)

where A = (Aki) ∈ R2 s×2 s, Y is a matrix of unknowns σi, B = (Bi) ∈ R2 s×2

and

Aii = d−T
i d−1

i J + Jd−T
i d−1

i + Si − ST
i −

∑

j 6=i

[Ai
ji − (Ai

ji)
T ], (5.40)

Aki =
∑

j 6=k,i

[(Ai
jk)

T − Ai
jk] +

∑

j 6=k

[(Bi
jk)

T −Bi
jk] +

∑

j 6=i

[((Cext)
i
kj)

T − (Cext)
i
kj], i 6= k,

(5.41)

Bi = R0
i − (R0

i )
T , (5.42)

Y = (Y1 · · ·Ys )
T ; Yi = σiI2 , (5.43)

with Ai
ji, B

i
jk, (Cext)

i
jk, Si and R0

i defined as in equations (5.35)–(5.38) and

(5.33), respectively.

Remark 5.1.2. First, we would like to emphasize that the matrix A from

Equation (5.39) is a skew-symmetric matrix. This property will be proved

using symbolic calculations and mathematical induction.
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As the first step one can show (using some symbolic calculator Mathematica R©)

that from equations (5.35)–(5.37) and (5.41) it follows that

(Bi
i,j)

T −Bi
i,j + ((Cext)

i
j,j)

T − (Cext)
i
j,j = (Bj

j,i)
T −Bj

j,i +((Cext)
j
i,i)

T − (Cext)
j
i,i ,

(5.44)

for all i 6= j, and

(Ai
k,j)

T − Ai
k,j + (Bi

k,j)
T − Bi

k,j + ((Cext)
i
j,k)

T − (Cext)
i
j,k = (5.45)

=(Aj
k,i)

T − Aj
k,i + (Bj

k,i)
T − Bj

k,i + ((Cext)
j
i,k)

T − (Cext)
j
i,k ,

for all j 6= i, j 6= k, k 6= i.

Now, using equations (5.44)–(5.45) it can be shown that for s = 2 and s = 3

the matrix A is skew-symmetric. Thus we can assume that the matrix A is

skew-symmetric for s = l. And we will show that A is skew-symmetric for

s = l + 1, where l + 1 ≤ n/2. Thus, first we will show that Aki = Aik for

i, k 6= l + 1, where

Aki ≡
l+1∑

j 6=k,i

[(Ai
jk)

T − Ai
jk] +

l+1∑

j 6=k

[(Bi
jk)

T −Bi
jk] +

l+1∑

j 6=i

[((Cext)
i
kj)

T − (Cext)
i
kj]

Aik ≡
l+1∑

j 6=i,k

[(Ak
ji)

T − Ak
ji] +

l+1∑

j 6=i

[(Bk
ji)

T − Bk
ji] +

l+1∑

j 6=k

[((Cext)
k
ij)

T − (Cext)
k
ij]

Note that we can write Aki = A0
ki + A1

ki and Aik = A0
ik + A1

ik, where

A
0
ki =

l∑

j 6=k,i

[(Ai
jk)

T − Ai
jk] +

l∑

j 6=k

[(Bi
jk)

T − Bi
jk] +

l∑

j 6=i

[((Cext)
i
kj)

T − (Cext)
i
kj]

A
0
ik =

l∑

j 6=i,k

[(Ak
ji)

T − Ak
ji] +

l∑

j 6=i

[(Bk
ji)

T −Bk
ji] +

l∑

j 6=k

[((Cext)
k
ij)

T − (Cext)
k
ij] .

From induction assumption it follows that A0
ik = A0

ki, while for j = l+1 from

Equation (5.45) it follows that A1
ik = A1

ki (here one have to adapt indices in

Equation (5.45), that is, one has to set k = l + 1, j = k and i = j).
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Second, for i or k equal to l + 1, again one can show that Aki = Aik using

the above equalities and equations (5.44)–(5.45) with the corresponding per-

mutation of indices. Now, from the fact that AT
ik = −Aik, it follows that A is

skew-symmetric.

Remark 5.1.3. Since we have to count the number of floating point operations

for forming the system (5.39), the following has to be emphasized.

The only contributions of O(s3) flops are:

• calculation of Aki from Equation (5.41); for all k and i,

• calculation of (Si − ST
i ) from Equation (5.38); for all i.

We continue with counting of the number of flops. First, we count the number

of flops for forming Aki from Equation (5.41). For that purpose we will cal-

culate the flops number only in the first item
∑

j 6=k,i[(A
i
jk)

T − Ai
jk], the other

two are formed similarly.

Since the considered term is skew-symmetric, we only need matrix entries (2, 1)

and (1, 2) from the matrix Ai
jk. These entries can be written in the following

form:

Ai
jk = A1

ijA2
ijd

T
i ,

where

A1
ij =

d−T
i

(ω2
i − ω2

j )
,

A2
kj =

ω2
jd

T
j dj[d

−1
k Jdk − (d−1

k Jdk + dTk Jd
−T
k )dTj DjJdj]

(ω2
j − ω2

k)
.

The matrices A1
ij and A2

kj are calculated in advance with O(n2) flops. Thus,

off-diagonal entries of Ai
jk can be calculated in 18 flops. Finally, the term

∑
j 6=k,i[(A

i
jk)

T − Ai
jk] can be calculated in 18s + O(1) flops. Similarly, the

number of flops needed for the second term
∑

j 6=k[(B
i
jk)

T −Bi
jk] is 18s+O(1).

Using this fact, (Cext)
i
kj can be formed as the multiplication of the two matri-

ces, then the number of needed flops for term
∑

j 6=i[(C
i
kj)

T −Ci
kj] is 12s+O(1),
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similar holds for Si − ST
i . Finally, due to skew-symmetry of A we only need

s · (s − 1)/2 off-diagonal entries. Altogether the number of flops needed for

forming the matrix A from Equation (5.39) is 36s3 +O(s2) = 4.6n3 +O(n2).

Now, since we would like to present the trace of the solution as the function

of v, we substitute d =
√
v c from Equation (5.7). Using this with equations

(5.35)–(5.38), equations (5.40)–(5.43) become

Aii =
1

v
Fi + v(S̃i − S̃T

i −
∑

j 6=i

[Ãi
ji − (Ãi

ji)
T ]),

Aij = vÃij,

Bi = vB̃i,

Yi = σi(v)I ,

where Fi is given as

Fi ≡ c−T
i c−1

i J + Jc−T
i c−1

i =
1

det (ci)

(
0 ‖ci‖2F

−‖ci‖2F 0

)
,

and where the matrices Ãi
ji, Ãij, B̃i, S̃i are obtained from equations (5.35)–

(5.38) and (5.41)–(5.42), replacing di with ci for all i.

Using the above notation, system (5.47) can be written as:

(
1

v2
Ã0 + Ã1

)



σ1(v)I

σ2(v)I
...

σs(v)I




= B̃ , (5.46)
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where

(Ã0)ii = Fi , (Ã0)ij = 0, for i 6= j ,

(Ã1)ii = S̃i − S̃T
i −

∑

j 6=i

[Ãi
ji − (Ãi

ji)
T ], (Ã1)ij = Ãij, for i 6= j .

Note that Ã0 is a block diagonal skew-symmetric matrix, and that Ã0 and Ã1

do not depend on viscosity v.

Also, note that 2 × 2 block matrices from the system matrix of the system

(5.46) are skew-symmetric, thus system (5.46) is equivalent to the s× s linear

system

(
1

v2
A

0 + A
1

)



σ1

σ2

...

σs




= B . (5.47)

Recall that from Remark 5.0.1 follows that for every v such that the matrix

A from (5.2) is stable, system (5.47) is regular. This means that the solution

σ1, . . . , σs of system (5.47) is unique. Now using equations (5.22), (5.23) and

(5.27) we get non-diagonal blocks of X11 and X22, while diagonal blocks can

be obtained from Equation (5.29). For X12 one needs the matrix S which

can be obtained from equations (5.19) and (5.26). All this together gives the

solution X̂ of the considered Lyapunov equation.

5.2 Minimization of the trace of the solution

of the Lyapunov equation

Since we want to determine optimal damping in the sense of criterion (5.5),

we are interested in minimization of the trace of the solution of the Lyapunov
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equation (5.2) as the function of damping viscosity parameter v > 0. Parti-

cularly, we are interested in finding optimal viscosity vopt such that

vopt = argmin
v∈R+

trace(X̂(v)), (5.48)

where X̂(v) is the solution of Lyapunov equation (5.2).

Since we have calculated solution X̂(v), in the following we continue with

deriving the trace of the solution of the Lyapunov equation as the function of

parameter v.

From Equation (5.21) it follows that the trace of the solution X̂ of the Lya-

punov equation (5.2) is given by

trace X̂ =

s∑

i=1

trace(ξii + ηii) .

Using (5.24) and (5.29) we obtain the following equalities

trace X̂ =

s∑

i=1

trace(2ξii + ω−1
i tii)

=
s∑

i=1

trace(2d−T
i d−1

i + 2σid
−T
i d−1

i J + ω−1
i tii − 2

s∑

j 6=i

j=1

d−T
i dTj

ωjtji − ωit
T
ij

ω2
i − ω2

j

).
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Using tij from (5.27) and d =
√
vc for the trace as the function of viscosity v

we have

trace(X̂(v)) =

= v
∑

i

(
2

v2
trace(c−T

i c−1
i + σi(v)c

−T
i c−1

i J) +
trace(cic

T
i )

2ω2
i

+ trace
s∑

k 6=i

k=1

1

ω2
i − ω2

k

(
M3

ik + σk(v)M
1
ik − σi(v)M

2
ik

)
cTi (5.49)

− trace
s∑

j 6=i

j=1

2c−T
i cTj ωj

ω2
i − ω2

j


 cj
2ωj

+
s∑

k 6=j

k=1

ωj

ω2
j − ω2

k

(
M3

jk + σk(v)M
1
jk − σj(v)M

2
jk

)

 cTi

+ trace

s∑

j 6=i

j=1

2c−T
i cTj cjωi

ω2
i − ω2

j


 cTi
2ωi

+

s∑

k 6=i

k=1

ωi

ω2
i − ω2

k

(
M3

ik + σk(v)M
1
ik − σi(v)M

2
ik

)T




 ,

where

M1
jk = cjc

−1
k Jck − cj(c

−1
k Jck + cTk Jc

−T
k )cTj D̃jJcj,

M2
jk = Jc−T

j cTk ck − (Jc−T
j dTk ckc

T
j + cjc

T
k ckc

−1
j J)D̃jJcj,

M3
jk = cj + c−T

j cTk ck − (c−T
j cTk ckc

T
j − cjc

T
k ckc

−1
j )D̃jJcj,

D̃i = (Jcic
T
i + cic

T
i J)

−1.

It is important to emphasize that expressions in the square brackets depend

only on two indices, which means that for calculation of the sums in Equation

(5.49) one needs only O(s2) flops.

It can be easily shown that the required number of flops for calculation of the

trace for given viscosity v is equal to

(
36 +

1

3

)(m
4

)3
+O(m2) ≈ 0.57m3 +O(m2) flops, (5.50)

where (with s = m/4)
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• 36s3 + O(s2) is a number of flops for forming the matrix of the linear

system (5.39) and the corresponding vector of the right-hand side

• 1
3
s3 +O(s2) is a number of flops for calculation of the LJSL

T decompo-

sition of the matrix of the linear system (5.46). Such decomposition can

be obtained using a well-known method by Bunch and Parlett [16].

• O(s2), all additional calculation.

Since our penalty function f(v) = trace(X̂(v)) is continuously differentiable,

the minimization process can be easily performed using some minimization

process, for example the Newton method. For the Newton minimization

method one needs f ′(v) and f ′′(v). Both derivatives will be obtained from

Equation (5.49) using σ′
i(v) and σ′′

i (v). Since σ′
i(v) and σ′′

i (v) can be ob-

tained from Equation (5.46) (using the same LU decomposition of the matrix

(1/v2Ã0 + Ã1)), both f ′(v) and f ′′(v) can be obtained with O(s2) flops.

Due to the fact that formulae for f ′(v) and f ′′(v) can be obtained directly, but

they are much more complicated than the one for the trace (5.49), we will not

display them here; however, the MATLAB functions which calculate function

f(v) = trace(X̂(v)) and derivatives f ′(v) and f ′′(v) are available from the

author upon request.

5.3 Numerical experiments

In this section we will illustrate the performance of a new algorithm and

compare it with the algorithm from [14]. Comparison will be performed on

Example 5.1.

Example 5.1. We consider an n-mass oscillator or oscillator lader shown in

Figure 5.1. Recall that this mechanical system can be described by differential

equation

Mẍ +Dẋ+Kx = 0. (5.51)
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Figure 5.1: The n-mass oscillator with two dampers

For such systems, the mass matrix is given by

M = diag(m1, m2, . . . , mn),

and for the stiffness matrix it holds

K =




k1 + k2 −k2

−k2 k2 + k3 −k3
. . .

. . .
. . .

−kn−1 kn−1 + kn −kn

−kn kn + kn+1




,

D ≡ Cu + Cext = Cu + veie
T
i + veje

T
j , with Cu = 0.

Note that in this example we have two dampers of the same viscosity and the

rank of the matrix Cext is two. In this example we will consider a particular

configuration which will yield to a system which has eigenfrequencies double

in pairs.

Dimension n will be an even number and we will consider the following con-

figuration (see Figure 5.1):

ki = 1, for i 6= n/2 + 1;

kn/2+1 = 0.0001; (5.52)

m1 = m2 = . . . = mn = 1.



118 Chapter 5 Optimal damping of a system - a case study

In order to compare the time ratio for a new algorithm and the algorithm

from [14], dimension n will vary from 800 to 1300.

The above mechanical system with this configuration has some interesting

properties: the undamped eigenfrequencies come in close pairs, that is we

have the following structure:

Ω = diag(ω1, ω2, ω3, ω4, . . . , ωn−1, ωn), (5.53)

where ω2 i−1 ≈ ω2 i and ω2 i < ω2 i+1, for i = 1, . . . , n2 . Thus for the purpose of

our approach described in this chapter we will set

Ω̂ = diag(ω̂1, ω̂1, ω̂2, ω̂2, . . . , ω̂n
2
, ω̂n

2
), (5.54)

where ω̂i =
ω2 i + ω2 i−1

2 , for all i = 1, . . . , n2 .

Figure 5.2 shows the speed ratio between the new algorithm and the algorithm

from [14] where the number of iteration steps goes from 8 to 16.

Figure 5.2: Speed ratio

From Figure 5.2 we can see that we have achieved considerable time accel-

eration. Indeed, from Equation (5.50) follows that for a certain number of

iteration steps in the Newton process (niter) the number of flops for the whole
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optimization with the new algorithm (see items below (5.50)) is approximately

(
36 +

1

3
niter

)
m3

64
+O(m2) . (5.55)

Furthermore, the algorithm from [14] needs approximately

96m3niter +O(m2) (5.56)

for the whole optimization. Here we would like to emphasize that the algo-

rithm from [14] uses the Bartels-Stewart method for solving Lyapunov equa-

tions.

The experiments are preformed on Xenon with 2 GB memory and 2.33 GHz.

We compare times needed for optimization which includes flops ratio and

memory usage.

Note that from Figure 5.2 one can also see that we have an additional speed

up with an increase in the dimension of the problem. This is based on the

fact that the new algorithm uses the matrices of dimension n × n, while the

algorithm from [14] uses the matrices 2n× 2n and requires more storage.

For systems with such structure, with this approach we can now use the ”Di-

rect” approach or presented heuristics for dampers’ position optimization.

Similarly to the case of one-dimensional damping (described in Section 4.1.1),

now we can also efficiently optimize viscosity at given dampers’ positions.

5.4 Conclusions

Optimization of damping viscosity of damping systems is a very demand-

ing problem, which becomes more complicated in the presence of multiple

eigenfrequencies. In some cases, the trace of the Lyapunov equation can be

calculated by a formula, like for one-dimensional damping which was consid-

ered in [57]. In this chapter we consider a second order damped vibrational
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system whose undamped eigenfrequencies ω1, ω2, . . . , ωn , are double in pairs.

We present a formula which gives the solution of the corresponding Lyapunov

equation, which then allows us to calculate the first and second derivatives

of the trace of the solution, with no extra cost. The new algorithm requires(
36 + 1

3
niter

)
m3

64
+O(m2) flops contrary to the usual algorithms based on the

Bartels-Stewart method which needs 96m3niter + O(m2) for the whole opti-

mization. With this algorithm, the optimization process for determination of

optimal damping can be considerably accelerated.



Future research

Throughout this thesis we made one very important assumption, i.e. that

we can simultaneously diagonalize the mass and the stiffness matrices from

mechanical systems. This assumption can be a bottleneck for systems with a

very large dimension. Thus in the future work we will include the consideration

of large scale problems, trying to avoid the explicit calculation of the matrix

Φ which simultaneously diagonalizes the mass and the stiffness matrices.

Further, since throughout this thesis we have used direct solvers such as the

Bartels-Stewart method for solving reduced Lyapunov equations, it will be

interested to try to additionally accelerate solving these Lyapunov equations,

for example with iterative approaches like ADI methods. This approach will

be very important for larger dimensions.

In the process of deriving the methods presented in Chapters 2 and 3, we have

considered several model reduction methods based on the existing approaches.

These attempts were not successful but this is an important area for future

research.

In addition to minimization of the trace of the solution of the Lyapunov equa-

tion, one interesting problem is also minimization of the 2-norm of the solution

of the considered Lyapunov equation. We will try to apply the obtained results

to this optimization problem.
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Sveučilǐsta u Zagrebu. Diplomirao je u prosincu 2005. godine kao inženjer
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Summary

In this thesis we consider optimization of damping in mechanical vibrating

systems. When one has to find optimal positions together with correspond-

ing viscosities of dampers in a mechanical vibrating system based on energy

minimization, then numerous Lyapunov equations have to be solved. Thus,

we have introduced different approaches which significantly accelerate the op-

timization procedure.

In Chapter 2 we consider the case when all undamped eigenfrequencies have

to be damped and propose a dimension reduction technique which calculates

approximation of the solution of the corresponding Lyapunov equation. We

derive an error bound for this approximation which is then used in the process

of viscosities optimization. Numerical experiments confirm the ability of this

approximation technique to significantly accelerate the optimization process.

On the numerical example we have shown that near optimal positions we can

accelerate the optimization process around 15 times and still ensure that the

optimal positions are found.

From the point of a dimension reduction technique, the case of damping a

selected part of undamped eigenfrequencies is more interesting. This is inves-

tigated in Chapter 3. In this case, the right-hand side of the corresponding

Lyapunov equation is low rank and this allows better approximation using the

dimension reduction technique. In this case we have derived an algorithm for

the approximation of the trace of the Lyapunov equation and the correspond-

ing error bound which uses the structure of the system. Then, viscosities

are optimized using this error bound. On numerical examples we have shown
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that the optimization process can be considerably accelerated, that is, we have

shown that near optimal positions we can accelerate the optimization process

around 800 times while ensuring that we still find the optima within the limit

of tolerance.

While Chapters 2 and 3 are mainly devoted to viscosities optimization, Chap-

ter 4 is devoted to optimization of dampers’ positions. In this chapter we pro-

pose several approaches which accelerate optimization of dampers’ positions.

First, we propose two heuristics; i.e. the ”Multigrid-like” and the ”Discrete

to continuous” optimization approach. They significantly reduce the num-

ber of Lyapunov equations which have to be solved and they show very good

performance on numerical examples. Furthermore, we also present the opti-

mization approach which combines approximation algorithms and heuristical

approaches. This approach allows us to perform optimization of dampers’

positions and corresponding viscosities on larger dimensions. Besides these

approaches that use heuristics, we also propose an algorithm that determines

the area which contains the optimal dampers’ positions. That algorithm is

derived using the error bound derived in Chapter 3 and it works efficiently for

specially structured systems.

In the last chapter we investigate a case study for a very structured system.

The main properties are that internal damping is zero and that undamped

eigenfrequencies come in close pairs. We have derived a formula for the trace

of the corresponding Lyapunov equation. This formula is the closest general-

ization of the case where rank one-dimensional damping was considered. With

this approach we can significantly accelerate the optimization procedure, and

the factor of acceleration is greater than 1000.
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Sažetak

U ovoj radnji promatramo optimizaciju prigušenja kod mehaničkih vibra-

cijskih sistema. Prilikom odredivanja optimalnog prigušenja u mehaničkim

vibracijskim sistemima, moraju se riješiti brojne Ljapunovljeve jednadžbe.

Stoga smo uveli različite pristupe koji značajno ubrzavaju optimizacijski pro-

ces.

U 2. poglavlju promatramo slučaj kada sve neprigušene svojstvene frekvencije

moraju biti prigušene i predstavljamo tehniku koja koristi redukciju dimenzije.

Tehnika koja koristi redukciju dimenzije računa aproksimaciju rješenja odgo-

varajuće Ljapunovljeve jednadžbe. Izveli smo ocjenu pogreške za spomenutu

aproksimaciju koja se poslije koristi u procesu optimizacije viskoznosti. Nu-

merički eksperimenti potvrduju mogućnosti te aproksimacijske tehnike ko-

jom se značajno ubrzava optimizacijski proces. Na numeričkim primjerima

pokazali smo da oko optimalne pozicije možemo ubrzati optimizacijski proces

oko 15 puta i uz to još uvijek možemo dobiti dobre optimalne pozicije.

Sa stajalǐsta tehnika koje koriste redukciju dimenzije, vǐse je zanimljiv slučaj

prigušenja dijela neprigušenih svojstvenih frekvencija. To smo proučavali u 3.

poglavlju. U ovom je slučaju desna strana pripadne Ljapunovljeve jednadžbe

malog ranga i to nam omogućava bolju aproksimaciju prilikom korǐstenja re-

dukcije dimenzije. U tom slučaju izveli smo algoritam koji računa aproksi-

maciju traga rješenja Ljapunovljeve jednadžbe i odgovarajuću ocjenu pogreške

koja koristi strukturu sistema. Uz tu ocjenu pogreške možemo učinkovito op-

timizirati viskoznost. Na numeričkim primjerima pokazali smo da se opti-

mizacijski proces može značajno ubrzati, odnosno, pokazali smo da u okolini

optimalnih pozicija možemo ubrzati optimizacijski proces oko 800 puta i uz

to izračunati optimalno prigušenje unutar granica tolerancije.

Dok smo 2. i 3. poglavlje posvetili uglavnom optimizaciji viskoznosti, 4.

poglavlje posvećeno je optimizaciji položaja prigušivača. U tom poglavlju

predstavljamo nekoliko pristupa koji ubrzavaju optimizaciju položaja prigu-

šivača. Prvo predstavljamo dvije heuristike: ”Multigrid-like” i ”Discrete to
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continuous” optimizacijski pristup. Oni značajno smanjuju broj Ljapunov-

ljevih jednadžbi koje moraju biti riješene i pokazuju vrlo dobre performanse

na numeričkim primjerima. Nadalje predstavljamo optimizacijski pristup koji

povezuje aproksimacijske algoritme s algoritmima koji koriste heuristike. Taj

nam pristup omogućava da izračunamo optimalne položaje prigušivača i odgo-

varajuće viskoznosti čak i za veće dimenzije. Osim tih pristupa koji koriste

heuristike predstavili smo i algoritam koji odreduje područje koje sadrži op-

timalne pozicije prigušivača. Taj je algoritam izveden korǐstenjem ocjene

pogreške iz 3. poglavlja i on je učinkovit za posebno strukturirane sisteme.

U posljednjem poglavlju istražujemo studij slučaja za vrlo strukturiran sistem.

Glavna su svojstva da je unutranje prigušenje nula i da neprigušene frekven-

cije dolaze u bliskim parovima. Izveli smo formulu za trag rješenja pripadne

Ljapunovljeve jednadžbe. Ta je formula najbliža generalizacija slučaja kada se

proučava jednodimenzionalno prigušenje. Tim pristupom možemo značajno

ubrzati optimizacijski proces, a faktor ubrzanja veći je od 1000.
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