LINEARNA ALGEBRA I M018 (2+3+0) - 7 ECTS bodova
CILJEVI KOLEGIJA |
Usvajanje osnovnih koncepata i metoda linearne algebre, svladavanje manipulacije s
osnovnim primjerima vektorskih prostora te rada s matricama.
|
POTREBNO PREDZNANJE |
Geometrija ravnine i prostora |
|
SADRŽAJ KOLEGIJA |
|
VEKTORSKI PROSTORI |
Pojam vektorskog prostora. Linearna zavisnost i nezavisnost. Sustav izvodnica.
Baza i dimenzija. Potprostor. Suma potprostora. Direktna suma i direktni komplement. Kvocijentni
prostor.
|
MATRICE |
Operacije s matricama. Regularne matrice. Determinanta. Elementarne transformacije.
Adjunkta. Rang.
|
SUSTAVI LINEARNIH JEDNADŽBI |
Rješivost i struktura skupa rješenja. Kronecker-Capellijev teorem.
Homogeni sustavi. Partikularno rješenje. Gaussova metoda eliminacije. Cramerovo pravilo. |
|
IZVOĐENJE KOLEGIJA |
Predavanja i vježbe su obavezne. Ispit se sastoji od
pismenog i usmenog dijela, a polaže se nakon odslušanih predavanja i obavljenih vježbi. Prihvatljivi
rezultati postignuti na kolokvijima, koje studenti pišu tijekom semestra, zamjenjuju pismeni dio ispita. |
|
VREDNOVANJE ZNANJA |
|
1. KOLOKVIJI I DOMAĆE ZADAĆE |
Tijekom semestra studenti mogu polagati 2 kolokvija, koji zamjenjuju pismeni dio ispita.
|
2. PISMENI ISPIT |
Pismeni ispit je obavezan za studente koji nisu uspješno položili kolokvije i nosi ukupno 100 bodova. Bodovni prag za polaganje pismenog ispita je 50 bodova. |
3. USMENI ISPIT |
Usmeni ispit je obavezan za sve studente. Na usmenom ispitu se, u ovisnosti od ocjene s pismenog ispita i kolokvija formira konačna ocjena. |
|
- D. Bakić - Linearna algebre, Školska knjiga, Zagreb, 2008.
LITERATURA KOJA SE PREPORUČUJE
- S. Kurepa - Uvod u linearnu algebru, Školska knjiga, Zagreb, 1987.
- S. Kurepa - Konačnodimenzionalni vektorski prostori i primjene, Tehnička
knjiga, Zagreb, 1967.
- N. Bakić, A. Milas - Zbirka zadataka iz linearne algebre, PMF-Matematički odjel Sveučilišta u Zagrebu, 1995.
- L. Čaklović - Zbirka zadataka iz linearne algebre, Školska knjiga, 1992.
- K. Horvatić - Linearna algebra, Golden marketing, Tehnička knjiga, Zagreb, 2004.
- G. Strang - Introduction to Linear Algebra, Wellesley-Cambridge Press, 2009.
- J. Hefferon - Linearn Algebra, http://joshua.smcvt.edu/linearalgebra/
- S. Axler - Linear Algebra Done Right, Springer, 2009.
- C. Meyer - Matrix Analysis and Applied Linear Algebra, SIAM, 2001.
- N. Elezović - A. Aglić, Linearna algebra: zbirka zadataka, Element, Zagreb, 1999.
- V. Proskurjakov - Problems in linearn algebra, Mir, Moskva, 1978.